Skip to main content

Bioactives from Mushroom and Their Application

  • Chapter
  • First Online:
Book cover Food Bioactives

Abstract

Mushrooms have been consumed and appreciated worldwide for their exquisite flavor, nutritional value, and medicinal properties. Some of them being nonedible are known only for their medicinal properties. These organisms belong to a taxonomic group of basidiomycetes or ascomycetes , which produce multiple potential bioactive compounds such as polysaccharides, proteoglycans, terpenes, phenolic compounds, lectins, peptides, and proteins, among others. These bioactive compounds confer to mushrooms’ antioxidant , antimicrobial , antitumor, anti-inflammatory, antineurodegenerative , antidiabetic, anticancer, antidepressant , immunomodulating, and others properties. The increasing isolation and purification of new compounds are leading to the discovering of new therapeutical drugs. However, some of the mushrooms of medicinal importance cannot be cultivated and can be only wild-harvested in the specific growing season, which results in a long time and high cost for producing mushroom bioactive compounds. In this sense, it is very important to improve and optimize conditions for mycelial growth in vitro and create new strains by genetic modification in order to produce large amounts of those compounds of interest. These organisms offer an increasing potential in medical applications due to their chemical composition and a wide range of bioactivities. Most of the reports about biologically active compounds have been focused on in vitro and in vivo (in animal studies) evidence; however, clinical trials need to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akihisa T, Tagata M, Ukiya M et al (2005) Oxygenated lanostane-type triterpenoids from the fungus Ganoderma lucidum. J Nat Prod 68(4):559–563. doi:10.1021/np040230h

    Article  CAS  Google Scholar 

  • Akihisa T, Nakamura Y, Tagata M et al (2007) Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem Biodiver 4(2):224–231

    Article  CAS  Google Scholar 

  • Attarat J, Phermthai T (2015) Bioactive compounds in three edible Lentinus mushrooms. Walailak J Sci Technol 12(6):491–504. doi:10.14456/WJST.2015.80

    Google Scholar 

  • Badalyan S (2012) Medicinal aspects of edible ectomycorrhizal mushrooms. DDM 34. Springer, Berlin, pp 317–334

    Google Scholar 

  • Bae AH, Lee SW, Ikeda M et al (2004) Rod-like architecture and helicity of the poly(C)/schizophyllan complex observed by AFM and SEM. Carbohydr Res 339(2):251–258. doi:10.1016/j.carres.2003.09.032

    Article  CAS  Google Scholar 

  • Bao X, Liu C, Fang J et al (2001) Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr Res 332:67–74

    Article  CAS  Google Scholar 

  • Batbayar S, Lee DH, Kim HW (2012) Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. Biomol Ther 20(5):433–445. doi:10.4062/biomolther20.5.433

    Article  CAS  Google Scholar 

  • Bernardshaw S, Johnson E, Hetland G (2005) An extract of the mushroom Agaricus blazei Murill administered orally protects against systemic Streptococcus pneumoniae infection in mice. Scand J Immunol 62(4):393–398. doi:10.1111/j.1365-3083.2005.01667.x

    Article  CAS  Google Scholar 

  • Brondz I, Ekeberg D, Høiland K et al (2007) The real nature of the indole alkaloids in Cortinarius infractus: evaluation of artifact formation through solvent extraction method development. J Chromatogr A 1148(1):1–7. doi:10.1016/j.chroma.2007.02.074

    Article  CAS  Google Scholar 

  • Carbonero ER, Gracher AHP, Komura DL et al (2008) Lentinus edodes heterogalactan: antinociceptive and anti-inflammatory effects. Food Chem 111(3):531–537. doi:10.1016/j.foodchem.2008.04.015

    Article  CAS  Google Scholar 

  • Carhart-Harris R, Erritzoe D, Williams T et al (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci USA 109:2138–2143

    Article  CAS  Google Scholar 

  • Chan GCF, Chan WK, Sze DMY (2009) The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 2:25–35. doi:10.1186/1756-8722-2-25

    Article  CAS  Google Scholar 

  • Chang HH, Sheu F (2006) Anti-tumor mechanisms of orally administered a fungal immunomodulatory protein from Flammulina velutipes in mice. Nutr Immunol 6(20):A1057

    Google Scholar 

  • Chang HH, Hsieh KY, Yeh CH et al (2010) Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. Int Immunopharmacol 20:239–246. doi:10.1016/j.intimp.2009.10.017

    Article  CAS  Google Scholar 

  • Chatterjee S, Biswas G, Basu SK (2011) Antineoplastic effect of mushrooms: a review. Aust J Crop Sci 5(7):904–911

    Google Scholar 

  • Chen C, Xue JG, Zhou KS et al (2003) Purification and characterization of flammulin, a basic protein with anti-tumor activities from Flammulina velutipes. J Chin Pharm Sci 12(2):60–65

