Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

Amyotrophic Lateral Sclerosis (ALS ) is a neurodegenerative disease affecting spinal cord and brain motoneurons , leading to paralysis and early death. Multiple etiopathogenic mechanisms appear to contribute in the development of ALS , including glutamate excitotoxicity, oxidative stress , protein misfolding, mitochondrial defects, impaired axonal transport, inflammation and glial cell alterations. The Sigma-1 receptor is highly expressed in motoneurons of the spinal cord, particularly enriched in the endoplasmic reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several evidences point to participation of Sigma-1R alterations in motoneuron degeneration. Thus, mutations of the transmembrane domain of the Sigma-1R have been described in familial ALS cases. Interestingly, Sigma-1R KO mice display muscle weakness and motoneuron loss. On the other hand, Sigma-1R agonists promote neuroprotection and neurite elongation through activation of protein kinase C on motoneurons in vitro and in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, the most usual animal model of ALS , with Sigma-1R agonists resulted in significantly enhanced motoneuron function and preservation, and increased animal survival. Sigma-1R activation also reduced microglial reactivity and increased the glial expression of neurotrophic factors. Two main interconnected mechanisms seem to underlie the effects of Sigma-1R manipulation on motoneurons: modulation of neuronal excitability and regulation of calcium homeostasis. In addition, Sigma-1R also contributes to regulating protein degradation, and reducing oxidative stress. Therefore, the multi-functional nature of the Sigma-1R represents an attractive target for treating aspects of ALS and other motoneuron diseases .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mancuso R, Navarro X (2015) Amyotrophic lateral sclerosis: current perspectives from basic research to the clinic. Prog Neurobiol 133:1–26

    Article  PubMed  Google Scholar 

  2. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  4. Ince PG et al (2011) Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol 122:657–671

    Article  CAS  PubMed  Google Scholar 

  5. Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry 76:1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Worms PM (2001) The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci 191:3–9

    Article  CAS  PubMed  Google Scholar 

  7. Ludolph AC, Jesse S (2009) Evidence-based drug treatment in amyotrophic lateral sclerosis and upcoming clinical trials. Ther Adv Neurol Disord 2:319–326

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Langenhove T, van der Zee J, Van Broeckhoven C (2012) The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 44:817–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neumann M et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  10. Ringholz GM et al (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65:586–590

    Article  CAS  PubMed  Google Scholar 

  11. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079

    Article  PubMed  Google Scholar 

  12. DeJesus-Hernandez M et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-Linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Renton AE et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mori K et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338

    Article  CAS  PubMed  Google Scholar 

  16. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723

    Article  CAS  PubMed  Google Scholar 

  17. Turner B, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85:94–134

    Article  CAS  PubMed  Google Scholar 

  18. McGoldrick P, Joyce PI, Fisher EMC, Greensmith L (2013) Rodent models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1832:1421–1436

    Article  CAS  PubMed  Google Scholar 

  19. Babin PJ, Goizet C, Raldúa D (2014) Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 118:36–58

    Article  CAS  PubMed  Google Scholar 

  20. Perry TL, Krieger C, Hansen S, Eisen A (1990) Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 28:12–17

    Article  CAS  PubMed  Google Scholar 

  21. Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ (1995) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 4:209–216

    Article  CAS  PubMed  Google Scholar 

  22. Texidó L et al (2011) Sera from amyotrophic lateral sclerosis patients induce the non-canonical activation of NMDA receptors “in vitro”. Neurochem Int 59:954–964.

