Skip to main content

Sol-Gel Sensors

  • Chapter
  • First Online:

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

The use of sol-gel chemistry has afforded the development of a diverse range of chemical sensors, due to the ease with which the process can be modified to tailor properties of the material such as porosity and hydrophobicity. Furthermore, sol-gel films can be deposited on a variety of substrates, thus allowing flexibility in sensor configuration. This chapter will provide an overview of the latest developments in sol-gel-based sensors. Applications reviewed include sensors for determination of gases, humidity, pH, ionic species, forensic analysis and biosensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Monton, M.R.N., Forsberg, E.M., Brennan, J.D.: Tailoring sol-gel derived silica materials for optical biosensing. Chem. Mater. 24, 796–811 (2012)

    Article  Google Scholar 

  2. Vinogradov, V., Avnir, D.: Exceptional thermal stability of therapeutical enzymes entrapped in alumina sol-gel matrices. J. Mater. Chem. B 2(19), 2868–2873 (2014)

    Article  Google Scholar 

  3. MacCraith, B.D., McDonagh, C., O’Keeffe, G., Keyes, E.T., Vos, J.G., O’Kelly, B., McGilp, J.F.: Fibre optic oxygen sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexes in sol-gel derived porous coating. Analyst 118, 385–388 (1993)

    Article  Google Scholar 

  4. Lee, S.-K., Okura, I.: Porphyrin-doped sol-gel glass as a probe for oxygen sensing. Anal. Chim. Acta 342, 181–188 (1997)

    Article  Google Scholar 

  5. McDonagh, C., MacCraith, B.D., McEvoy, A.K.: Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase. Anal. Chem. 70, 45–50 (1998)

    Article  Google Scholar 

  6. Xiong, Y., Ye, Z., Xu, J., Zhu, Y., Chen, C., Guan, Y.: An integrated micro-volume fiber-optic sensor for oxygen determination in exhaled breath based on iridium (III) complexes immobilized in fluorinated xerogels. Analyst 138, 1819–1827 (2013)

    Article  Google Scholar 

  7. Xu, H., Aylott, J.W., Kopelman, R., Miller, T.J., Philbert, M.A.: A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel based spherical optical nanosensors with applications to rat C6 glioma. Anal. Chem. 73, 4124–4133 (2001)

    Article  Google Scholar 

  8. Korzeniowska, B., Raspe, M., Wencel, D., Woolley, R., Jalink, K., McDonagh, C.: Development of organically modified silica nanoparticles for monitoring the intracellular level of oxygen using a frequency domain FLIM platform. RSC Adv. 5, 36938 (2015)

    Article  Google Scholar 

  9. Koo, Y.E.L., Cao, Y.F., Kopelman, R., Koo, S.M., Brausel, M., Philbert, M.A.: Real-time measurments of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal. Chem. 76, 2498–2505 (2004)

    Article  Google Scholar 

  10. Von Bültzingslöwen, C., McEvoy, A.K., McDonagh, C., MacCraith, B.D., Klimant, I., Krausec, C., Wolfbeis, O.S.: Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst 127, 1478–1483 (2002)

    Article  Google Scholar 

  11. Dansby Sparks, R., Jin, J., Mechery, S.J., Sampathkumaran, U., Owen, T.W., Yu, B.D., Goswami, K., Hong, K., Grant, J., Xue, Z.L.: Fluorescent-dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. Anal. Chem. 82, 593–600 (2010)

    Article  Google Scholar 

  12. Seiyama, T., Kato, A., Fujiishi, K., Nagatani, M.: A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)

    Article  Google Scholar 

  13. Bahar, M., Gholami, M., Azim Araghi, M.E.: Sol-gel synthesized titania nanoparticles deposited on porous polycrystalline silicon: improved carbon dioxide sensor properties. Mater. Sci. Semicond. Process. 26, 491–500 (2014)

    Article  Google Scholar 

  14. Fan, K., Qin, H., Wang, L., Ju, L., Hu, J.: CO2 gas sensors based on La1−x Sr x FeO3 nanocrystalline powders. Sens. Actuators B 177, 265–269 (2013)

    Article  Google Scholar 

  15. National Research Council (US) Committee on Acute Exposure Guideline Levels. Acute Exposure Guideline Levels for Selected Airborne Chemicals, Vol. 6. National Academies Press (US), Washington (DC) (2008) (Vol. 2, Ammonia Acute Exposure Guideline)

