Skip to main content

Microbial Electron Transport in the Deep Subsurface

  • Chapter
  • First Online:
Microbial Ecology of Extreme Environments

Abstract

The deep ocean may be one of the largest microbial habitats on the planet. Hence, high hydrostatic pressure is a feature of microbial life. We know very little about the deep biosphere because simulating deep ocean conditions in the laboratory whilst simultaneously monitoring microbial processes is difficult. Changes in pressure can inhibit some reactions, whilst simultaneously accelerating others. Assumptions about how biochemical reactions proceed under ambient conditions may lack validity in the deep biosphere. In extreme environments, microbes often exploit metabolic strategies that yield slim energetic margins. How these occur under pressure is an interesting thermodynamic puzzle. Extracellular electron transfer (EET) is a process whereby microbes respire solid substrates in their surrounding environment. For an electron to move outside of the cell, it must transit the microbial envelope through a series of membrane bound electron carriers each of which will have a unique pressure response. EET most likely evolved in the deep biosphere and therefore makes an excellent model system for studying microbial energetics in high pressure environments. In this chapter, the reader can explore the fundamentals of thermodynamics, the discovery of EET, theoretical implications of pressure effects on the relevant biochemical apparatus, and learn about a proposed system for studying the interesting phenomenon of EET under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: Perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357

    Article  CAS  PubMed  Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells. Appl Biochem Biotechnol 39:27–40

    Article  Google Scholar 

  • Aparicio FL, Nieto-Cid M, Borrull E, Romero E, Stedmon CA, Sala MM, Gasol JM, Ríos AF, Marrasé C (2015) Microbially-mediated fluorescent organic matter transformations in the deep ocean. Do the chemical precursors matter? Front Marine Sci 2:106

    Google Scholar 

  • Bartlett DH (1999) Microbial adaptations to the psychrosphere/piezosphere. J Mol Microbiol Biotechnol 1:93–100

    CAS  PubMed  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta (BBA)—Protein Struct Mol Enzymol 1595:367–381

    Google Scholar 

  • Bird LJ, Bonnefoy V, Newman DK (2011) Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19:330–340

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883

    Article  CAS  PubMed  Google Scholar 

  • Chikuma S, Kasahara R, Kato C, Tamegai H (2007) Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol Lett 267:108–112

    Article  CAS  PubMed  Google Scholar 

  • Coursolle D, Gralnick JA (2012) Reconstruction of extracellular respiratory pathways for Iron(III) reduction in Shewanella oneidensis strain MR-1. Front Microbiol 3:56

    Google Scholar 

  • Cruanes MT, Rodgers KK, Sligar SG (1992) Protein electrochemistry at high pressure. J Am Chem Soc 114:9660–9661

    Article  CAS  Google Scholar 

  • Cruanes MT, Drickamer HG, Faulkner LR (1995) Characterization of charge transfer processes in self-assembled monolayers by high-pressure electrochemical techniques. Langmuir 11:4089–4097

    Article  CAS  Google Scholar 

  • Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875

    Article  CAS  PubMed  Google Scholar 

  • Edwards MJ, White GF, Norman M, Tome-Fernandez A, Ainsworth E, Shi L, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ (2015) Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer. Sci Rep 5

    Google Scholar 

  • El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107:18127–18131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Bazylinski DA (2008) Deep sea geomicrobiology. High-pressure microbiology ASM Press, Washington, DC, pp 237–264

    Google Scholar 

  • Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422

    Article  CAS  PubMed  Google Scholar 

  • Foustoukos DI, Pérez-Rodríguez I (2015) A continuous culture system for assessing microbial activities in the piezosphere. Appl Environ Microbiol 81:6850–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovanelli D, Lawrence NS, Compton RG (2004) Electrochemistry at high pressures: a review. Electroanalysis 16:789–810

    Article  CAS  Google Scholar 

  • Gorby YA, Lovley DR (1991) Electron transport in the dissimilatory iron reducer, GS-15. Appl Environ Microbiol 57:867–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002a) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotech 20:1118–1123

    Article  CAS  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B (2002b) Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Hinks J, Wang Y, Poh WH, Donose BC, Thomas AW, Wuertz S, Loo SC, Bazan GC, Kjelleberg S, Mu Y, Seviour T (2014) Modeling cell membrane perturbation by molecules designed for transmembrane electron transfer. Langmuir 30:2429–2440

    Article  CAS  PubMed  Google Scholar 

  • Hinks J, Poh WH, Chu JJH, Loo JSC, Bazan GC, Hancock LE, Wuertz S (2015a) Oligopolyphenylenevinylene-conjugated oligoelectrolyte membrane insertion molecules selectively disrupt cell envelopes of gram-positive bacteria. Appl Environ Microbiol 81:1949–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinks J, Wang Y, Matysik A, Kraut R, Kjelleberg S, Mu Y, Bazan GC, Wuertz S, Seviour T (2015b) Increased microbial butanol tolerance by exogenous membrane insertion molecules. ChemSusChem 8:3718–3726

    Article  CAS  PubMed  Google Scholar 

  • Hinks J, Han EJ, Wang VB, Seviour T, Marsili E, Loo J, Wuertz S (2016) Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli. Microb Biotechnol 9(6)

    Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  PubMed  Google Scholar 

  • Jensen HM, Albers AE, Malley KR, Londer YY, Cohen BE, Helms BA, Weigele P, Groves JT, Ajo-Franklin CM (2010) Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci 107:19213–19218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  • Liao L, Xu X-W, Jiang X-W, Wang C-S, Zhang D-S, Ni J-Y, Wu M (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78:565–585

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips E, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  CAS  PubMed  Google Scholar 

  • Macdonald AG (1997) Hydrostatic pressure as an environmental factor in life processes. Comp Biochem Physiol A Physiol 116:291–297

    Article  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim B-C, Inoue K, Mester T, Covalla SF, Johnson JP (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    Article  PubMed  Google Scholar 

  • Malvankar NS, Tuominen MT, Lovley DR (2012) Comment on “On electrical conductivity of microbial nanowires and biofilms” by SM Strycharz-Glaven, RM Snider, A. Guiseppi-Elie and LM Tender, Energy Environ. Sci., 2011, 4, 4366. Energy Environ Sci 5:6247–6249

    Google Scholar 

  • Malvankar NS, Vargas M, Nevin K, Tremblay P-L, Evans-Lutterodt K, Nykypanchuk D, Martz E, Tuominen MT, Lovley DR (2015) Structural basis for metallic-like conductivity in microbial nanowires. mBio 6, e00084-15

    Google Scholar 

  • Meersman F, Daniel I, Bartlett DH, Winter R, Hazael R, McMillain P (2013) High-pressure biochemistry and biophysics. Rev Mineral Geochem 75:607–648

    Article  CAS  Google Scholar 

  • Meyer TE, Tsapin AI, Vandenberghe I, De Smet L, Frishman D, Nealson KH, Cusanovich MA, Van Beeumen JJ (2004) Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. Omics: J Integr Biol 8:57–77

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240

    Google Scholar 

  • Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picard A, Daniel I (2013) Pressure as an environmental parameter for microbial life—a review. Biophys Chem 183:30–41

    Article  CAS  PubMed  Google Scholar 

  • Picard A, Daniel I, Testemale D, Kieffer I, Bleuet P, Cardon H, Oger P (2011) Monitoring microbial redox transformations of metal and metalloid elements under high pressure using in situ X-ray absorption spectroscopy. Geobiology 9:196–204

    CAS  PubMed  Google Scholar 

  • Picard A, Testemale D, Hazemann J-L, Daniel I (2012) The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction. Geochim Cosmochim Acta 88:120–129

    Article  CAS  Google Scholar 

  • Picard A, Testemale D, Wagenknecht L, Hazael R, Daniel I (2014) Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions. Front Microbiol 5

    Google Scholar 

  • Picard, A., Testemale, D., Wagenknecht, L., Hazael, R., and Daniel, I. (2015) Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions, Front Microbiol 5:796

    Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY (2015) Bacterial Nanowires of Shewanella Oneidensis MR-1 are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components. Biophys J 108:368a

    Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc Royal Soc London Ser B, Containing Pap Biol Charac 84:260–276

    Article  Google Scholar 

  • Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G, Baiden N, Gates AJ, Marritt SJ (2012) The ‘porin–cytochrome’model for microbe-to-mineral electron transfer. Mol Microbiol 85:201–212

    Article  CAS  PubMed  Google Scholar 

  • Roden EE (2003) Fe(III) oxide reactivity toward biological versus chemical reduction. Environ Sci Technol 37:1319–1324

    Article  CAS  Google Scholar 

  • Roller SD, Bennetto HP, Delaney GM, Mason JR, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuel cells: 1. comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34:3–12

    Article  CAS  Google Scholar 

  • Roussel EG, Bonavita M-AC, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320:1046

    Article  CAS  PubMed  Google Scholar 

  • Sachinidis JI, Shalders RD, Tregloan PA (1994) Measurement of redox reaction volumes for iron (III/II) complexes using high-pressure cyclic staircase voltammetry. Half-cell contributions to redox reaction volumes. Inorg Chem 33:6180–6186

    Article  CAS  Google Scholar 

  • Salas EC, Bhartia R, Anderson L, Hug W, Reid RD, Iturrino G, Edwards K (2015) In-situ detection of microbial life in the deep biosphere in igneous ocean crust. Front Microbiol 6:1620

    Google Scholar 

  • Sato S, Kurihara T, Kawamoto J, Hosokawa M, Sato S, Esaki N (2008) Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodeling of synthetic phospholipids containing various polyunsaturated fatty acids. Extremophiles 12:753–761

    Article  CAS  PubMed  Google Scholar 

  • Seviour T, Doyle L, Lauw S, Hinks J, Rice S, Nesatyy V, Webster R, Kjelleberg S, Marsili E (2015) Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun (Cambridge, UK) 51:3789–3792

    Google Scholar 

  • Slichter C, Drickamer H (1972) Pressure-induced electronic changes in compounds of iron. J Chem Phys 56:2142–2160

    Article  CAS  Google Scholar 

  • Strandberg E, Esteban-Martín S, Ulrich AS, Salgado J (2012) Hydrophobic mismatch of mobile transmembrane helices: merging theory and experiments. Biochim Biophys Acta 1818:1242–1249

    Article  CAS  PubMed  Google Scholar 

  • Strycharz-Glaven SM, Tender LM (2012) Reply to the ‘Comment on “On electrical conductivity of microbial nanowires and biofilms”’by NS Malvankar, MT Tuominen and DR Lovley, Energy Environ. Sci., 2012, 5. doi:10.1039/c2ee02613a. Energy & Environ Sci 5:6250–6255

  • Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011) On the electrical conductivity of microbial nanowires and biofilms. Energy Environ Sci 4:4366–4379

    Article  CAS  Google Scholar 

  • Usui K, Hiraki T, Kawamoto J, Kurihara T, Nogi Y, Kato C, Abe F (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochimica Et Biophysica Acta-Biomembranes 1818:574–583

    Article  CAS  Google Scholar 

  • Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Spivack AJ, D’Hondt S (2010) Gibbs energies of reaction and microbial mutualism in anaerobic deep subseafloor sediments of ODP Site 1226. Geochim Cosmochim Acta 74:3938–3947

    Article  CAS  Google Scholar 

  • Wang VB, Du J, Chen X, Thomas AW, Kirchhofer ND, Garner LE, Maw MT, Poh WH, Hinks J, Wuertz S, Kjelleberg S, Zhang Q, Loo JS, Bazan GC (2013) Improving charge collection in Escherichia coli-carbon electrode devices with conjugated oligoelectrolytes. Phys Chem Chem Phys 15:5867–5872

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20:633–641

    Article  CAS  PubMed  Google Scholar 

  • Willey J (2014) Prescott’s microbiology-/Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton. MacGraw-Hill, New York

    Google Scholar 

  • Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    Article  CAS  Google Scholar 

  • Wu W, Wang F, Li J, Yang X, Xiao X, Pan Y (2013) Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures. Geobiology 11:593–601

    CAS  PubMed  Google Scholar 

  • Yan H, Chuang C, Zhugayevych A, Tretiak S, Dahlquist F, Bazan G. 2015. Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport. Adv Mater (Weinheim, Ger). doi:10.1002/adma.201404167

  • Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci 78:5212–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Hinks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hinks, J., Zhou, M., Dolfing, J. (2017). Microbial Electron Transport in the Deep Subsurface. In: Chénard, C., Lauro, F. (eds) Microbial Ecology of Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-51686-8_4

Download citation

Publish with us

Policies and ethics