Skip to main content

Abstract

In 2002 J.T. Rutka stated in an editorial commentary that: “There is perhaps no other primary brain tumour that evokes more passion, emotion, and, as a result, controversy than does the craniopharyngioma”. This statement clarifies the situation of medical specialists such as endocrinologists, neurosurgeons, neuropathologists, neurooncologists, paediatric oncologists and neuro-radiologists involved in treatment of craniopharyngioma (CP) patients. Although CPs are classified by the WHO as benign tumours, their size and relationship to multiple critical structures can incur massive clinical complications. Here we elucidate the histological and genomic hallmarks, setting adamantinomatous (ACP) apart from papillary craniopharyngiomas (PCP). In addition, molecular mechanisms that we already know to be involved in the pathogenesis of ACP, e.g. Wnt, SHH and EGFR signalling influencing proliferation, morphology, migration and recurrence by the establishment of a presumably tumour stem cell niche, are discussed. Our understanding of the driving force of ACP tumourigenesis opens new avenues for targeted treatment options, e.g. the inhibition of the EGFR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutka JT (2002) Craniopharyngioma. J Neurosurg 97(1):1–2 discussion 2

    Article  PubMed  Google Scholar 

  2. Louis D, Ohgaki H, Wiestler O, Cavenee W, Ellison D, Figarella-Branger D, et al (2016) WHO classification of tumours of the central nervous system, Revised 4th Edition. IARC, Lyon, pp 324–328. ISBN 978-92-832-4492-9

    Google Scholar 

  3. Garnett MR et al (2007) Craniopharyngioma. Orphanet J Rare Dis 2(1):1

    Article  Google Scholar 

  4. Erdheim J (1904) Über Hypophysenganggeschwülste und Hirncholesteatome. Sitzber. d. k. Akad. Wiss. Wien 113:537–726

    Google Scholar 

  5. Lindholm J, Nielsen EH (2009) Craniopharyngioma: historical notes. Pituitary 12(4):352–359

    Article  CAS  PubMed  Google Scholar 

  6. Sekine S et al (2002) Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161(6):1997–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hölsken A et al (2016) Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun 4(1):1–13

    Article  Google Scholar 

  8. Hoffman H (1994) Surgical management of craniopharyngioma. Pediatr Neurosurg 21(Suppl. 1):44–49

    PubMed  Google Scholar 

  9. Weiner HL et al (1994) Craniopharyngiomas: a clinicopathological analysis of factors predictive of recurrence and functional outcome. Neurosurgery 35(6):1001–1011

    Article  CAS  PubMed  Google Scholar 

  10. Gupta N, Banerjee A, Haas-Kogan D (2010) Pediatric CNS tumors. Springer, Berlin

    Book  Google Scholar 

  11. Miller D (1994) Pathology of craniopharyngiomas: clinical import of pathological findings. Pediatr Neurosurg 21(Suppl. 1):11–17

    PubMed  Google Scholar 

  12. Izuora G et al (1988) Childhood intracranial neoplasms Enugu, Nigeria. West Afr J Med 8(3):171–174

    Google Scholar 

  13. Kuratsu J-I, Ushio Y (1996) Epidemiological study of primary intracranial tumors in childhood. Pediatr Neurosurg 25(5):240–247

    Article  CAS  PubMed  Google Scholar 

  14. Karavitaki N et al (2006) Craniopharyngiomas. Endocr Rev 27(4):371–397

    Article  PubMed  Google Scholar 

  15. Karavitaki N et al (2005) Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol 62(4):397–409

    Article  CAS  Google Scholar 

  16. Bernstein ML, Buchino JJ (1983) The histologic similarity between craniopharyngioma and odontogenic lesions: a reappraisal. Oral Surg Oral Med Oral Pathol 56(5):502–511

    Article  CAS  PubMed  Google Scholar 

  17. Paulus W et al (1997) Odontogenic classification of craniopharyngiomas: a clinicopathological study of 54 cases. Histopathology 30(2):172–176

    Article  CAS  PubMed  Google Scholar 

  18. Sekine S et al (2003) Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol 163(5):1707–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sekine S et al (2004) Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation. Histopathology 45(6):573–579

    Article  CAS  PubMed  Google Scholar 

  20. Seemayer T, Blundell J, Wiglesworth F (1972) Pituitary craniopharyngioma with tooth formation. Cancer 29(2):423–430

    Article  CAS  PubMed  Google Scholar 

  21. Soukup V et al (2008) Dual epithelial origin of vertebrate oral teeth. Nature 455(7214):795–798

    Article  CAS  PubMed  Google Scholar 

  22. Sartoretti-Schefer S et al (1997) MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR Am J Neuroradiol 18(1):77–87