    Google Scholar 

  23. Sunico CR et al (2011) Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. Brain Pathol 21:1–15

    Article  CAS  PubMed  Google Scholar 

  24. Kawahara Y et al (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801

    Article  CAS  PubMed  Google Scholar 

  25. Kawahara Y et al (2006) Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA. Neurosci Res 54:11–14

    Article  CAS  PubMed  Google Scholar 

  26. Bristol LA, Rothstein JD (1996) Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 39:676–679

    Article  CAS  PubMed  Google Scholar 

  27. Barbeito LH et al (2004) A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Rev 47:263–274

    Article  CAS  PubMed  Google Scholar 

  28. Lyras L, Evans PJ, Shaw PJ, Ince PG, Halliwell B (1996) Oxidative damage and motor neurone disease difficulties in the measurement of protein carbonyls in human brain tissue. Free Radic Res 24:397–406

    Article  CAS  PubMed  Google Scholar 

  29. Mitsumoto H et al (2008) Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler 9:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62:1758–1765

    Article  CAS  PubMed  Google Scholar 

  31. Smith RG, Henry YK, Mattson MP, Appel SH (1998) Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 44:696–699

    Article  CAS  PubMed  Google Scholar 

  32. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38:691–695

    Article  CAS  PubMed  Google Scholar 

  33. Bogdanov M et al (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29:652–658

    Article  CAS  PubMed  Google Scholar 

  34. Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48:629–641

    Article  CAS  PubMed  Google Scholar 

  35. Parakh S, Spencer DM, Halloran MA, Soo KY, Atkin JD (2013) Redox regulation in amyotrophic lateral sclerosis. Oxidative Med Cell Longev 2013:1–12

    Article  CAS  Google Scholar 

  36. Shi P, Gal J, Kwinter DM, Liu X, Zhu H (2010) Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta 1802:45–51

    Article  CAS  PubMed  Google Scholar 

  37. Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80:616–625

    Article  CAS  PubMed  Google Scholar 

  38. Wiedemann FR et al (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156:65–72

    Article  CAS  PubMed  Google Scholar 

  39. Menzies FM et al (2002) Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 125:1522–1533

    Article  PubMed  Google Scholar 

  40. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18:3241–3250

    CAS  PubMed  Google Scholar 

  41. Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470

    Article  CAS  PubMed  Google Scholar 

  42. Julien JP (1997) Neurofilaments and motor neuron disease. Trends Cell Biol 7:243–249

    Article  CAS  PubMed  Google Scholar 

  43. Julien JP, Couillard-Després S, Meier J (1998) Transgenic mice in the study of ALS: the role of neurofilaments. Brain Pathol 8:759–769

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt ML, Carden MJ, Lee VM, Trojanowski JQ (1987) Phosphate dependent and independent neurofilament epitopes in the axonal swellings of patients with motor neuron disease and controls. Lab Investig 56:282–294

    CAS  PubMed  Google Scholar 

  45. Breuer AC et al (1987) Fast axonal transport in amyotrophic lateral sclerosis: an intra-axonal organelle traffic analysis. Neurology 37:738–748

    Article  CAS  PubMed  Google Scholar 

  46. Tu PH et al (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93:3155–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marinkovic P et al (2012) Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 109:4296–4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fischer LR et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240

    Article  PubMed  Google Scholar 

  49. Mancuso R, Santos-Nogueira E, Osta R, Navarro X (2011) Electrophysiological analysis of a murine model of motoneuron disease. Clin Neurophysiol 122:1660–1670

    Article  PubMed  Google Scholar 

  50. Azzouz M et al (1997) Progressive motor neuron impairment in an animal model of familial amyotrophic lateral sclerosis. Muscle Nerve 20:45–51

    Article  CAS  PubMed  Google Scholar 

  51. Shibata N et al (1994) Cu/Zn superoxide dismutase-like immunoreactivity in Lewy body-like inclusions of sporadic amyotrophic lateral sclerosis. Neurosci Lett 179:149–152

    Article  CAS  PubMed  Google Scholar 

  52. Shibata N et al (1994) superoxide dismutase-like immunoreactivity in Lewy body-like inclusions of sporadic amyotrophic lateral sclerosis. Neurosci Lett 179:149–152