    Google Scholar 

  16. Senthil, T., Anandhan, S.: Structure–property relationship of sol-gel electrospun ZnO nanofibers developed for ammonia gas sensing. J. Colloid Interface Sci. 432, 285–296 (2014)

    Article  Google Scholar 

  17. Prasad, A.K., Kubinski, D.J., Gouma, P.I.: Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sens. Actuators B 93, 25–30 (2003)

    Google Scholar 

  18. Markovics, A., Kovacs, B.: Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol gel method. Talanta 109, 101–106 (2013)

    Article  Google Scholar 

  19. Hazra, A., Das, S., Kanungo, J., Sarkar, C.K., Basu, S.: Studies on a resistive gas sensor based on sol-gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators B 183, 87–95 (2013)

    Article  Google Scholar 

  20. Hou, Y., Soleimanpour, A.M., Jayatissa, A.H.: Low resistive aluminum doped nanocrystalline zinc oxide for reducing gas sensor application via sol-gel process. Sensors and Actuators B 177, 761–769 (2013)

    Google Scholar 

  21. Culotta, E., Koshland, D.E.: NO news is good news. Science 258, 1862 (1992)

    Article  Google Scholar 

  22. Lan, E.H., Dave, B.C., Fukuto, J.M., Dunn, B., Zink, J.I., Valentine, J.S.: Synthesis of sol-gel encapsulated heme proteins with chemical sensing Properties. J. Mater. Chem. 9, 45–53 (1999)

    Article  Google Scholar 

  23. Yu, M.R., Suyambrakasam, G., Wua, R.J., Chavali, M.: Preparation of organic–inorganic (SWCNT/TWEEN–TEOS) nano hybrids and their NO gas sensing properties. Sens. Actuators B 161, 938–947 (2012)

    Article  Google Scholar 

  24. Gouma, P.I., Kalyanasundaram, K.: A selective nanosensing probe for nitric oxide. Appl. Phys. Lett. 93, 244102 (2008)

    Article  Google Scholar 

  25. Mane, A.T., Kulkarni, S.B., Navale, S.T., Ghanwat, A.A., Shinde, N.M., Kim, J.H., Patil, V.B.: NO2 sensing properties of nanostructured tungsten oxide thin films. Ceram. Int. 40, 16495 (2014)

    Article  Google Scholar 

  26. Wang, R., Li, G., Dong, Y., Chi, Y., Chen, G.: Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal. Chem. 85, 8065–8069 (2013)

    Article  Google Scholar 

  27. Lim, S.H., Feng, L., Kemling, J.W., Musto, C., Suslick, K.S.: An optoelectronic nose for detection of toxic gases. Nat. Chem. 1, 562–567 (2009)

    Article  Google Scholar 

  28. Bunkoeda, O., Davis, F., Kanatharanaa, P., Thavarungkula, P., Higson, S.P.J.: Sol-gel based sensor for selective formaldehyde determination. Anal. Chim. Acta 659, 251–257 (2010)

    Article  Google Scholar 

  29. Hue, J., Dupoy, M., Bordy, T., Rousier, R., Vignoud, S., Schaerer, B., Tran Thi, T.H., Rivron, C., Mugherli, L., Karpeda, P.: Benzene and xylene detection by absorbance in the range of 10–100 ppb application: quality of indoor air. Sens. Actuators B 189, 194–198 (2013)

    Article  Google Scholar 

  30. Luo, W., Deng, J., Fu, Q., Zhou, D., Hu, Y., Gong, S., Zheng, Z.: Nanocrystalline SnO2 film prepared by the aqueous solgel method and its application as sensing films of the resistance and SAW H2S sensor. Sens. Actuators B 217, 119–128 (2015)

    Article  Google Scholar 

  31. Tan, K.M., Tay, C.M., Tjin, S.C., Chan, C.C., Rahardjo, H.: High relative humidity measurement using gelatin coated long-period grating sensors. Sens. Actuators B 110, 335–341 (2005)

    Article  Google Scholar 

  32. Zhao, Z., Duan, Y.: A low cost fiber-optic humidity sensor based on silica sol–gel film. Sens. Actuators B 160, 1340–1345 (2011)

    Article  Google Scholar 

  33. Islam, T., Kumar, L., Khan, S.A.: A novel sol–gel thin film porous alumina based capacitive sensor for measuring trace moisture in the range of 2.5–25 ppm. Sens. Actuators B 173, 377–384 (2012)

    Article  Google Scholar 

  34. Lee, H.J., Park, K.K., Kupnik, M., Melosh, N.A., Khuri-Yakub, B.T.: Mesoporous thin-film on highly-sensitive resonant chemical sensor for relative humidity and CO2 detection (2012)