    CAS  PubMed  Google Scholar 

  23. Brastianos PK et al (2014) Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 46(2):161–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schweizer L et al (2015) BRAF V600E analysis for the differentiation of papillary craniopharyngiomas and Rathke’s cleft cysts. Neuropathol Appl Neurobiol 41(6):733–742

    Article  CAS  PubMed  Google Scholar 

  25. Buslei R et al (2005) Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109(6):589–597

    Article  CAS  PubMed  Google Scholar 

  26. Larkin SJ et al (2014) BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol 127(6):927–929

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim JH, Paulus W, Heim S (2015) BRAF V600E mutation is a useful marker for differentiating Rathke’s cleft cyst with squamous metaplasia from papillary craniopharyngioma. J Neuro-Oncol 123:181–191

    Google Scholar 

  28. Alomari AK et al (2015) Craniopharyngioma arising in a Rathke’s cleft cyst: case report. J Neurosurg Pediatr 15(3):250–254

    Article  PubMed  Google Scholar 

  29. Hofmann BM et al (2006) Nuclear beta-catenin accumulation as reliable marker for the differentiation between cystic craniopharyngiomas and rathke cleft cysts: a clinico-pathologic approach. Am J Surg Pathol 30(12):1595–1603

    Article  PubMed  Google Scholar 

  30. Xu W, Kimelman D (2007) Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci 120(Pt 19):3337–3344

    Article  CAS  PubMed  Google Scholar 

  31. Behrens J et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382(6592):638–642

    Article  CAS  PubMed  Google Scholar 

  32. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663):1483–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17(5):459–465

    Article  CAS  PubMed  Google Scholar 

  34. Roura S et al (1999) Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274(51):36734–36740

    Article  CAS  PubMed  Google Scholar 

  35. Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317–321

    Article  CAS  PubMed  Google Scholar 

  36. Behrens J et al (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280(5363):596–599

    Article  CAS  PubMed  Google Scholar 

  37. Rubinfeld B et al (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272(5264):1023–1026

    Article  CAS  PubMed  Google Scholar 

  38. Rubinfeld B et al (1993) Association of the APC gene product with beta-catenin. Science 262(5140):1731–1734

    Article  CAS  PubMed  Google Scholar 

  39. Amit S et al (2002) Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16(9):1066–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Provost E et al (2003) Functional correlates of mutations in beta-catenin exon 3 phosphorylation sites. J Biol Chem 278(34):31781–31789

    Article  CAS  PubMed  Google Scholar 

  41. Aberle H et al (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16(13):3797–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Al-Fageeh M et al (2004) Phosphorylation and ubiquitination of oncogenic mutants of beta-catenin containing substitutions at Asp32. Oncogene 23(28):4839–4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao C, Chen Y-G (2010) Dishevelled: The hub of Wnt signaling. Cell Signal 22(5):717–727

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Rubin JS, Kimmel AR (2005) Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Curr Biol 15(22):1989–1997

    Article  CAS  PubMed  Google Scholar 

  45. Müller T et al (2002) Regulation of epithelial cell migration and tumor formation by β-catenin signaling. Exp Cell Res 280(1):119–133

    Article  PubMed  CAS  Google Scholar 

  46. Kato K et al (2004) Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol 203(3):814–821

    Article  CAS  PubMed  Google Scholar 

  47. Holsken A et al (2009) Target gene activation of the Wnt signaling pathway in nuclear beta-catenin accumulating cells of adamantinomatous craniopharyngiomas. Brain Pathol 19(3):357–364

    Article  PubMed  CAS  Google Scholar 

  48. Yoshimoto M et al (2004) Comparative genomic hybridization analysis of pediatric adamantinomatous craniopharyngiomas and a review of the literature. J Neurosurg 101(1 Suppl):85–90

    PubMed  Google Scholar 

  49. Provost E et al (2005) Functional correlates of mutation of the Asp32 and Gly34 residues of beta-catenin. Oncogene 24(16):2667–2676

    Article  CAS  PubMed  Google Scholar 

  50. Staal FJ et al (2002) Wnt signals are transmitted through N-terminally dephosphorylated β-catenin. EMBO Rep 3(1):63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Legoix P et al (1999) Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene 18(27):4044–4046

    Article  CAS  PubMed  Google Scholar 

  52. Van Nhieu JT et al (1999) Nuclear accumulation of mutated β-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol 155(3):703–710

