Skip to main content
  • 536 Accesses

Abstract

The evaluation of hip fracture risk is to assess the integrity of femur bone under the effect of impact force. Different measurements or indicators have be adopted in the literature to evaluate hip fracture risk. The available measurements can be classified into two categories: whole-bone and anatomic-site specific. The definitions, theoretical bases, pros and cons of the measurements are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Michelson, A. Myers, R. Jinnah, Q. Cox, M. Van Natta, Epidemiology of hip fractures among the elderly: risk factors for fracture type. Clin. Orthop. Relat. Res. 311, 129–135 (1995)

    Google Scholar 

  2. M. Nankaku, H. Kanzaki, T. Tsuboyama, T. Nakamura, Evaluation of hip fracture risk in relation to fall direction. Osteoporos. Int. 16 (11), 1315–1320 (2005)

    Article  PubMed  Google Scholar 

  3. C.M. Ford, T.M. Keaveny, W.C. Hayes, The effect of impact direction on the structural capacity of the proximal femur during falls. J. Bone Miner. Res. 11, 377–383 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. E. Dall’Ara, R. Eastell, M. Viceconti, D. Pahr, L. Yang, Experimental validation of DXA-based finite element models for prediction of femoral strength. J. Mech. Behav. Biomed. Mater. 63, 17–25 (2016)

    Article  PubMed  Google Scholar 

  5. Y. Luo, Z. Ferdous, W.D. Leslie, Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int. J. Numer. Methods Biomed. Eng. 29, 615–629 (2013)

    Article  Google Scholar 

  6. E. Dall’Ara, D. Pahr, P. Varga, F. Kainberger, P. Zysset, QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos. Int. 23, 563–572 (2012)

    Article  PubMed  Google Scholar 

  7. Y. Luo, Z. Ferdous, W.D. Leslie, A preliminary dual-energy X-ray absorptiometry-based finite element model for assessing osteoporotic hipfracture risk. J. Eng. Med. 225, 1188–1195 (2011)

    Article  CAS  Google Scholar 

  8. M. Mirzaei, M. Keshavarzian, V. Naeini, Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone 64, 108–114 (2014)

    Article  PubMed  Google Scholar 

  9. B. Helgason, E. Perilli et al., Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. 23, 135–146 (2008)

    Article  Google Scholar 

  10. Y.-H. An, R.A. Draughn, Mechanical Testing of Bone and the Bone-Implant Interface (CRC Press, New York, 2000)

    Google Scholar 

  11. D. Dragomir-Daescu, J. Op Den Buijs, S. McEligot, Y.F. Dai, R.C. Entwistle, C. Salas, L.J. Melton III, K.E. Bennet, S. Khosla, S. Amin, Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39 (2), 742–755 (2011)

    Article  PubMed  Google Scholar 

  12. E. Dall’Ara, B. Luisier, R. Schmidt, F. Kainberger, P. Zysset, D. Pahr, A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52, 27–38 (2013)

    Article  PubMed  Google Scholar 

  13. J.H. Keyak, H.B. Skinner, J.A. Fleming, Effect of force direction on femoral fracture load for two types of loading conditions. J. Orthop. Res. 19 (4), 539–544 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. R.D. Carpenter, G.S. Beaupré, T.F. Lang, E.S. Orwoll, D.R. Carter, New QCT analysis approach shows the importance of fall orientation on femoral neck strength. J. Bone Miner. Res. 20, 1533–1542 (2005)

    Article  PubMed  Google Scholar 

  15. P. Pottecher, K. Engelke, L. Duchemin, O. Museyko, T. Moser, D. Mitton, E. Vicaut, J. Adams, W. Skalli, J.D. Laredo, V. Bousson, Prediction of hip failure load: in vitro study of 80 femurs using three imaging methods and finite element models-the European fracture study (EFFECT). Radiology 280, 837–847 (2016)

    Article  PubMed  Google Scholar 

  16. R. McRae, Practical Fracture Treatment, 3rd edn. (Churchill Livingstone, Edinburgh, 1994)

    Google Scholar 

  17. S.T. Canale, W.C. Campbell, Campbell’s Operative Orthopaedics, 9th edn. (Mosby, St. Louis, 1998)

    Google Scholar 

  18. L.C. Brunner, L. Eshilian-Oates, T.Y. Kuo, Hip fractures in adults. Am. Fam. Physician 67, 537–543 (2003)

    PubMed  Google Scholar 

  19. D.L. Kopperdahl, T.M. Keaveny, Yield strain behavior of trabecular bone. J. Biomech. 31, 601–608 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. H. Kheirollahi, Y. Luo, Assessment of hip fracture risk using cross-section strain energy determined from QCT-based finite element model. Biomed. Res. Int. 2015, Article ID 413839 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. N.N. Davidenkoff, Allowable working stresses under impact. Trans. ASME 56, 97–107 (1934)

    Google Scholar 

  22. C.D. Albert, Factors of safety and allowable stress. Am. Mach. 57, 54–57 (1922)

    Google Scholar 

  23. S.D. Lash, J.W. Brison, Ultimate strength of reinforced concrete beams. Am. Concr. Inst. J. 21, 457–470 (1950)

    Google Scholar 

  24. J.B. Johnson, The ultimate strength of concrete-steel beams. Eng. News (1897)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Luo, Y. (2017). Measurements of Hip Fracture Risk. In: Image-Based Multilevel Biomechanical Modeling for Fall-Induced Hip Fracture. Springer, Cham. https://doi.org/10.1007/978-3-319-51671-4_9

Download citation

Publish with us

Policies and ethics