    Article  CAS  PubMed  Google Scholar 

  53. Bruijn LI et al (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    Article  CAS  PubMed  Google Scholar 

  54. Mackenzie IRA et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434

    Article  CAS  PubMed  Google Scholar 

  55. Groen EJN et al (2010) FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. Arch Neurol 67:224–230

    Article  PubMed  Google Scholar 

  56. Hewitt C et al (2010) Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 67:455–461

    Article  PubMed  Google Scholar 

  57. Deng H-X et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaufmann P, Mitsumoto H (2002) Amyotrophic lateral sclerosis: objective upper motor neuron markers. Curr Neurol Neurosci Rep 2:55–60

    Article  PubMed  Google Scholar 

  59. Vijayalakshmi K et al (2011) Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients. Neurobiol Dis 41:695–705

    Article  CAS  PubMed  Google Scholar 

  60. Atkin JD et al (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407

    Article  CAS  PubMed  Google Scholar 

  61. Atkin JD et al (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281:30152–30165

    Article  CAS  PubMed  Google Scholar 

  62. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12:627–636

    Article  CAS  PubMed  Google Scholar 

  63. Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Valori CF, Brambilla L, Martorana F, Rossi D (2014) The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 71:287–297

    Article  CAS  PubMed  Google Scholar 

  65. Clement AM et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    Article  CAS  PubMed  Google Scholar 

  66. Boillee S, Vandervelde C, Cleveland D (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  CAS  PubMed  Google Scholar 

  67. Boillee S et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    Article  CAS  PubMed  Google Scholar 

  68. Haidet-Phillips AM et al (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29:824–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khandelwal PJ, Herman AM, Moussa CEH (2011) Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 238:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64:55–60

    Article  CAS  PubMed  Google Scholar 

  71. Troost D, Van den Oord JJ, Vianney de Jong JM (1990) Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 16:401–410

    Article  CAS  PubMed  Google Scholar 

  72. Zhao W, Beers DR, Appel SH (2013) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J NeuroImmune Pharmacol 8:888–899

    Article  PubMed  PubMed Central  Google Scholar 

  73. Henkel JS et al (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235

    Article  CAS  PubMed  Google Scholar 

  74. Sta M et al (2011) Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol Dis 42:211–220

    Article  CAS  PubMed  Google Scholar 

  75. Kuhle J et al (2009) Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol 16:771–774

    Article  CAS  PubMed  Google Scholar 

  76. Ferraiuolo L et al (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 27:9201–9219

    Article  CAS  PubMed  Google Scholar 

  77. Lincecum JM et al (2010) From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. Nat Genet 42:392–399

    Article  CAS  PubMed  Google Scholar 

  78. Lefebvre S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  CAS  PubMed  Google Scholar 

  79. Burghes AHM, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007

    Article  CAS  PubMed  Google Scholar 

  81. Polymenidou M et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tollervey JR et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiao S et al (2011) RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol Cell Neurosci 47:167–180

    Article  CAS  PubMed  Google Scholar 

  84. Chang Y et al (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE 3:e2849

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Lee Y-B et al (2013) Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5:1178–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ash PEA et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang K et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freibaum BD et al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alonso G et al (2000) Immunocytochemical localization of the sigma1 receptor in the adult rat central nervous system. Neuroscience 97:155–170

    Article  CAS  PubMed  Google Scholar 

  90. Hayashi T, Su T-P (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  91. Gekker G et al (2006) Cocaine-induced HIV-1 expression in microglia involves sigma-1 receptors and transforming growth factor-beta1. Int Immunopharmacol 6:1029–1033

    Article  CAS  PubMed  Google Scholar 

  92. Palacios G et al (2003) Immunohistochemical localization of the sigma1-receptor in oligodendrocytes in the rat central nervous system. Brain Res 961:92–99

    Article  CAS  PubMed  Google Scholar 

  93. Penas C et al (2011) Sigma receptor agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. J Neurotrauma 28:831–840

    Article  PubMed  Google Scholar 

  94. Mancuso R et al (2012) Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 9:814–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Quirion R et al (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86