    Article  CAS  Google Scholar 

  53. Huber AH, Nelson WJ, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90(5):871–882

    Article  CAS  PubMed  Google Scholar 

  54. von Kries JP et al (2000) Hot spots in beta-catenin for interactions with LEF-1, conductin and APC. Nat Struct Biol 7(9):800–807

    Article  CAS  Google Scholar 

  55. Koike M et al (2004) beta-Catenin shows an overlapping sequence requirement but distinct molecular interactions for its bidirectional passage through nuclear pores. J Biol Chem 279(32):34038–34047

    Article  CAS  PubMed  Google Scholar 

  56. Henderson BR et al (2002) Lymphoid enhancer factor-1 blocks adenomatous polyposis coli-mediated nuclear export and degradation of beta-catenin. Regulation by histone deacetylase 1. J Biol Chem 277(27):24258–24264

    Article  CAS  PubMed  Google Scholar 

  57. Wong NACS, Pignatelli M (2002) β-catenin—a linchpin in colorectal carcinogenesis? Am J Pathol 160(2):389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tao YS et al (1996) beta-Catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol 134(5):1271–1281

    Article  CAS  PubMed  Google Scholar 

  59. Hülsken J, Birchmeier W, Behrens J (1994) E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127(6):2061–2069

    Article  PubMed  Google Scholar 

  60. Krieghoff E, Behrens J, Mayr B (2006) Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci 119(Pt 7):1453–1463

    Article  CAS  PubMed  Google Scholar 

  61. Hu T, Li C (2010) Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer 9(1):1

    PubMed  PubMed Central  Google Scholar 

  62. Sharma M, Chuang WW, Sun Z (2002) Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J Biol Chem 277(34):30935–30941

    Article  CAS  PubMed  Google Scholar 

  63. Ulloa F, Itasaki N, Briscoe J (2007) Inhibitory Gli3 activity negatively regulates Wnt/β-catenin signaling. Curr Biol 17(6):545–550

    Article  CAS  PubMed  Google Scholar 

  64. Noubissi FK et al (2009) Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res 69(22):8572–8578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gaston-Massuet C et al (2011) Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A 108(28):11482–11487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prieve MG, Waterman ML (1999) Nuclear localization and formation of β-catenin–lymphoid enhancer factor 1 complexes are not sufficient for activation of gene expression. Mol Cell Biol 19(6):4503–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Holsken A et al (2013) Adamantinomatous craniopharyngiomas express tumor stem cell markers in cells with activated Wnt signaling: further evidence for the existence of a tumor stem cell niche? Pituitary 17:546–556

    Article  CAS  Google Scholar 

  68. Holsken A et al (2010) Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol 119:631–639

    Article  PubMed  CAS  Google Scholar 

  69. Jho EH et al (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lustig B et al (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22(4):1184–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lammi L et al (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74(5):1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taniguchi K et al (2002) Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21(31):4863–4871

    Article  CAS  PubMed  Google Scholar 

  73. Liu A, Niswander LA (2005) Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci 6(12):945–954

    Article  CAS  PubMed  Google Scholar 

  74. Rahman MS et al (2015) TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 3:15005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takuma N et al (1998) Formation of Rathke's pouch requires dual induction from the diencephalon. Development 125(23):4835–4840

    CAS  PubMed  Google Scholar 

  76. Treier M et al (1998) Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12(11):1691–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohazama A, Tucker A, Sharpe PT (2005) Organized tooth-specific cellular differentiation stimulated by BMP4. J Dent Res 84(7):603–606

    Article  CAS  PubMed  Google Scholar 

  78. Liu F et al (2008) Wnt/β-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 313(1):210–224

    Article  CAS  PubMed  Google Scholar 

  79. Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116(Pt 9):1647–1648

    Article  CAS  PubMed  Google Scholar 

  80. Kratochwil K et al (1996) Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 10(11):1382–1394

    Article  CAS  PubMed  Google Scholar 

  81. Buslei R et al (2007) Nuclear beta-catenin accumulation associates with epithelial morphogenesis in craniopharyngiomas. Acta Neuropathol 113(5):585–590

    Article  CAS  PubMed  Google Scholar 

  82. Stache C et al (2015) Insights into the infiltrative behavior of adamantinomatous craniopharyngioma in a new xenotransplant mouse model. Brain Pathol 25(1):1–10

    Article  CAS  PubMed  Google Scholar 

  83. Kim JS et al (2002) Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 62(10):2744–2748

    CAS  PubMed  Google Scholar 

  84. Vignjevic D et al (2007) Fascin, a novel target of β-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 67(14):6844–6853

    Article  CAS  PubMed  Google Scholar 

  85. Grothey A et al (2000) C-erbB-2HER-2 upregulates fascin, an actin-bundling protein associated with cell motility, in human breast cancer cell lines. Oncogene 19(42):4864–4875