    Google Scholar 

  35. Ates, T., Tatar, C., Yakuphanoglu, F.: Preparation of semiconductor ZnO powders by sol–gel method: humidity sensors. Sens. Actuators A 190, 153–160 (2013)

    Article  Google Scholar 

  36. Mashhadizadeh, M.H., Khani, H.: Sol–Gel-Au nano-particle modified carbon paste electrode for potentiometric determination of sub ppb level of Al(III). Anal. Methods 2, 24–31 (2010)

    Article  Google Scholar 

  37. Arvand, M., Asadollahzadeh, S.A.: Ion-selective electrode for aluminum determination in pharmaceutical substances, tea leaves and water samples. Talanta 75, 1046–1054 (2008)

    Article  Google Scholar 

  38. Feng, L., Zhang, Y., Wen, L., Chen, L., Shen, Z., Guan, Y.: Discrimination of trace heavy-metal ions by filtration on sol–gel membrane arrays. Chem. Eur. J. 17, 1101–1104 (2011)

    Google Scholar 

  39. Lee, S.M., Lee, W.Y.: Determination of heavy metal ions using conductometric biosensor based on Sol-gel-immobilized urease. Bull. Korean Chem. Soc. 23, 1169 (2002)

    Article  Google Scholar 

  40. Yantasee, W., Charnhattakorn, B., Fryxell, G.E., Lin, Y., Timchalk, C., Addleman, R.S.: Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and nafion composite electrodes. Anal. Chim. Acta. 620, 55–63 (2008)

    Article  Google Scholar 

  41. Jeronimo, P.C.A., Araujo, A.A., Conceicao, M., Montenegro, B.S.M., Pasquini, C., Raimundo Jr., I.M.: Direct determination of copper in urine using a sol–gel optical sensor coupled to a multicommutated flow system. Anal. Bioanal. Chem. 380, 108–114 (2004)

    Article  Google Scholar 

  42. Alcock, N.W.: Trace elements. In: Kaplan, L.A., Pesce, A.J. (eds.) Clinical Chemistry-Theory, Analysis and Correlation, 3rd edn. Mosby, St.Louis (1996)

    Google Scholar 

  43. Carrington, N.A., Xue, Z.L.: Inorganic sensing using organofunctional sol-gel materials. Acc. Chem. Res. 40, 343–350 (2007)

    Article  Google Scholar 

  44. Carrington, N.A., Thomas, G.H., Rodman, D.L., Beach, D.B., Xue, Z.: Optical determination of Cr(VI)using regenerable, functionalized sol-gel monoliths. Anal. Chim. Acta 581, 232–240 (2007)

    Article  Google Scholar 

  45. Kim, Eunjeong, Seo, Sungmin, Seo, Moo Lyong, Jung, Jong Hwa: Functionalized monolayers on mesoporous silica and on titania nanoparticles for mercuric sensing. Analyst 135, 149–156 (2010)

    Article  Google Scholar 

  46. Dhanya, S., Joy, J., Rao, T.P.: Fabrication and characterization of rhodamine 6G entrapped sol–gel film test strip for virtually specific and sensitive sensing of nitrite. Sens. Actuaturs B 173, 510–516 (2012)

    Article  Google Scholar 

  47. Wang, P., Wang, X., Bi, L., Zhu, G.: Renewable-surface amperometric nitrite sensor based on sol–gel-derived silicomolybdate–methylsilicate–graphite composite material. Analyst 125, 1291–1294 (2000)

    Article  Google Scholar 

  48. Wang, Q., Tan, C., Chen, H., Tamiaki, H.: A new fluoride luminescence quencher based on a nanostructured covalently bonded terbium hybrid material. J. Phys. Chem. C (2010)

    Google Scholar 

  49. Shen, J.S., Li, D.H., Cai, Q.G., Jiang, Y.B.: Highly selective iodide-responsive gel–sol state transition in supramolecular hydrogels. J. Mater. Chem. 19, 6219–6224 (2009)

    Article  Google Scholar 

  50. Appiah Ntiamoah, R., Jadhav, A.H., Puguan, J.M.C., Momade, F.W.Y., Kim, H.: A silica nanoparticle supported fluorescence “turnon” fluoride ion sensing system with tunable structure and sensitivity. RSC Adv. 5, 30526 (2015)

    Article  Google Scholar 

  51. Wang, E., Chow, K.F., Kwan, V., Chin, T., Wong, C.: Fast and long term optical sensors for pH based on sol–gels. Anal. Chim. Acta 495, 45–50 (2003)