    Article  CAS  PubMed  Google Scholar 

  96. Su T-P, Hayashi T, Maurice T, Buch S, Ruoho AE (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31:557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gromek KA et al (2014) The oligomeric states of the purified sigma-1 receptor are stabilized by ligands. J Biol Chem 289:20333–20344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mishra AK et al (2015) The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 466:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Balasuriya D et al (2014) A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF®). J Biol Chem 289:32353–32363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Balasuriya D, Stewart AP, Edwardson JM (2013) The σ-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 33:18219–18224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carnally SM, Johannessen M, Henderson RM, Jackson MB, Edwardson JM (2010) Demonstration of a direct interaction between sigma-1 receptors and acid-sensing ion channels. Biophys J 98:1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu Z, Bowen WD (2008) Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 283:28198–28215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maurice T, Grégoire C, Espallergues J (2006) Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 84:581–597

    Article  CAS  PubMed  Google Scholar 

  104. Su TP, London ED, Jaffe JH (1988) Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240:219–221

    Article  CAS  PubMed  Google Scholar 

  105. Ramachandran S et al (2009) The sigma1 receptor interacts with N-alkyl amines and endogenous sphingolipids. Eur J Pharmacol 609:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fontanilla CV et al (2012) Caffeic acid phenethyl ester extends survival of a mouse model of amyotrophic lateral sclerosis. Neuroscience 205:185–193

    Article  CAS  PubMed  Google Scholar 

  107. Morin-Surun M, Collin T, Denavit-Saubié M, Baulieu EE, Monnet F (1999) Intracellular σ1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proc Natl Acad Sci U S A 96:8196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mavlyutov TA, Ruoho AE (2007) Ligand-dependent localization and intracellular stability of sigma-1 receptors in CHO-K1 cells. J Mol Signal 2:8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Takebayashi M, Hayashi T, Su T-P (2004) Sigma-1 receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution. Synapse 53:90–103

    Article  CAS  PubMed  Google Scholar 

  110. Aydar E, Palmer CP, Klyachko VA, Jackson MB (2002) The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34:399–410

    Article  CAS  PubMed  Google Scholar 

  111. Zhang X-J, Liu L-L, Jiang S-X, Zhong Y-M, Yang X-L (2011) Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience 177:12–22

    Article  CAS  PubMed  Google Scholar 

  112. Hall AA, Herrera Y, Ajmo CT Jr, Cuevas J, Pennypacker KR (2009) Sigma receptors suppress multiple aspects of microglial activation. Glia 57:744–754

    Article  PubMed  Google Scholar 

  113. Langa F et al (2003) Generation and phenotypic analysis of sigma receptor type I (sigma1) knockout mice. Eur J Neurosci 18:2188–2196

    Article  PubMed  Google Scholar 

  114. Sha S et al (2013) Sigma-1 receptor knockout impairs neurogenesis in dentate gyrus of adult hippocampus via down-regulation of NMDA receptors. CNS Neurosci Ther 19:705–713

    Article  CAS  PubMed  Google Scholar 

  115. Sha S et al (2015) Sex-related neurogenesis decrease in hippocampal dentate gyrus with depressive-like behaviors in sigma-1 receptor knockout mice. Eur Neuropsychopharmacol 25:1275–1286

    Article  CAS  PubMed  Google Scholar 

  116. Valenza M, DiLeo A, Steardo L, Cottone P, Sabino V (2015) Ethanol-related behaviors in mice lacking the sigma-1 receptor. Behav Brain Res 297:196–203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Ha Y et al (2011) Late-onset inner retinal dysfunction in mice lacking sigma receptor 1 (σR1). Invest Ophthalmol Vis Sci 52:7749–7760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mavlyutov TA, Nickells RW, Guo L-W (2011) Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor. Mol Vis 17:1034–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chevallier N, Keller E, Maurice T (2011) Behavioural phenotyping of knockout mice for the sigma-1 ( 1) chaperone protein revealed gender-related anxiety, depressive-like and memory alterations. J Psychopharmacol 25:960–975

    Article  CAS  PubMed  Google Scholar 

  120. Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE (2010) The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 167:247–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bernard-Marissal N, Médard J-J, Azzedine H, Chrast R (2015) Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 138:875–890

    Article  PubMed  Google Scholar 

  122. Conradi S, Skoglund S (1969) Observations on the ultrastruture and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the cat during postnatal development. Acta Physiol Scand Suppl 333:5–52

    CAS  PubMed  Google Scholar 

  123. Deardorff AS, Romer SH, Sonner PM, Fyffe REW (2014) Swimming against the tide: investigations of the C-bouton synapse. Front Neural Circuits 8:106

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zagoraiou L et al (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pullen AH, Athanasiou D (2009) Increase in presynaptic territory of C-terminals on lumbar motoneurons of G93A SOD1 mice during disease progression. Eur J Neurosci 29:551–561

    Article  CAS  PubMed  Google Scholar 

  126. Herron LR, Miles GB (2012) Gender-specific perturbations in modulatory inputs to motoneurons in a mouse model of amyotrophic lateral sclerosis. NSC 226:313–323

    CAS  Google Scholar 

  127. Casas C et al (2013) Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. Brain Behav 3:145–158

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ferrucci M et al (2010) A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium. Neurobiol Dis 37:370–383

    Article  CAS  PubMed  Google Scholar 

  129. Hellström J, Arvidsson U, Elde R, Cullheim S, Meister B (1999) Differential expression of nerve terminal protein isoforms in VAChT-containing varicosities of the spinal cord ventral horn. J Comp Neurol 411:578–590

    Article  PubMed  Google Scholar 

  130. Hellström J, Oliveira ALR, Meister B, Cullheim S (2003) Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2. J Comp Neurol 460:476–486

    Article  PubMed  Google Scholar 

  131. Li W, Ochalski PA, Brimijoin S, Jordan LM, Nagy JI (1995) C-terminals on motoneurons: electron microscope localization of cholinergic markers in adult rats and antibody-induced depletion in neonates. NSC 65:879–891

    CAS  Google Scholar 

  132. Muennich EAL, Fyffe REW (2004) Focal aggregation of voltage-gated, Kv2.1 subunit-containing, potassium channels at synaptic sites in rat spinal motoneurones. J Physiol Lond 554:673–685

    Article  CAS  PubMed  Google Scholar 

  133. Deardorff AS et al (2013) Expression of postsynaptic Ca2+-activated K+ (SK) channels at C-bouton synapses in mammalian lumbar -motoneurons. J Physiol Lond 591:875–897

    Article  CAS  PubMed  Google Scholar 

  134. Yamamoto T, Hertzberg EL, Nagy JI (1991) Subsurface cisterns in alpha-motoneurons of the rat and cat: immunohistochemical detection with antibodies against connexin32. Synapse 8:119–136

    Article  CAS  PubMed  Google Scholar 

  135. Mavlyutov TA et al (2012) Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N,N′-dimethyltryptamine forming enzyme, indole-N-methyl transferase. Neuroscience 206:60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gallart-Palau X et al (2014) Neuregulin-1 is concentrated in the postsynaptic subsurface cistern of C-bouton inputs to a-motoneurons and altered during motoneuron diseases. FASEB J 28:3618–3632

    Article  CAS  PubMed  Google Scholar 

  137. Henkart M, Landis DM, Reese TS (1976) Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J Cell Biol 70:338–347

    Article  CAS  PubMed  Google Scholar 

  138. Henkart M (1980) Identification and function of intracellular calcium stores in axons and cell bodies of neurons. Fed Proc 39:2783–2789

    CAS  PubMed  Google Scholar 

  139. Miles GB, Hartley R, Todd AJ, Brownstone RM (2007) Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion. Proc Natl Acad Sci U S A 104:2448–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mavlyutov TA et al (2013) Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 240:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kourrich S et al (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kinoshita M, Matsuoka Y, Suzuki T, Mirrielees J, Yang J (2012) Sigma-1 receptor alters the kinetics of Kv1.3 voltage gated potassium channels but not the sensitivity to receptor ligands. Brain Res 1452:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Esper RM, Pankonin MS, Loeb JA (2006) Neuregulins: versatile growth and differentiation factors in nervous system development and human disease. Brain Res Rev 51:161–175

    Article  CAS  PubMed  Google Scholar 

  144. Song F, Chiang P, Wang J, Ravits J, Loeb JA (2012) Aberrant neuregulin 1 signaling in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 71:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Takahashi Y et al (2013) ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am J Hum Genet 93:900–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fujimoto M, Hayashi T, Urfer R, Mita S, Su T-P (2012) Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 66:630–639

    Article  CAS  PubMed  Google Scholar 

  147. Fontanilla D et al (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:934–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Maurice T, Su T-P (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70:913–919

    Article  CAS  PubMed  Google Scholar 

  150. Prause J et al (2013) Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 22:1581–1600

    Article  CAS  PubMed  Google Scholar 

  151. Luty AA et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68:639–649

    Article  CAS  PubMed  Google Scholar 

  152. Peviani M et al (2014) Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 62:218–232

    Article  CAS  PubMed  Google Scholar 

  153. Mei J, Pasternak GW (2002) Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 300:1070–1074

    Article  CAS  PubMed  Google Scholar 

  154. Mei J, Pasternak GW (2007) Modulation of brainstem opiate analgesia in the rat by 1 receptors: a microinjection study. J Pharmacol Exp Ther 322:1278–1285

    Article  CAS  PubMed  Google Scholar 

  155. Zamanillo D, Romero L, Merlos M, Vela JM (2013) Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol 716:78–93

    Article  CAS  PubMed  Google Scholar 

  156. Antonini V et al (2011) Anti-amnesic and neuroprotective actions of the sigma-1 receptor agonist (-)-MR22 in rats with selective cholinergic lesion and amyloid infusion. J Alzheimers Dis 24:569–586

    CAS  PubMed  Google Scholar 

  157. Yin J et al. (2015) Sigma-1 (σ1) receptor deficiency reduces β-amyloid (25–35) -induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B. Neuropharmacology 89:215–224.

    Google Scholar 

  158. Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T (2011) Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma1 ( 1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 25:1101–1117

    Article  CAS  PubMed  Google Scholar 

  159. Francardo V et al (2014) Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 137:1998–2014

    Article  PubMed  Google Scholar 

  160. Hyrskyluoto A et al (2013) Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-κB pathway. Cell Death Dis 4:e646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ishiguro H et al (1998) Association between polymorphisms in the type 1 sigma receptor gene and schizophrenia. Neurosci Lett 257:45–48

    Article  CAS  PubMed  Google Scholar 

  162. Allahtavakoli M, Jarrott B (2011) Sigma-1 receptor ligand PRE-084 reduced infarct volume, neurological deficits, pro-inflammatory cytokines and enhanced anti-inflammatory cytokines after embolic stroke in rats. Brain Res Bull 85:219–224

    Article  CAS  PubMed  Google Scholar 

  163. Ajmo CT Jr, Vernon DOL, Collier L, Pennypacker KR, Cuevas J (2006) Sigma receptor activation reduces infarct size at 24 hours after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res 3:89–98

    Article  CAS  PubMed  Google Scholar 

  164. Katnik C, Guerrero WR, Pennypacker KR, Herrera Y, Cuevas J (2006) Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J Pharmacol Exp Ther 319:1355–1365

    Article  CAS  PubMed  Google Scholar 

  165. Griesmaier E et al (2012) Neuroprotective effects of the sigma-1 receptor ligand PRE-084 against excitotoxic perinatal brain injury in newborn mice. Exp Neurol 237:388–395

    Article  CAS  PubMed  Google Scholar 

  166. Lockhart BP, Soulard P, Benicourt C, Privat A, Junien JL (1995) Distinct neuroprotective profiles for sigma ligands against N-methyl-D-aspartate (NMDA), and hypoxia-mediated neurotoxicity in neuronal culture toxicity studies. Brain Res 675:110–120

    Article  CAS  PubMed  Google Scholar 

  167. Tuerxun T et al (2010) SA4503, a sigma-1 receptor agonist, prevents cultured cortical neurons from oxidative stress-induced cell death via suppression of MAPK pathway activation and glutamate receptor expression. Neurosci Lett 469:303–308