    Article  CAS  PubMed  Google Scholar 

  86. Hashimoto Y, Skacel M, Adams JC (2005) Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? Int J Biochem Cell Biol 37(9):1787–1804

    Article  CAS  PubMed  Google Scholar 

  87. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9(6):446–454

    Article  CAS  PubMed  Google Scholar 

  88. Kim SJ et al (2010) Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 138(3):1035–1045 e2

    Article  CAS  PubMed  Google Scholar 

  89. Hashimoto Y et al (2006) Prognostic significance of fascin expression in advanced colorectal cancer: an immunohistochemical study of colorectal adenomas and adenocarcinomas. BMC Cancer 6(1):1

    Article  Google Scholar 

  90. Yoder BJ et al (2005) The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor–negative breast cancer and a more aggressive clinical course. Clin Cancer Res 11(1):186–192

    CAS  PubMed  Google Scholar 

  91. Civenni G, Holbro T, Hynes NE (2003) Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep 4(2):166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu W-H et al (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16(3):307–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu Z et al (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4(6):499–515

    Article  CAS  PubMed  Google Scholar 

  94. Schroeder JA et al (2002) ErbB-β-catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J Biol Chem 277(25):22692–22698

    Article  CAS  PubMed  Google Scholar 

  95. Holsken A et al (2011) EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res 17:4367–4377

    Article  PubMed  CAS  Google Scholar 

  96. Roskoski R (2004) The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 319(1):1–11

    Article  CAS  PubMed  Google Scholar 

  97. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59(2):S21–S26

    Article  CAS  Google Scholar 

  98. Zhang X et al (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149

    Article  CAS  PubMed  Google Scholar 

  99. Laurent-Puig P, Lievre A, Blons H (2009) Mutations and response to epidermal growth factor receptor inhibitors. Clin Cancer Res 15(4):1133–1139

    Article  CAS  PubMed  Google Scholar 

  100. Gan HK, Kaye AH, Luwor RB (2009) The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 16(6):748–754

    Article  CAS  PubMed  Google Scholar 

  101. Willmore-Payne C, Holden JA, Layfield LJ (2006) Detection of EGFR-and HER2-activating mutations in squamous cell carcinoma involving the head and neck. Mod Pathol 19(5):634–640

    Article  CAS  PubMed  Google Scholar 

  102. Gump JM et al (2015) Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol Commun 3:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Andoniadou CL et al (2012) Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 124(2):259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Iyer AKV et al (2008) Cell surface restriction of EGFR by a tenascin cytotactin-encoded EGF-like repeat is preferential for motility-related signaling. J Cell Physiol 214(2):504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Swindle CS et al (2001) Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 154(2):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Burghaus S et al (2010) A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas. Virchows Arch 456(3):287–300

    Article  PubMed  Google Scholar 

  107. Sarubi J et al (2001) Clonal composition of human adamantinomatous craniopharyngiomas and somatic mutation analyses of the patched (PTCH), Gsα and Gi2α genes. Neurosci Lett 310(1):5–8

    Article  CAS  PubMed  Google Scholar 

  108. Gomes DC et al (2015) Sonic Hedgehog pathway is upregulated in adamantinomatous craniopharyngiomas. Eur J Endocrinol 172(5):603–608

    Article  CAS  PubMed  Google Scholar 

  109. Treier M et al (2001) Hedgehog signaling is required for pituitary gland development. Development 128(3):377–386

    CAS  PubMed  Google Scholar 

  110. Palma V et al (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132(2):335–344

    Article  CAS  PubMed  Google Scholar 

  111. Athar M et al (2006) Hedgehog signalling in skin development and cancer. Exp Dermatol 15(9):667–677

    Article  CAS  PubMed  Google Scholar 

  112. Dassule HR et al (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127(22):4775–4785

    CAS  PubMed  Google Scholar 

  113. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411(6835):349–354

    Article  CAS  PubMed  Google Scholar 

  114. Gulino A, Ferretti E, De Smaele E (2009) Hedgehog signalling in colon cancer and stem cells. EMBO Mol Med 1(6–7):300–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. di Magliano MP, Hebrok M (2003) Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3(12):903–911

    Article  Google Scholar 

  116. Stache C et al (2014) Tight junction protein claudin-1 is differentially expressed in craniopharyngioma subtypes and indicates invasive tumor growth. Neuro-Oncology 16(2):256–264