    Article  Google Scholar 

  52. Nivens, D.A., Zhang, Y., Angel, S.M.: A fiber-optic pH sensor prepared using a base-catalyzed organo-silica sol-gel. Anal. Chim. Acta 376, 235–245 (1998)

    Google Scholar 

  53. Jeon, D., Yoo, W.J., Seo, J.K., Shin, S.H., Han, K.T., Kim, S.G., Park, J.Y., Lee, B.: Fiber-optic pH sensor based on sol-gel film immobilized with neutral red. Opt. Rev. 20, 209–213 (2013)

    Article  Google Scholar 

  54. Lobnik, A., Majcen, N., Niederreiter, K., Uray, G.: Optical pH sensor based on the absorption of antenna generated europium luminescence by bromothymolblue in a sol-gel membrane. Sens. Actuators B 74, 200–206 (2001)

    Article  Google Scholar 

  55. Huang, W.D., Cao, H., Deb, S., Chiao, M., Chiao, J.C.: A flexible pH sensor based on the iridium oxide sensing film. Sens. Actuators A 169, 1–11 (2011)

    Article  Google Scholar 

  56. Silva, G.M., Lemos, S.G., Picrifka, L.A., Marreto, P.D., Rosario, A.V., Pereira, E.C.: Development of low-cost metal oxide pH electrodes based on the polymeric precursor method. Anal. Chim. Acta 616, 36–41 (2008)

    Article  Google Scholar 

  57. Gill, I., Ballesteros, A.: Encapsulation of biologicals within silicate, siloxane and hybrid sol-gel polymers: an efficient and generic approach. J. Am. Chem. Soc. 120, 8587–8598 (1998)

    Article  Google Scholar 

  58. Park, C.B., Clark, D.S.: Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. Biotech. Bioeng. 78, 229–235 (2002)

    Article  Google Scholar 

  59. Ansari, A.A., Solanki, P.R., Malhotra, B.D.: Sol gel derived nanostructured cerium oxide film for glucose sensor. Appl. Phys. Lett. 92, 263901 (2008)

    Article  Google Scholar 

  60. Ansari, A.A., Pandey, P., Malhotra, B.D.: Sol-gel derived nanoporous cerium oxide-titanium oxide platform for glucose sensor. Adv. Sci. Eng. Med. 5, 1–7 (2013)

    Article  Google Scholar 

  61. Xu, C., Ren, J., Feng, L., Xu, X.Q.: H2O2 triggered sol–gel transition used for visual detection of glucose. Chem. Commun. 48, 3739–3741 (2012)

    Article  Google Scholar 

  62. Yao, H., Shum, A.J., Cowan, M., Lähdesmäki, I., Parviz, B.A.: A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011(26), 3290–3296 (2011)

    Article  Google Scholar 

  63. Baca, J.T., Taormina, C.R., Feingold, E., Finegold, D.N., Grabowski, J.J., Asher, S.A.: Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin. Chem. 53, 1370–1372 (2007)

    Article  Google Scholar 

  64. Khoo, S.B., Chen, F.: Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: an electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Anal. Chem. 74, 5734–5741 (2002)

    Article  Google Scholar 

  65. Hossain, S.M.Z., Luckham, R.E., Smith, A.M., Lebert, J.M., Davies, L.M., Pelton, R.H., Filipe, C.D.M., Brennan, J.D.: Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal. Chem. 81, 5474–5483 (2009)

    Article  Google Scholar 

  66. Yu, D., Volponi, J., Chhabra, S., Brinker, C.J., Mulchandani, A., Singh, A.K.: Aqueous sol–gel encapsulation of genetically engineered Moraxella spp. cells for the detection of organophosphates. Biosens. Bioelectron. 20, 1433–1437 (2005)

    Article  Google Scholar 

  67. Ponamoreva, O.N., Kamanina, O.A., Alferov, V.A., Machulin, A.V., Rogova, T.V., Arlyapov, Alferov S.V., Suzina, N.E., Ivanova, E.P.: Yeast-based self-organized hybrid bio-silica sol-gels for the design of biosensors. Biosens. Bioelectron. 67, 321–326 (2015)

    Article  Google Scholar 

  68. Carrasquilla, C., Lau, P.S., Li, Y., Brennan, J.D.: Stabilizing structure-switching signaling rna aptamers by entrapment in sol–gel derived materials for solid-phase assays. J. Am. Chem. Soc. 134, 10998–11005 (2012)