    CAS  Google Scholar 

  • Chen CC, Shiao YJ, Lin RD et al (2006) Neuroprotective diterpenes from the fruiting body of Antrodia camphorata. J Nat Prod 69:689–691

    Article  CAS  Google Scholar 

  • Chen JN, Wang YT, Wu JSB (2009) A glycoprotein extracted from golden oyster mushroom Pleurotus citrinopileatus exhibiting growth inhibitory effect against U937 leukemia cells. J Agric Food Chem 57(15):6706–6711. doi:10.1021/jf901284s

    Article  CAS  Google Scholar 

  • Cheng JJ, Lin CY, Lur HS et al (2008) Properties and biological functions of polysaccharides and ethanolic extracts isolated from medicinal fungus, Fomitopsis pinicola. Process Biochem 43(8):829–834. doi:10.1016/j.procbio.2008.03.005

    Article  CAS  Google Scholar 

  • Cheung PCK (2008) Mushrooms as functional food. Wiley, NJ, p 280

    Book  Google Scholar 

  • Choi JH, Horikawa M, Okumura H et al (2009) Endoplasmic reticulum (ER) stress protecting compounds from the mushroom Mycoleptodonoides aitchisonii. Tetrahedron 65(1):221–224. doi:10.1016/j.tet.2008.10.068

    Article  CAS  Google Scholar 

  • Choi JH, Maeda K, Nagai K et al (2010) Termitomycamides A to E, fatty acid amides isolated from the mushroom Termitomyces titanicus, suppress endoplasmic reticulum stress. Org Lett 12(21):5012–5015. doi:10.1021/ol102186p

    Article  CAS  Google Scholar 

  • Choi JH, Suzuki T, Okumura H et al (2014) Endoplasmic reticulum stress suppressive compounds from the edible mushroom Mycoleptodonoides aitchisonii. J Nat Prod 77(7):1729–1733. doi:10.1021/np500075m

    Article  CAS  Google Scholar 

  • Chowdhury MMH, Kubra K, Ahmed SR (2015) Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann Clin Microbiol Antimicrob 14:8. doi:10.1186/s12941-015-0067-3

    Article  CAS  Google Scholar 

  • Chu KT, Xia LX, Ng TB (2005) Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 26(11):2098–2103

    Article  CAS  Google Scholar 

  • Cote J, Caillet S, Doyon G (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50(7):666–679. doi:10.1080/10408390903044107

    Article  CAS  Google Scholar 

  • D’Archivio M, Filesi C, Vari R et al (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342. doi:10.3390/ijms11041321

    Article  CAS  Google Scholar 

  • Dai YC, Zhou LW, Cui BK et al (2010) Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol 87(5):1587–1593. doi:10.1007/s00253-010-2711-3

    Article  CAS  Google Scholar 

  • Das SK, Masuda M, Sakurai A et al (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81:961–968

    Article  Google Scholar 

  • Ding Y, Seow SV, Huang CH et al (2009) Coadministration of the fungal immunomodulatory protein FIP-Fve and a tumour-associated antigen enhanced antitumour immunity. Immunology 128(1):881–894

    Article  Google Scholar 

  • Du M, Zhao L, Li CR et al (2007) Purication and characterization of a novel fungi Se-containing protein from Se-enriched Ganoderma Lucidum mushroom and its Se-dependent radical scavenging activity. Eur Food Res Technol 224(5):659–665. doi:10.1007/s00217-006-0355-4

    Article  CAS  Google Scholar 

  • Du XJ, Zhang JS, Yang Y et al (2010) Purification, chemical modification and immunostimulating activity of polysaccharides from Tremella aurantialba fruit bodies. Univ-Sci B 11(6):437–442. doi:10.1631/jzus.B0900402

    Article  CAS  Google Scholar 

  • Dudhgaonkar S, Thyagarajan A, Sliva D (2009) Suppression of the inflammatory response by triterpenes isolated from the mushroom G. lucidum. Int Immunopharmacol 9(11):1272–1280. doi:10.1016/j.intimp.2009.07.011

    Article  CAS  Google Scholar 

  • Dugler B, Gonuz A, Gucin F (2004) Antimicrobial activity of the macrofungus Cantharellus cibarius. JBS 7(9):1535–1539

    Google Scholar 

  • Dundar A, Acy H, Yildiz A (2008) Yield performance and nutritional contents of three oyster mushroom species cultivated on wheat stalk. Afr J Biotechy 7:3497–3501

    CAS  Google Scholar 

  • Dziezak JD (1986) Antioxidants-The ultimate answer to oxidation. Food Techn 40(9):94

    CAS  Google Scholar 

  • El Enshasy HA, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31(12):668–677. doi:10.1016/j.tibtech.2013.09.003

    Article  CAS  Google Scholar 

  • El Enshasy HA, Rajni HK (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31(12):668–677. doi:10.1016/j.tibtech.2013.09.003

    Article  CAS  Google Scholar 

  • El Enshasy HE, Maftoun P, Malek RA (2013b) Pleuran: Immunomodulator polysaccharide from Pleurotus ostreatus, structure, production and application. Nova Science Publishers, New York, pp 153–172

    Google Scholar 

  • El Fakharany EM, Haroun BM, Ng TB et al (2010) Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 17(8):1031–1039. doi:10.2174/092986610791498948

    Article  Google Scholar 

  • El-Mekkawy S, Meselhy MR, Nakamura N et al (1998) Anti-HIV-1 and anti-HIV-1 protease substances from Ganoderma lucidum. Phytochem 49(6):1651–1657. doi:10.1016/S0031-9422(98)00254-4

    Article  CAS  Google Scholar 

  • Elsayed EA, Enshasy HE, Wadaan MAM et al (2014) Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediat Inflamm 1:1–15. doi:10.1155/2014/805841

    Article  CAS  Google Scholar 

  • Firenzuoli F, Gori L, Lombardo G (2007) The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems. Evid Based Complement Altern Med 5(1):3–15. doi:10.1093/ecam/nem007

    Article  Google Scholar 

  • Fisher M, Yang LX et al (2002) Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Res 22(3):1737–1754

    CAS  Google Scholar 

  • Friedman M (2015) Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J Agric Food Chem 63:7108–7123. doi:10.1021/acs.jafc.5b02914

    Article  CAS  Google Scholar 

  • Fujimoto H, Nakayama Y, Yamazaki M (1993) Identification of immunosuppressive components of a mushroom, Lactarius flavidulus. Chem Pharm Bull (Tokyo) 41(4):654–658

    Article  CAS  Google Scholar 

  • Ganeshpurkar A, Pardhi P, Bhadoriya SS et al (2015) Antioxidant potential of white oyster culinary-medicinal mushroom, Pleurotus florida (higher basidiomycetes). Int J Med Mushrooms 17(5):491–498. doi:10.1615/IntJMedMushrooms.v17.i5.90

    Article  Google Scholar 

  • Gao Y, Zhou S, Chen G et al (2002) A phase I/II study of a Ganoderma lucidum (Curt.:Fr.) P. Karst (LingZhi, Reishi mushroom) extract in patients with chronic hepatitis B. Int J Med Mushrooms 4(4):2321–2327. doi:10.1615/IntJMedMushr.v4.i4.50

  • Geissler T, Brandt W, Porzel A et al (2010) Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem 18(6):2173–2177. doi:10.1016/j.bmc.2010.01.074

    Article  CAS  Google Scholar 

  • Grob CS, Danforth AL, Chopra GS et al (2011) Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry 68:71–78. doi:10.1001/archgenpsychiatry.2010.116

    Article  CAS  Google Scholar 

  • Guerra-Dore CMP, Azevedo TCG, De Souza MCR et al (2007) Antiinflammatory, antioxidant and cytotoxic actions of β- glucan—rich extract from Geastrum saccatum mushroom. Int Immunopharmacol 7(9):1160–1169. doi:10.1016/j.intimp.2007.04.010

    Article  CAS  Google Scholar 

  • Guillamón S, García-Lafuente A, Lozano M et al (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 81(7):715–723. doi:10.1016/j.fitote.2010.06.005

    Article  CAS  Google Scholar 

  • Guo YX, Wang HX, Ng TB (2005) Isolation of trichogin, an antifungal protein from fresh fruiting bodies of the edible mushroom Tricholoma giganteum. Peptides 26(4):575–580

    Article  CAS  Google Scholar 

  • Gupta VK, Tuohy MG, ‎O’Donovan A et al (2014) Biotechnology of bioactive compounds: sources and applications. Blackwell, London

    Google Scholar 

  • Gupta VK, Mach RL, Sreenivasaprasad S (2015) Fungal biomolecules: sources, applications and recent developments. Wiley-Backwell, London

    Book  Google Scholar 

  • Han C, Cui B (2012) Pharmacological and pharmacokinetic studies with agaricoglycerides, extracted from Grifola frondosa, in animal models of pain and inflammation. Inflammation 35(4):1269–1275. doi:10.1007/s10753-012-9438-5

    Article  CAS  Google Scholar 

  • Han J, Chen Y, Bao L et al (2013) Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia 84:22–31. doi:10.1016/j.fitote.2012.10.001

    Article  CAS  Google Scholar 

  • He J-Z, Ru Q-M, Dong D-D et al (2012) Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules 17(4):4373–4387. doi:10.3390/molecules17044373

    Article  CAS  Google Scholar 

  • Held P (2015) An introduction to reactive oxygen species: Measurement of ROS in cells. http://www.biotek.com/resources/articles/reactive-oxygen-species.html. Accessed 5 Nov 2015

  • Hobbs C (2005) The chemistry, nutritional value, immunopharmacology, and safety of the traditional food of medicinal plit-gill fungus Schizophyllum commune. Int J Med Mushrooms 7(182):127–140. doi:10.1615/IntJMedMushr.v7.i12.130

    Article  CAS  Google Scholar 

  • Holliday J (2005) Cordyceps. In: Coates, Paul M. Encyclopaedia of dietary supplements 1. Marcel Dekker. pp. 4 of Cordyceps Chapter

    Google Scholar 

  • Holliday J, Cleaver P, Lomis-Powers M et al (2004) Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis (Berk.) Sacc. (ascomycetes). Int J Med Mushrooms 6(2):151–154. doi:10.1615/IntJMedMushr.v6.i2.60

  • Hsieh PW, Wu JB, Wu YC (2013) Chemistry and biology of Phellinus linteus. Biomed 3(3):106–113. doi:10.1016/j.biomed.2013.01.002

    Article  Google Scholar 

  • Hsu HC, Hsu CI, Lin RH et al (1997) Fip-vvo, a new fungal immunomodulatory protein isolated from Vovariella volvacea. Biochem J 323:557–565

    Article  CAS  Google Scholar 

  • Israilides C, Kletsas D, Arapoglou D (2008) In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomed 15:512–519. doi:10.1016/j.phymed.2007.11.029

    Article  CAS  Google Scholar 

  • Iwatsuki K, Akihisa T, Tokuda H et al (2003) Lucidenic acids P and Q, methyl lucidenate P, and other triterpenoids from the fungus Ganoderma lucidum and their inhibitory effects on Epstein-Barr virus activation. J Nat Prod 66(12):1582–1585

    Article  CAS  Google Scholar 

  • Jeurink PV, Noguera CL, Savelkoul HFJ et al (2008) Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells. Int Immunopharmacol 8(8):1124–1133. doi:10.1016/j.intimp.2008.04.004

    Article  CAS  Google Scholar 

  • Karácsonyi S, Kuniak L (1994) Polysaccharides of Pleurotus ostreatus: isolation and structure of pleuran, an alkali-insoluble β–D-glucan. Carbohydr Polym 24(2):107–111. doi:10.1016/0144-8617(94)90019-1

    Article  Google Scholar 

  • Kawagishi H, Ishiyama D, Mori H et al (1997) Dictyophorines A and B, two stimulators of NGF-synthesis from the mushroom Dictyophora indusiata. Phytochem 45(6):1203–1205. doi:10.1016/S0031-9422(97)00144-1

    Article  CAS  Google Scholar 

  • Kawagishi H, Zhuang C, Yunoki R (2008) Compounds for dementia from Hericium erinaceum. Drugs Future 33(2):149. doi:10.1358/dof.2008.033.02.1173290

    Article  CAS  Google Scholar 

  • Kidd PM (2000) The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev 5(1):4–27

    CAS  Google Scholar 

  • Kim YK, Iwahashi H (2015) Properties of polysaccharides extracted from Phellinus linteus using high hydrostatic pressure processing and hot water treatment. J Food Process Eng 38(2):197–206. doi:10.1111/jfpe.12153

    Article  CAS  Google Scholar 

  • Kim GY, Kim SH, Hwang SY et al (2003) Oral administration of proteoglycan isolated from Phellinus linteus in the prevention and treatment of collagen-induced arthritis in mice. Biol Pharm Bull 26:823–831

    Article  Google Scholar 

  • Kim SH, Song YS, Kim SK et al (2004) Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J Ethnopharmacol 93:141–146

    Article  Google Scholar 

  • Kino K, Yamashita A, Yamaoka K et al (1989) Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8 (LZ-8), from Ganoderma lucidum. J Biol Chem 264:472–478

    CAS  Google Scholar 

  • Ko JL, Hsu CT, Lin RH et al (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228:244–249

    Article  CAS  Google Scholar 

  • Kodama N, Komuta K, Nanba H (2002) Can maitake MDfraction aid cancer patients? Altern Med Rev 7:236–239

    Google Scholar 

  • Komoda Y, Shimizu M, Sonoda Y et al (1989) Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem Pharm Bull 37:531–533

    Article  CAS  Google Scholar 

  • Kraehenmann R (2015) Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biol Psychiatry 78(8):572–581. doi:10.1016/j.biopsych.2014.04.010

    Article  CAS  Google Scholar 

  • Kumar S, Mina M, Akihiko S et al (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81(8):961–968. doi:10.1016/j.fitote.2010.07.010

    Article  Google Scholar 

  • Lavi I, Levinson D, Peri I et al (2010) Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl Microbiol Biotechnol 85(6):1977–1990. doi:10.1007/s00253-009-2296-x

    Article  CAS  Google Scholar 

  • Lavi I, Nimri L, Levinson D et al (2012) Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. J Gastroenterol 47(5):504–518. doi:10.1007/s00535-011-0514-7

    Article  CAS  Google Scholar 

  • Lee IK, Yun B, Kim Y et al (2002a) Two neuroprotective compounds from mushroom Daldinia concentrica. J Microbiol Biotechnol 12:692–694

    CAS  Google Scholar 

  • Lee IK, Yun BS, Han G et al (2002b) Dictyoquinazols A, B, and C, new neuroprotective compounds from the mushroom Dictyophora indusiata. J Nat Prod 65(12):1769–1772. doi:10.1021/np020163w

    Article  CAS  Google Scholar 

  • Lee JS, Cho JC, Hong EK (2009) Study on macrophage activation and structure al characteristics of purified polysaccharides from the liquid culture broth of Hericium erinaceus. Carbohydr Polym 78(1):162–168. doi:10.1016/j.carbpol.2009.04.036

    Article  CAS  Google Scholar 

  • Legentil L, Paris F, Ballet C et al (2015) Molecular interactions of β-(1 → 3)-glucans with their receptors. Molecules 20(6):9745–9766. doi:10.3390/molecules20069745

    Article  CAS  Google Scholar 

  • Li H, Lu X, Zhang S (2008) Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochem 73(6):669–675. doi:10.1134/S0006297908060060

    CAS  Google Scholar 

  • Li MA, Zhang GQ, Wang HX et al (2010a) Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum. J Microbiol Biotechnol 20(7):1069–1076. doi:10.4014/jmb.0912.12033

    Article  CAS  Google Scholar 

  • Li YR, Zhang GQ, Ng TB (2010b) A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceus. J Biomed Biotechnol 1–9. doi:10.1155/2010/716515

  • Lima LF, Habu S, Gern JC et al (2008) Production and characterization of the exopolysaccharides produced by Agaricus brasiliensis in submerged fermentation. Appl Biochem Biotechnol 151(2–3):283–294. doi:10.1007/s12010-008-8187-2

    Article  CAS  Google Scholar 

  • Lin WH, Huang CH, Hsu CI et al (1997) Dimerization of the N-terminal amphipathic α-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem 272:2044–2048

    Google Scholar 

  • Lin CH, Sheu GT, Lin YW et al (2010) A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process Biochem 45(9):1537–1542. doi:10.1016/j.procbio.2010.06.006

    Article  CAS  Google Scholar 

  • Liu QH, Wang HX, Ng TB (2006) First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim Biophys Acta 1760(12):1914–1919. doi:10.1016/j.bbagen.2006.07.010

    Article  CAS  Google Scholar 

  • Ma L, Chen H, Dong P et al (2013) Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem 139(1–4):503–508. doi:10.1016/j.foodchem.2013.01.030

    Article  CAS  Google Scholar 

  • Maiti S, Bhutia SK, Mallick SK et al (2008) Antiproliferative and immunostimulatory protein fraction from edible mushrooms. Environ Toxicol Phar 26(2):187–191. doi:10.1016/j.etap.2008.03.009

    Article  CAS  Google Scholar 

  • Martorana A, Bulati M, Buffa S et al (2012) Immunosenescence, inflammation and Alzheimer’s disease. Longev Healthspan 1:8. doi:10.1186/2046-2395-1-8

    Article  Google Scholar 

  • Mason-Dambrot S (2012) Your brain on ‘shrooms: fMRI elucidates neural correlates of psilocybin psychedelic state. Med Xpress doi:10.1073/pnas.1119598109. Link: https://www.atlantisentertainment.net/mushroom-powders/361-cordyceps-mushroom-extract-powder. Accessed 4 Nov 2015

  • Mizuno T (1999) Bioactive substances in Hericium erinaceus (Bull.:Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int J Med Mushrooms 1:105–119. doi:10.1615/IntJMedMushrooms.v1.i2.10

    Article  CAS  Google Scholar 

  • Mori K, Inatomi S, Ouchi K et al (2009) Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res 23(3):367–372. doi:10.1002/ptr.2634

    Article  CAS  Google Scholar 

  • Morigiwa A, Kitabatake K, Fujimoto Y et al (1986) Angiotensin converting enzyme inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull 34:3025–3028

    Article  CAS  Google Scholar 

  • Moro C, Palacios I, Lozano M et al (2012) Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 130(2):350–355. doi:10.1016/j.foodchem.2011.07.049

    Article  CAS  Google Scholar 

  • Nagai K, Chiba A, Nishino T et al (2006) Dilinoleoyl-phosphatidylethanolamine from Hericium erinaceum protects against ER stress-dependent neuro-2a cell death via protein kinase C pathway. J Nutr Biochem 17:525–530. doi:10.1016/j.jnutbio.2005.09.007

    Article  CAS  Google Scholar 

  • Ndunguts V, Mereddy R, Sultanbawa Y (2015) Bioactive properties of mushroom (Agaricus Bisporus) stipe extracts. J Food Process Pres 1-9. doi:10.1111/jfpp.12467

  • Ngai PHK, Ng TB (2008) Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci 73(26):3363–3374

    Article  CAS  Google Scholar 

  • Ngai PHK, Zhao Z, Ng TB (2005) Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26(2):191–196. doi:10.1016/j.peptides.2004.09.011

    Article  CAS  Google Scholar 

  • Niedermeyer TH, Lindequist U, Mentel R (2005) Antiviral terpenoid constituents of Ganoderma pfeifferi. J Nat Prod 68(12):1728–1731. doi:10.1021/np0501886

    Article  CAS  Google Scholar 

  • NORCHEM (2011) Urine drug test information sheet psilocybin (mushrooms). http://www.norchemlab.com/wp-content/uploads/2011/10/Psilocybin-facts.pdf. Accessed 2 Nov 2015

  • Nukata M, Hashimoto T, Yamamoto I et al (2002) Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochem 59(7):731–737. doi:10.1016/S0031-9422(02)00050-X

    Article  CAS  Google Scholar 

  • Oei P (2003) Manual on mushroom cultivation: techniques species and opportunities for commercial application in developing countries. TOOL Publications, Amsterdam

    Google Scholar 

  • Ohno N, HaradaT, Masuzawa S et al (2002) Antitumor activity and hematopoietic response of a β-glucan extracted from an edible and medicinal mushroom Sparassis crispa Wulf.:Fr. Aphyllophoromycetideae. Int. J. Med. Mushrooms 4(1):13–26. doi:10.1615/IntJMedMushr.v4.i1.20

  • Palacios I, Lozano M, Moro C et al (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128(3):674–678. doi:10.1016/j.foodchem.2011.03.085

    Article  CAS  Google Scholar 

  • Paliya BS, Verma S, Chaudhary HS (2014) Major bioactive metabolites of the medicinal mushroom: Ganoderma lucidum. Int J Pharm R 6(1):12–24

    Google Scholar 

  • Park IH, Chung SK, Lee KB et al (2004) An antioxidant hispidin from the mycelial cultures of Phellinus linteus. Arch Pharmacal Res 27(6):615–618

    Article  CAS  Google Scholar 

  • Park YM, Won JH, Kim YH et al (2005) In vivo and in vitro anti-inflammatory and antinociceptive effects of themethanol extract of Inonotus obliquus. J Ethnopharmacol 101(1–3):120–128

    Article  Google Scholar 

  • Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. Biotech 2(1):1–15. doi:10.1007/s13205-011-0036-2

    Google Scholar 

  • Petri G, Expert P, Turkheimer F et al (2014) Homological scaffolds of brain functional networks. J R Soc Interface 11:1–10. doi:10.1098/rsif.2014.0873

    Article  Google Scholar 

  • Phan CW, David P, Naidu M et al (2014) Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 35(3):355–568. doi:10.3109/07388551.2014.887649

    Article  CAS  Google Scholar 

  • Qi J, Ojika M, Sakagami Y (2000) Termitomycesphins A - D, novel neuritogenic cerebrosides from the edible Chinese mushroom Termitomyces albuminosus. Tetrahedron 56(32):5835–5841. doi:10.1016/S0040-4020(00)00548-2

    Article  CAS  Google Scholar 

  • Qian GM, Pan GF, Guo JY (2011) Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res 26(24):2358–2362. doi:10.1080/14786419.2012.658800

    Article  CAS  Google Scholar 

  • Qu Y, Sun K, Gao L et al (2012) Termitomycesphins G and H, additional cerebrosides from the edible Chinese mushroom Termitomyces albuminosus. Biosci Biotechnol Biochem 76(4):791–793. doi:10.1271/bbb.110918

    Article  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Arakawaetal Y (2006) Grifolin derivatives from Albatrellus caeruleo porus, new inhibitors of nitric oxide production RAW264.7 cells. Bioorg Med Chem 14:164–168

    Article  CAS  Google Scholar 

  • Queiroz LS, Nascimento MS, Cruz AKM et al (2010) Glucans from the caripiamontagnei mushroom present anti-inflammatory activity. Int Immunopharm 10:34–42. doi:10.1016/j.intimp.2009.09.015

    Article  CAS  Google Scholar 

  • Rai M, Tidke G, Wasser SP (2005) Therapeutic potential of mushrooms. Nat Prod Radiance 4(4):246–257

    Google Scholar 

  • Rathee S, Rathee D, Rathee D et al (2012) Mushrooms as therapeutic agents. Braz J Pharmacog 22(2):459–474

    CAS  Google Scholar 

  • Ren L, Perera C, Hemar Y (2012) Antitumor activity of mushroom polysaccharides: a review. Food Funct 3(11):1118–1130. doi:10.1039/c2fo10279j

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J (2012) Fungal cell wall: structure, synthesis, and assembly, 2nd edn. CRC Press, Taylor and Francis Group, Boa Raton, FL

    Book  Google Scholar 

  • Ruthes AC, Carbonero ER, Córdova MM et al (2013) Lactarius rufus (1 → 3), (1 → 6)-β-d-glucans: structure, antinociceptiveand anti-inflammatory effects. Carbohydr Polym 94:129–136. doi:10.1016/j.carbpol.2013.01.026

    Article  CAS  Google Scholar 

  • Sánchez C (2004) Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64(6):756–762

    Article  CAS  Google Scholar 

  • Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85(5):1321–1337. doi:10.1007/s00253-009-2343-7

    Article  CAS  Google Scholar 

  • Sasaki T, Takasuka N (1976) Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes. Carbohydr Res 47:99–104. doi:10.1016/S0008-6215(00)83552-1

    Article  CAS  Google Scholar 

  • Sheu F, Chien PJ, Hsieh KY et al (2009) Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (Bitter Mushroom) that exhibits TLR2-dependent NF-kappa B activation and M1 polarization within murine macrophages. J Agric Food Chem 57(10):4130–4141

    Article  CAS  Google Scholar 

  • Smiderle FR, Sassaki GL, Van AJ et al (2010) High molecular weight glucan of the culinary medicinal mushroom Agaricus bisporus is an alpha-glucan that forms complexes with low molecular weight galactan. Molecules 15(8):5818–5830. doi:10.3390/molecules15085818

    Article  CAS  Google Scholar 

  • Smirdele FR, Olsen LM, Carbonero ER et al (2008) Anti- inflammatory and analgesic properties in rodent model (1 → 3), (1 → 6)-linked-glucan isolated from Pleurotus pulmonarius. Eur J Pharmacol 597(1–3):86–91. doi:10.1016/j.ejphar.2008.08.028

    Google Scholar 

  • Song HH, Chae HS, Oh SR et al (2012) Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells. Am J Chin Med 40(5):1073–1084. doi:10.1142/S0192415X12500796

    Article  CAS  Google Scholar 

  • Stanikunaite R, Khan SI, Trappe JM et al (2009) Cyclo- oxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus. Phytother Res 23(4):575–578. doi:10.1002/ptr.2698

    Article  CAS  Google Scholar 

  • Takashi K (2013) Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. Bio Med Res Int 1–9. doi:10.1155/2013/982317

  • Tong H, Xia F, Feng K et al (2009) Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresour Technol 100:1682–1686. doi:10.1016/j.biortech.2008.09.004

    Article  CAS  Google Scholar 

  • Tsvetkova I, Naydenski H, Petrova A et al (2006) Antibacterial activity of some Bulgarian higher basidiomycetes mushrooms. Int J Med Mushrooms 8(1):63–66. doi:10.1615/IntJMedMushr.v8.i1.80

    Article  Google Scholar 

  • Ukawa Y, Ito H, Hisamatsu M (2000) Antitumor effects of (1 → 3)-β-D-glucan and (1 → 6)-β-D-glucan purified from newly cultivated mushroom, Hatakeshimeji (Lyophyllum decastes Sing). J Biosci Bioeng 90(1):98–104. doi:10.1016/S1389-1723(00)80041-9

    Article  CAS  Google Scholar 

  • Van Q, Nayak BN, Reimer M et al (2009) Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J Ethnopharmacol 125(3):487–493. doi:10.1016/j.jep.2009.06.026

    Article  CAS  Google Scholar 

  • Walton EL (2014) Buried treasure: unlocking the secrets of medicinal mushrooms. Biomed J 37:339–342. doi:10.4103/2319-4170.146538

    Article  Google Scholar 

  • Wang HX, Ng TB (2006a) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69(5):521–525

    Article  CAS  Google Scholar 

  • Wang HX, Ng TB (2006b) Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 27(1):27–30

    Article  CAS  Google Scholar 

  • Wang HX, Liu WK, Ng TB et al (1996) The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacol 31(2–3):205–211. doi:10.1016/0162-3109(95)00049-6

    Article  CAS  Google Scholar 

  • Wang JB, Wang HX, Ng TB (2007) A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 28(3):560–565. doi:10.1016/j.peptides.2006.10.004

    Article  CAS  Google Scholar 

  • Wang J, Liu YM, Cao W et al (2012) Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis 27(2):159–165. doi:10.1007/s11011-012-9282-1

    Article  CAS  Google Scholar 

  • Wasser SP (2002) Medical mushrooms as a source of antitumor and immunomodulating polysaccharides. App Microbiol Biotechnol 60(3):258–274. doi:10.1007/s00253-002-1076-7

    Article  CAS  Google Scholar 

  • Wasser SP (2010) Medicinal mushroom science: History, current status, future trends, and unsolved problems. Inter J Med Mush 1–16. doi:10.1615/IntJMedMushr.v12.i1.10

  • Witkowska MA, Zujko ME, Mironczuk-Chodakowska I (2011) Comparative study of wild edible mushrooms as sources of antioxidants. Int J Med Mushrooms 13(4):335–341. doi:10.1615/IntJMedMushr.v13.i4.30

    Article  CAS  Google Scholar 

  • Won S-Y, Park E-H (2005) Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol 96(3):555–561. doi:10.1016/j.jep.2004.10.009

    Article  Google Scholar 

  • Wong JH, Wang HX, Ng TB (2008) Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol 81(4):669–674

    Article  CAS  Google Scholar 

  • Wong JH, Ng TB, Wang H et al (2011) Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomed 18(5):387–392. doi:10.1016/j.phymed.2010.07.010

    Article  CAS  Google Scholar 

  • Wu DM, Duan WQ, Liu Y et al (2010) Anti-inflammatory effect of the polysaccharides of golden needle mushroom in burned rats. J Biol Macromol 46(1):100–103. doi:10.1016/j.ijbiomac.2009.10.013

    Article  CAS  Google Scholar 

  • Wu S, Zhong J, Zhu J et al (2013) Phellinus linteus polysaccharides and their immunomodulatory properties in human monocytic cells. J Funct Food 5(2):679–688. doi:10.1016/j.jff.2013.01.011

    Article  CAS  Google Scholar 

  • Xu T, Beelman RB (2015) The bioactive compounds in medicinal mushrooms have potential protective effects against neurodegenerative diseases. Adv Food Technol Nutr Sci Open J 1(2):62–65. doi:10.17140/AFTNSOJ-1-110

    Article  Google Scholar 

  • Xu YN, Zhong JJ (2012) Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnol Adv 30:1301–1308. doi:10.1016/j.biotechadv.2011.10.001

    Article  CAS  Google Scholar 

  • Xu JW, Zhao W, Zhong JJ (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87:457–466. doi:10.1007/s00253-010-2576-5

    Article  CAS  Google Scholar 

  • Yagi K (1970) A rapid method for evaluation of oxidation and antioxidants. Agric Biol Chem 34(1):142–145

    Article  CAS  Google Scholar 

  • Yang BK (2007) Chemical characteristics and immune-modulating activities of exo-bio polymers produced by Grifola frondosa during submerged fermentation process. Int J Biol Macromol 41(3):327–333. doi:10.1016/j.ijbiomac.2007.02.012

    Article  CAS  Google Scholar 

  • Yin H, Wang Y, Wang Y et al (2010) Purification, characterization and immunomodulating properties of polysaccharides isolated from Flammulina velutipes mycelium. Am J Chin Med 38(01):191–204. doi:10.1142/S0192415X10007750

    Article  CAS  Google Scholar 

  • Yoshino K, Nishimura M, Watanabe A et al (2008) Preventive effects of edible mushroom (Hypsizigus marmoreus) on mouse type IV allergy: Fluctuations of cytokine levels and antioxidant activities in mouse Sera. J Food Chem Toxic 3(3):21–27. doi:10.1111/j.1750-3841.2008.00664.x

    Google Scholar 

  • Yuswan MHMY, Al-Obaidi JR, Rahayu A (2015) New bioactive molecules with potential antioxidant activity from various extracts of wild edible Gelam mushroom (Boletus spp.). Adv Biosci Biotechnol 6:320–329. doi:10.4236/abb.2015.64031

    Article  CAS  Google Scholar 

  • Zhang Mills GL, Nair MG (2003) Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita. Phytomed 10(5):386–390. doi:10.1078/0944-7113-00272

    Article  CAS  Google Scholar 

  • Zhang DW, Zhao L, Wu TX (2007) Optimization of Auricularia Auricula exopolysaccharide fermentation medium by orthogonal experiment design. J Guizhou Univ Technol (Nat Sci Ed) 36:40–43

    Google Scholar 

  • Zhang GQ, Sun J, Wang HX (2009) A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 56(3):415–421

    CAS  Google Scholar 

  • Zhang G, Sun J, Wang H et al (2010a) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 17(10):775–781. doi:10.1016/j.phymed.2010.02.001

    Article  CAS  Google Scholar 

  • Zhang GQ, Wang YF, Zhang XQ et al (2010b) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 45(5):627–633. doi:10.1016/j.procbio.2009.12.010

    Article  CAS  Google Scholar 

  • Zheng Y, Yang XW (2008a) Poriacosones A and B: two new lanostane triterpenoids from Poria cocos. J Asian Nat Prod Res 10:645–651

    Google Scholar 

  • Zheng Y, Yang XW (2008b) Two new lanostane triterpenoids from Poria cocos. J Asian Nat Prod Res 10:323–328

    Article  CAS  Google Scholar 

  • Zheng SY, Liu QH, Zhang GQ et al (2010) Purification and characterization of an antibacterial protein from dried fruiting bodies of the wild mushroom Clitocybe sinopica. Acta Biochim Pol 57(1):43–48

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sánchez, C. (2017). Bioactives from Mushroom and Their Application. In: Puri, M. (eds) Food Bioactives. Springer, Cham. https://doi.org/10.1007/978-3-319-51639-4_2

Download citation

Publish with us

Policies and ethics