    Article  CAS  PubMed  Google Scholar 

  168. Guzmán-Lenis M-S, Navarro X, Casas C (2009) Drug screening of neuroprotective agents on an organotypic-based model of spinal cord excitotoxic damage. Restor Neurol Neurosci 27:335–349

    PubMed  Google Scholar 

  169. Mancuso R et al (2014) Lack of synergistic effect of resveratrol and sigma-1 receptor agonist (PRE-084) in SOD1G93A ALS mice: overlapping effects or limited therapeutic opportunity? Orphanet J Rare Dis 9:1–11

    Article  Google Scholar 

  170. Ono Y et al (2014) SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models. Neurosci Lett 559:174–178

    Article  CAS  PubMed  Google Scholar 

  171. Zhao J et al (2014) Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci 55:3375–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wegleiter K et al (2014) The sigma-1 receptor agonist 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects against newborn excitotoxic brain injury by stabilizing the mitochondrial membrane potential in vitro and inhibiting microglial activation in vivo. Exp Neurol 261:501–509

    Article  CAS  PubMed  Google Scholar 

  173. Martina M, Turcotte M-EB, Halman S, Bergeron R (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol Lond 578:143–157

    Article  CAS  PubMed  Google Scholar 

  174. Kim FJ et al (2010) Sigma(1) receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 77:695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Navarro G et al (2010) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 107:18676–18681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Misonou H, Mohapatra DP, Trimmer JS (2005) Kv2.1: a voltage-gated K+ channel critical to dynamic control of neuronal excitability. Neurotoxicology 26:743–752

    Article  CAS  PubMed  Google Scholar 

  177. Schumacher MA, Rivard AF, Bachinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1124

    Article  CAS  PubMed  Google Scholar 

  178. Miki Y et al (2014) Accumulation of the sigma-1 receptor is common to neuronal nuclear inclusions in various neurodegenerative diseases. Neuropathology 34:148–158

    Article  CAS  PubMed  Google Scholar 

  179. Tsai S-Y, Hayashi T, Mori T, Su T-P (2009) Sigma-1 receptor chaperones and diseases. Cent Nerv Syst Agents Med Chem 9:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mannen T, Iwata M, Toyokura Y, Nagashima K (1977) Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. J Neurol Neurosurg Psychiatry 40:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Okamoto K, Hirai S, Ishiguro K, Kawarabayashi T, Takatama M (1991) Light and electron microscopic and immunohistochemical observations of the Onuf’s nucleus of amyotrophic lateral sclerosis. Acta Neuropathol 81:610–614

    Article  CAS  PubMed  Google Scholar 

  182. Okamoto K et al (1993) Oculomotor nuclear pathology in amyotrophic lateral sclerosis. Acta Neuropathol 85:458–462

    Article  CAS  PubMed  Google Scholar 

  183. Nimchinsky EA et al (2000) Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. J Comp Neurol 416:112–125

    Article  CAS  PubMed  Google Scholar 

  184. Harrison AR, Anderson BC, Thompson LV, McLoon LK (2007) Myofiber length and three-dimensional localization of NMJs in normal and botulinum toxin treated adult extraocular muscles. Invest Ophthalmol Vis Sci 48:3594–3601

    Article  PubMed  PubMed Central  Google Scholar 

  185. Khanna S, Richmonds CR, Kaminski HJ, Porter JD (2003) Molecular organization of the extraocular muscle neuromuscular junction: partial conservation of and divergence from the skeletal muscle prototype. Invest Ophthalmol Vis Sci 44:1918–1926

    Article  PubMed  Google Scholar 

  186. Pachter BR (1983) Rat extraocular muscle. 1. Three dimensional cytoarchitecture, component fibre populations and innervation. J Anat 137(Pt 1):143–159

    PubMed  PubMed Central  Google Scholar 

  187. Porter JD et al (2001) Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc Natl Acad Sci U S A 98:12062–12067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Robinson DA (1970) Oculomotor unit behavior in the monkey. J Neurophysiol 33:393–403

    CAS  PubMed  Google Scholar 

  189. Dengler R et al (1990) Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 13:545–550

    Article  CAS  PubMed  Google Scholar 

  190. Sobue G et al (1983) Degenerating compartment and functioning compartment of motor neurons in ALS: possible process of motor neuron loss. Neurology 33:654–657

    Article  CAS  PubMed  Google Scholar 

  191. Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    Article  CAS  PubMed  Google Scholar 

  192. Hegedus J, Putman CT, Gordon T (2007) Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 28:154–164

    Article  CAS  PubMed  Google Scholar 

  193. Hegedus J, Putman CT, Tyreman N, Gordon T (2008) Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol Lond 586:3337–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Brockington A et al (2012) Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 125:95–109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  195. Chang Q, Martin LJ (2009) Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis. Am J Pathol 174:574–585

    Article  PubMed  PubMed Central  Google Scholar 

  196. Chang Q, Martin LJ (2011) Glycine receptor channels in spinal motoneurons are abnormal in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 31:2815–2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Saxena S et al (2013) Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron 80:80–96

    Article  CAS  PubMed  Google Scholar 

  198. Mòdol L, Mancuso R, Alé A, Francos-Quijorna I, Navarro X (2014) Differential effects on KCC2 expression and spasticity of ALS and traumatic injuries to motoneurons. Front Cell Neurosci 8:7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  199. Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284

    Article  CAS  PubMed  Google Scholar 

  200. Bos R et al (2013) Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A 110:348–353

    Article  CAS  PubMed  Google Scholar 

  201. Boulenguez P et al (2010) Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 16:302–307

    Article  CAS  PubMed  Google Scholar 

  202. Coull JAM et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  CAS  PubMed  Google Scholar 

  203. Cramer SW et al (2008) The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury. Mol Pain 4:36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  204. Gordon T, Tyreman N, Li S, Putman CT, Hegedus J (2010) Functional over-load saves motor units in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 37:412–422

    Article  CAS  PubMed  Google Scholar 

  205. ElBasiouny SM, Schuster JE (2011) The effect of training on motoneuron survival in amyotrophic lateral sclerosis: which motoneuron type is saved? Front Physiol 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  206. Pieri M et al (2003) Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett 351:153–156

    Article  CAS  PubMed  Google Scholar 

  207. Kuo JJ et al (2004) Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J Neurophysiol 91:571–575

    Article  PubMed  Google Scholar 

  208. Martin E, Cazenave W, Cattaert D, Branchereau P (2013) Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 54:116–126

    Article  CAS  PubMed  Google Scholar 

  209. van Zundert B et al (2008) Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 28:10864–10874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  210. Pambo-Pambo A, Durand J, Gueritaud J-P (2009) Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. J Neurophysiol 102:3627–3642

    Article  CAS  PubMed  Google Scholar 

  211. Bories C, Amendola J, Lamotte d’Incamps B, Durand J (2007) Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25:451–459

    Article  PubMed  Google Scholar 

  212. Leroy F, Lamotte d’Incamps B, Imhoff-Manuel RD, Zytnicki D (2014) Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. eLife 3

    Google Scholar 

  213. Appel SH, Beers DR, Siklos L, Engelhardt JI, Mosier DR (2001) Calcium: the darth vader of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2(Suppl 1):S47–S54

    CAS  PubMed  Google Scholar 

  214. Reiner A, Medina L, Figueredo-Cardenas G, Anfinson S (1995) Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Exp Neurol 131:239–250

    Article  CAS  PubMed  Google Scholar 

  215. Alexianu ME et al (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 36:846–858

    Article  CAS  PubMed  Google Scholar 

  216. Aliaga L et al (2013) Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Hum Mol Genet 22:4293–4305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Mancuso, R., Navarro, X. (2017). Sigma-1 Receptor in Motoneuron Disease. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_16

Download citation

Publish with us

Policies and ethics