    Article  Google Scholar 

  69. Solanki, P.R., Patel, M.K., Kaushik, A., Pandey, M.K., Kotnala, R.K., Malhotra, B.D.: Sol-gel derived nanostructured metal oxide platform for bacterial detection. Electroanalysis 23, 2699–2708 (2011)

    Article  Google Scholar 

  70. Gubala, A.J.: Multiplex real-time PCR detection of Vibrio cholera. J. Microbiol. Meth. 65, 278 (2006)

    Article  Google Scholar 

  71. Zeisel, S.H., da Costa, K.A.: Choline: an essential nutrient for public health. Nutr. Rev. 67, 615–623 (2009)

    Article  Google Scholar 

  72. Shaw, G., Carmichael, S., Yang, W., Selvin, S., Schaffer, D.: Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am. J. Epidemiol. 160, 102–109 (2004)

    Article  Google Scholar 

  73. Mazurenko, I., Tananaiko, O., Biloivan, O., Zhybak, M., Pelyak, I., Zaitsev, V., Etienne, M., Walcarius, A.: Amperometric biosensor for choline based on gold screen-printed electrode modified with electrochemically-deposited silica biocomposite. Electroanalysis (2015)

    Google Scholar 

  74. George, S., Brat, P., Alter, P., Amiot, M.J.: Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 53, 1370–1373 (2005)

    Article  Google Scholar 

  75. Casero, E., Petit-Domínguez, M.D., Vázquez, L., Ramírez-Asperilla, I., Parra-Alfambra, A.M., Pariente, F., Lorenzo, E.: Laccase biosensors based on different enzyme immobilization strategies for phenolic compounds determination. Talanta 115, 401–408 (2013)

    Article  Google Scholar 

  76. Pena Vázquez, E., Maneiro, E., Pérez-Conde, C., Moreno-Bondi, Costas E.: Microalgae fiber optic biosensors for herbicide monitoring using sol–gel technology. Biosens. Bioelectron. 24, 3538–3543 (2009)

    Article  Google Scholar 

  77. European Union, Brussels: Water framework directive (2000/60/EC) (2000)

    Google Scholar 

  78. Zhu, L., Gamez, G., Chen, H., Chingin, K., Zenobi, R.: Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS). Chem. Commun. 5, 556–558 (2009)

    Google Scholar 

  79. Coghlan, A.: Reuters. Melamine ‘widespread’ in China’s food chain. New Scientist (2008)

    Google Scholar 

  80. Brown, C.A., Jeong, K.S., Poppenga, R.H., Puschner, B., Miller, D.M., Ellis, A.E., Kang, K.I., Sum, S., Cistola, A.M., Brown, S.A.: Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J. Vet. Diagn. Invest. 19, 525–531 (2007)

    Article  Google Scholar 

  81. Xu, G., Zhang, H., Zhong, M., Zhang, T., Lu, X., Kan, X.: Imprinted sol–gel electrochemical sensor for melamine direct recognition and detection. J. Electroanal. Chem. 713, 112–118 (2014)

    Article  Google Scholar 

  82. Azahar Ali, M., Srivastava, S., Solanki, P.R., Agrawal, V.V., John, R., Malhotra, B.D.: Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Appl. Phys. Lett. 101, 084105 (2012)

    Article  Google Scholar 

  83. Ahn, K.Y., Kwon, K., Huh, J., Kim, G.T., Lee, E.B., Park, D., Lee, J.: A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure. Biosens. Bioelectron. 28, 378–385 (2011)

    Article  Google Scholar 

  84. Chooduma, A., Kanatharana, P., Wongniramaikul, W., NicDaeid, N.: A sol–gel colorimetric sensor for methamphetamine detection. Sens. Actuators B 215, 553–560 (2015)

    Article  Google Scholar 

  85. Liu, L., Gill, S.K., Gao, Y., Hope-Weeks, L.J., Cheng, K.H.: Exploration of the use of novel SiO2 nanocomposites doped with fluorescent Eu3+/sensitizer complex for latent fingerprint detection. Forensic Sci. Int. 176(2008), 163–172 (2008)

    Article  Google Scholar 

  86. Beyazkilic, P., Yildirim, A., Bayindir, M.: Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives. ACS Appl. Mater. Interfaces 6, 4997–5004 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aine M. Whelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Whelan, A.M. (2017). Sol-Gel Sensors. In: Pillai, S., Hehir, S. (eds) Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-50144-4_5

Download citation

Publish with us

Policies and ethics