    Article  CAS  PubMed  Google Scholar 

  117. Saegusa M et al (2004) β-catenin simultaneously induces activation of the p53-p21WAF1 pathway and overexpression of cyclin D1 during squamous differentiation of endometrial carcinoma cells. Am J Pathol 164(5):1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tateyama H et al (2001) Different Keratin Profilesin Craniopharyngioma Subtypes and Ameloblastomas. Pathol Res Pract 197(11):735–742

    Article  CAS  PubMed  Google Scholar 

  119. Moll R (1993) Cytokeratins as markers of differentiation. Expression profiles in epithelia and epithelial tumors. Veroff Pathol 142:1–197

    CAS  PubMed  Google Scholar 

  120. Chu P, Weiss L (2002) Keratin expression in human tissues and neoplasms. Histopathology 40(5):403–439

    Article  CAS  PubMed  Google Scholar 

  121. Blumenberg M (1988) Concerted gene duplications in the two keratin gene families. J Mol Evol 27(3):203–211

    Article  CAS  PubMed  Google Scholar 

  122. JACKSON BW et al (1980) Formation of cytoskeletal elements during mouse embryogenesis. Differentiation 17(1–3):161–179

    Article  CAS  PubMed  Google Scholar 

  123. Markey AC et al (1991) Expression of simple epithelial keratins 8 and 18 in epidermal neoplasia. J Invest Dermatol 97(5):763–770

    Article  CAS  PubMed  Google Scholar 

  124. Mariadason JM et al (2001) Down-regulation of β-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Res 61(8):3465–3471

    CAS  PubMed  Google Scholar 

  125. Naishiro Y et al (2001) Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of β-catenin/T-cell factor 4-mediated gene transactivation. Cancer Res 61(6):2751–2758

    CAS  PubMed  Google Scholar 

  126. Behrens J et al (1993) Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 120(3):757–766

    Article  CAS  PubMed  Google Scholar 

  127. Brabletz T et al (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98(18):10356–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jamora C et al (2003) Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422(6929):317–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu D et al (2001) E-cadherin expression associated with differentiation and prognosis in patients with non–small cell lung cancer. Ann Thorac Surg 71(3):949–954

    Article  CAS  PubMed  Google Scholar 

  130. Owens DW et al (2000) E-cadherin at the cell periphery is a determinant of keratinocyte differentiation in vitro. Biochem Biophys Res Commun 269(2):369–376

    Article  CAS  PubMed  Google Scholar 

  131. Schipper J, Unger A, Jahnke K (1994) E-cadherin as a functional marker of the differentiation and invasiveness of squamous cell carcinoma of the head and neck. Clin Otolaryngol Allied Sci 19(5):381–384

    Article  CAS  PubMed  Google Scholar 

  132. Preda V et al (2015) The Wnt signalling cascade and the adherens junction complex in craniopharyngioma tumorigenesis. Endocr Pathol 26(1):1–8

    Article  CAS  PubMed  Google Scholar 

  133. Qi ST et al (2012) Epithelial–mesenchymal transition and clinicopathological correlation in craniopharyngioma. Histopathology 61(4):711–725

    Article  PubMed  Google Scholar 

  134. Mimeault M, Batra SK (2010) Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 62(3):497–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    Article  CAS  PubMed  Google Scholar 

  136. Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  137. Garcia-Lavandeira M et al (2012) Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab 97(1):E80–E87

    Article  CAS  PubMed  Google Scholar 

  138. Tena-Suck ML et al (2009) Expression of epithelial cell adhesion molecule and pituitary tumor transforming gene in adamantinomatous craniopharyngioma and its correlation with recurrence of the tumor. Ann Diagn Pathol 13(2):82–88

    Article  PubMed  Google Scholar 

  139. Demir R et al (2009) Malignant progression of invasive tumour cells seen in hypoxia present an accumulation of β-catenin in the nucleus at the tumour front. Exp Mol Pathol 87(2):109–116

    Article  CAS  PubMed  Google Scholar 

  140. Brabletz T et al (2001) Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci 98(18):10356–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Herbst RS, Fukuoka M, Baselga J (2004) Gefitinib—a novel targeted approach to treating cancer. Nat Rev Cancer 4(12):979–987

    Article  CAS  Google Scholar 

  142. Bartels U (2012) Intracystic therapies for cystic craniopharyngioma in childhood. Front Endocrinol (Lausanne) 3:39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Hölsken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hölsken, A. (2017). Pathogenesis of Human ACP. In: Martinez-Barbera, J., Lilian Andoniadou, C. (eds) Basic Research and Clinical Aspects of Adamantinomatous Craniopharyngioma. Springer, Cham. https://doi.org/10.1007/978-3-319-51890-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51890-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51888-6

  • Online ISBN: 978-3-319-51890-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics