Skip to main content

Cyanobacteria-Mediated Heavy Metal Remediation

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Heavy metals constitute toxic, non-biodegradable and persistent environment pollutants which adversely affect all life forms, including humans, and cause ecological damage. The detrimental effects of heavy metals on living organisms are attributable to their action on a number of cellular and biochemical processes, biomolecules and structures in living organisms, including human beings. In humans, they are known to cause various patho-physiological disorders of hepatic, renal, respiratory and gastrointestinal system. The biotoxicity of heavy metals depends on their concentration, bioavailability, chemical forms and duration of exposure. Globally, the ever-increasing contamination of aquatic bodies and soil by heavy metals (e.g. Cd, Hg, Ag, As, Pb, Ni, Cr, Cu, Zn) owing to various anthropogenic activities is an issue of serious concern and challenge. Bioremediation of heavy metals, employing various microorganisms, including cyanobacteria (blue–green algae), has been recognized as a cheaper, more effective and an eco-friendly alternative to the conventional physico-chemical remediation methods. Because of their tremendous adaptability and effective protective mechanisms against various abiotic stresses, cyanobacteria colonize and inhabit diverse terrestrial and aquatic habitats, including extreme and polluted ones. Various cyanobacterial species possess efficient heavy metal removal capabilities from aqueous solutions. They produce metal-binding proteins (metallothioneins) and metal-sequestering agents (e.g. exopolysaccharides). The bioremoval of heavy metals by cyanobacteria is mediated by biosorption and bioaccumulation. Cyanobacteria, because of their ubiquity, abundance, rapid growth rate, simple growth requirements, heavy metal tolerance and removal, and amenability to controlled laboratory culture and immobilization are the promising candidates for the bioremediation of heavy metal pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91(3):533–540

    Article  CAS  Google Scholar 

  • Aneja RK, Chaudhary G, Ahluwalia SS, Goyal D (2010) Biosorption of Pb2+ and Zn2+ by non-living biomass of Spirulina sp. Indian J Microbiol 50(4):438–442

    Article  CAS  Google Scholar 

  • Awasthi M, Rai LC (2004) Adsorption of nickel, zinc and cadmium by immobilized green algae and cyanobacteria: a comparative study. Ann Microbiol 54(3):257–267

    CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  Google Scholar 

  • Bencko V (1987) Arsenic. In: Fishbein L, Furst A, Mehlman MA (eds) Genotoxic and carcinogenic metals: environmental and occupational occurrence and exposure. Princeton Scientific Publishing, Princeton, NJ, pp 1–30

    Google Scholar 

  • Bender J, Rodriguez-Eaton S, Ekanemesang UM, Phillips P (1994) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl Environ Microbiol 60:2311–2315

    CAS  Google Scholar 

  • Bender J, Lee RF, Phillips PC (1995) Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol 14:113–118

    Article  CAS  Google Scholar 

  • Blanco A, Sanz B, Llama MJ, Serra JL (1999) Biosorption of heavy metals to immobilized Phormidium laminosum biomass. J Biotechnol 69:227–240

    Article  CAS  Google Scholar 

  • Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 4:149–154

    Article  Google Scholar 

  • Brierley JA (1990) Production and application of a Bacillus-based product for use in metals biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 305–311

    Google Scholar 

  • Brierley JA, Brierley CA, Goyak GM (1986) AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology. In: Lawrence RW, Branion RMR, Ebner HG (eds) Fundamental and applied biohydrometallurgy. Elsevier, Amsterdam, pp 291–308

    Google Scholar 

  • Brouers M, Dejong H, Shi DJ, Hall DO (1989) Immobilized cells: an appraisal of the methods and applications of cell immobilization techniques. In: Cresswell RC, Rees TAV, Shah N (eds) Algal and cyanobacterial biotechnology. Longman Scientific and Technical Publication, New York, pp 272–290

    Google Scholar 

  • Cain A, Vannela R, Woo LK (2008) Cyanobacteria as a biosorbents for mercuric ion. Bioresour Technol 99:6578–6586

    Article  CAS  Google Scholar 

  • Campbell PM, Smith GD (1986) Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica. Arch Biochem Biophys 244:470–477

    Article  CAS  Google Scholar 

  • Carr NG, Whitton BA (1982) The biology of cyanobacteria, Botanical monographs, vol 19. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Castenholz RW, Waterbury JB (1989) Oxygenic photosynthetic bacteria. Group I cyanobacteria. In: Stanley JT, Bryant MP, Pfennig N (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, MD, pp 1710–1798

    Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980a) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, Van Baalen C, Gibson DT (1980b) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  • Chakarborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation-a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Chevalier P, Proulx D, Lessard P, Vincent WF, de la Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12:105–112

    Article  CAS  Google Scholar 

  • Chirwa EMN, Wang YT (1997) Biological reduction of hexavalent chromium by Pseudomonas fuorescens LB 300 in a fixed-film reactor. J Environ Eng 123:760–766

    Article  CAS  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193

    Article  CAS  Google Scholar 

  • Corder SL, Reeves M (1994) Biosorption of nickel in complex aqueous waste streams by cyanobacteria. Appl Biochem Biotechnol 45(46):847–859

    Article  Google Scholar 

  • Costa M, Klein C (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  • Darnall DW, Greene B, Henzl MT, Hosea JM, McPherson RA, Sneddon J, Alexander MD (1986) Selective recovery of gold and other metal ions from algal biomass. Environ Sci Technol 20:206–208

    Article  CAS  Google Scholar 

  • de la Noüe J, de Pauw N (1988) The potential of microalgal biotechnology: a review of production and use of microalgae. Biotechnol Adv 6:725–770

    Article  Google Scholar 

  • De Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation 18:181–187

    Article  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation. J Appl Phycol 13:293–299

    Article  Google Scholar 

  • De Philippis R, Paperi R, Sili C, Vincenzini M (2003) Assessment of metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15:155–161

    Article  Google Scholar 

  • De-Bashana LE, Bashana Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    Article  CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals”-a meaningless term? Pure Appl Chem 74(5):793–807

    Article  CAS  Google Scholar 

  • Duma A, Lalibertk G, Lessard P, de la Noiiea VJ (1998) Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri. Aqua Eng 17:57–68

    Article  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338

    Article  Google Scholar 

  • El-Bestawy E (2008) Treatment of mixed industrial wastewater using cyanobacteria. J Ind Microbiol Biotechnol 35:1503–1516

    Article  CAS  Google Scholar 

  • El-Bestawy E, Abd El-Salam AZ, Abd El-Rahman HM (2007) Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. Int Biodeter Biodegr 59(3):180–192

    Article  CAS  Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by freshwater algae. Plant Sci Lett 8:213–216

    Article  CAS  Google Scholar 

  • Faisal M, Hameed A, Hasnain S (2005) Chromium resistant bacteria and cyanobacteria: impact of Cr(VI) reduction potential and plant growth. J Ind Microbiol Biotechnol 32:615–621

    Article  CAS  Google Scholar 

  • Fan AM, Harding-Barlow I (1987) Chromium. In: Fishbein L, Furst A, Mehlman MA (eds) Genotoxic and carcinogenic metals: environmental and occupational occurrence and exposure. Princeton Scientific Publishing Co., Princeton, NJ, pp 87–126

    Google Scholar 

  • Fang L, Zhou C, Cai P, Chen W, Rong X, Dai K, Liang W, Gu JD, Huang Q (2011) Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. J Hazard Mater 190:810–815

    Article  CAS  Google Scholar 

  • Fiore MF, Trevors JT (1994) Cell composition and metal tolerance in cyanobacteria. Biometals 7:83–103

    Article  CAS  Google Scholar 

  • Fiore MF, Moon DH, Trevors JT (1998) Metal resistance and accumulation in cyanobacteria. In: Wong Y-S, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 111–124

    Chapter  Google Scholar 

  • Gardea-Torresdey JL, Arenas JL, Francisco NMC, Tiemann KJ, Webb R (1998) Ability of immobilized cyanobacteria to remove metal ions from solution and demonstration of the presence of metallothionein genes in various strains. J Hazard Sub Res 1:1–18

    Google Scholar 

  • Garnham GW, Green M (1995) Chromate(VI) uptake by and interactions with cyanobacteria. J Ind Microbiol 14:247–251

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Goswami S, Diengdoh OL, Syiem MB, Pakshirajan K, Kiran MG (2015) Zn(II) and Cu(II) removal by Nostoc muscorum: a cyanobacterium isolated from a coal mining pit in Chiehruphi, Megahalaya, India. Can J Microbiol 61(3):209–215

    Article  CAS  Google Scholar 

  • Grimanis AP, Zafiropoulos D, Vassilaki R, Grimanis M (1978) Trace elements in the flesh and liver of two fish species from polluted and unpolluted areas in the Aegean Sea. Environ Sci Technol 12:723–726

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of Pb(II) from aqueous solution by non-living algal biomass Oedogonium sp. and Nostoc sp.-a comparative study. Colloids Surf B Biointerfaces 64(2):170–178

    Article  CAS  Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78(8):967–973

    CAS  Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights in to the biodiversity and applications of cyanobacteria (blue-green algae)- prospects and challenges. Algal Res 2(2):79–97

    Article  Google Scholar 

  • Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385

    Article  CAS  Google Scholar 

  • Hazarika J, Pakshirajan K, Sinharoy A, Syiem MB (2015) Bioremoval of Cu(II), Zn(II), Pb(II) and Cd(II) by Nostoc muscorum isolated from coal mining site. J Appl Phycol 27:1525–1534

    Article  CAS  Google Scholar 

  • Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66(1):133–139

    Article  CAS  Google Scholar 

  • Jensen TE, Baxter M, Rachlin JW, Jani V (1982) Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) in to cellular components, especially polyphosphate bodies: an X-ray energy dispersive study. Environ Pollut 27:119–127

    Article  CAS  Google Scholar 

  • Johnson PE, Subert LE (1986) Accumulation of mercury and other elements by Spirulina (cyanophyceae). Nutr Rep Int 34:1063–1070

    CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption- an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40:1321–1353

    Article  CAS  Google Scholar 

  • Kumar MS, Rajeshwari K, Johnson S, Thajuddin N, Gunasekaran M (2011) Removal of Pb(II) by immobilized and free filaments of marine Oscillatoria sp.NTMS01 and Phormidium sp.NTMS02. Bull Environ Contam Toxicol 87:254–259

    Article  CAS  Google Scholar 

  • Kumar R, Singh K, Sarkar S, Sethi LN (2014) Accumulation of Cu by microalgae Scendesmus obliquus and Synechocystis sp. PCC6803. IOSR J Environ Sci Toxicol Food Technol 8(6):64–68

    Article  Google Scholar 

  • Kuritz T (1999) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol 85:186S–192S

    Article  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10:137–142

    Article  CAS  Google Scholar 

  • Laloknam S, Sirisopana S, Phornphisutthimas S, Takabe T, Incharoensakdi A (2009) Removal of mercury, arsenic and cadmium in synthetic wastewater by cyanobacterium Aphanothece halophytica. NU Sci J 6:96–104

    Google Scholar 

  • Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. Appl Environ Microbiol 73(1):243–249

    Article  CAS  Google Scholar 

  • Lem NW, Glick BR (1985) Biotechnological uses of cyanobacteria. Biotechnol Adv 3:195–208

    Article  CAS  Google Scholar 

  • Les A, Walker RW (1984) Toxicity and binding of copper, zinc and cadmium by blue-green alga, Chroococcus paris. Water Air Soil Pollut 23:129–139

    Article  CAS  Google Scholar 

  • Liehr SK, Chen HJ, Lin SH (1994) Metal removal by algal biofilms. Water Sci Technol 30:59–68

    CAS  Google Scholar 

  • Lincoln EP, Wilkie AC, French BT (1996) Cyanobacterial process for renovating dairy wastewater. Bioengineering 10:63–68

    CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  Google Scholar 

  • Lodi A, Binaghi L, Solisio C, Converti A, Del Borghi M (2003) Nitrate and phosphate removal by Spirulina platensis. J Ind Microbiol Biotechnol 30:656–660

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  • Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 9:196–201

    Article  CAS  Google Scholar 

  • Mallick N, Rai LC (1994) Removal of inorganic ions from wastewaters by immobilized microalgae. World J Microbiol Biotechnol 10:439–443

    Article  CAS  Google Scholar 

  • Mansy AH, El-Bestawy E (2002) Toxicity and biodegradation of fluometuron by selected members of cyanobacteria. World J Microbiol Biotechnol 18:125–131

    Article  CAS  Google Scholar 

  • McEldowney S, Hardman DJ, Waite S (1993) Pollution: ecology and biotreatment. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur GP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process-a review. Appl Biochem Biotechnol 170:1389–1416

    Article  CAS  Google Scholar 

  • Micheletti E, Colica G, Viti C, Tamagnini P, De Philippis R (2008) Selectivity in heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 105:88–94

    Article  CAS  Google Scholar 

  • Miranda J, Krishnakumar G, Gonsalves R (2012a) Cr6+ bioremediation efficiency of Oscillatoria laete-virens (Crouan & Grouan) Gomont and Oscillatoria trichoides Szafer: kinetics and equilibrium study. J Appl Phycol 24:1439–1454

    Article  CAS  Google Scholar 

  • Miranda J, Krishnakumar G, D’Silva A (2012b) Removal of Pb2+ from aqueous system by live Oscillatoria laete-virens (Crouan and Crouan) Gomont isolated from industrial effluents. World J Microbiol Biotechnol 28:3053–3065

    Article  CAS  Google Scholar 

  • Murray RGE (1989) The higher taxa or a place for everything …….? In: Staley JT, Bryant M P, Pfennig N (eds) Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins, Baltimore, MD, pp 1631–1634

    Google Scholar 

  • Nakajima A, Horikoshi T, Sakaguchi T (1982) Recovery of uranium by immobilized microorganisms. Eur J Appl Microbiol Biotechnol 16:88–91

    Article  CAS  Google Scholar 

  • Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadriplicatum PR-6. Appl Environ Microbiol 58:1351–1359

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Olafson RW (1986) Physiological and chemical characterization of cyanobacterial metallothioneins. Environ Health Perspect 65:71–75

    CAS  Google Scholar 

  • Oren A (2004) A proposal for further integration of the cyanobacteria under the bacteriological code. Int J Syst Evol Microbiol 54:1895–1902

    Article  Google Scholar 

  • Ozturk S, Aslim B (2008) Relationship between chromium (VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environ Sci Pollut Res 15:478–480

    Article  CAS  Google Scholar 

  • Pandey PK, Singh SP (1993) Hg2+ uptake in a cyanobacterium. Curr Microbiol 26:155–159

    Article  CAS  Google Scholar 

  • Pandey PK, Singh CB, Singh SP (1992) Cu uptake in a cyanobacterium: fate of selected photochemical reactions. Curr Microbiol 24:35–39

    Article  CAS  Google Scholar 

  • Pandey VD, Gupta RK, Singh SK (2007) Cyanobacteria as a source of pharmaceutical compounds. In: Gupta RK, Pandey VD (eds) Advances in applied phycology. Daya Publishing House, New Delhi, pp 250–260

    Google Scholar 

  • Pant A, Srivastava SC, Singh SP (1992) Methyl mercury uptake by free and immobilized cyanobacterium. Biometals 5:229–234

    Article  CAS  Google Scholar 

  • Paperi R, Micheletti E, De Philippis R (2006) Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. J Appl Microbiol 101:1351–1356

    Article  CAS  Google Scholar 

  • Parikh A, Madamwar D (2005) Textile dye decolorization using cyanobacteria. Biotechnol Lett 27:323–326

    Article  CAS  Google Scholar 

  • Parker DL, Mihalick JE, Plude JL, Plude MJ, Clark TP, Egan L, Flom JJ, Rai LC, Kumar HD (2000) Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa f. flos-aquae strain C3-40. J Appl Phycol 12:219–224

    Article  CAS  Google Scholar 

  • Patterson GML (1996) Biotechnological applications of cyanobacteria. J Sci Ind Res 55:669–684

    CAS  Google Scholar 

  • Pauls J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan AT, Nilsson R (2003) Genotoxic effects of occupational exposure to lead and cadmium. Mutat Res 540(1):19–28

    Article  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  Google Scholar 

  • Pettersson A, Kunst L, Bergman B, Romans GM (1985) Accumulation of aluminium by Anabaena cylindrica in to polyphosphate granules and cell walls: an X-ray energy-dispersive microanalysis study. J Gen Microbiol 131:2545–2548

    CAS  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Article  Google Scholar 

  • Radwan SS, Al-Hasan RH (2000) Oil pollution and cyanobacteria. In: BA W, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 307–319

    Google Scholar 

  • Radwan SS, Al-Hasan RH (2001) Potential application of coastal biofilm-coated gravel particles for treating oily waste. Aquat Microbial Ecol 23:113–117

    Article  Google Scholar 

  • Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  CAS  Google Scholar 

  • Rai LC, Mallick N (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8:110–114

    Article  CAS  Google Scholar 

  • Rajeshwari K, Kumar MS, Thajuddin N (2012) Adsorption isotherms for Cr(VI) by two immobilized marine cyanobacteria. Ann Microbiol 62:241–246

    Article  CAS  Google Scholar 

  • Rao KR, Rashmi K, Latha JNL, Mohan PM (2005) Bioremediation of toxic metal ions using biomass of Aspergillus fumigatus from fermentative waste. Indian J Biotechnol 4:139–143

    Google Scholar 

  • Raungsomboon S, Chidthaisong A, Harvey NW (2006) Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa. Water Res 40:3759–3766

    Article  CAS  Google Scholar 

  • Rayms-Keller A, Olson KE, McGaw M, Oray C, Carlson JO, Beaty BJ (1998) Effect of heavy metals on Aedes aegypti (Diptera:Culicidea) larvae. Ecotoxicol Environ Saf 39:41–47

    Article  CAS  Google Scholar 

  • Robinson NJ, Rutherford JC, Pocock MR, Cavet JS (2000) Metal metabolism and toxicity: repetitive DNA. In: BA W, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 443–463

    Google Scholar 

  • Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20:227–235

    Article  CAS  Google Scholar 

  • Say PJ, Whitton BA (1980) Change in flora down a stream showing a zinc gradient. Hydrobiologia 76:255–262

    Article  Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: BA W, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 13–35

    Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU-30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Singh SP, Yadava V (1985) Cadmium uptake in Anacystis nidulans: effect of modifying factors. J Gen Appl Microbiol 31:39–48

    Article  CAS  Google Scholar 

  • Singh SP, Verma SK, Singh RK, Pandey PK (1989) Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol Lett 60:193–196

    Article  CAS  Google Scholar 

  • Singh SP, Singh RK, Pandey PK, Pant A (1992) Factors regulating copper uptake in free and immobilized cyanobacterium. Folia Microbiol 37(4):315–320

    Article  CAS  Google Scholar 

  • Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol 23:1115–1120

    Article  CAS  Google Scholar 

  • Sorahan T, Waterhouse JAH (1985) Cancer of the prostrate among nickel-cadmium battery workers. Lancet 325(8426):415–474

    Article  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self cleaning of the Gulf. Nature (London) 359:109

    Article  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Bacteriol 78:194–199

    Article  CAS  Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    Article  CAS  Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R, Gherma RL, Truper HG (1978) Proposal to place nomenclature of cyanobacteria (blue-green algae) under rules of international code of nomenclature of bacteria. Int J Syst Bacteriol 28:335–336

    Article  Google Scholar 

  • Subramanian G, Uma L (1996) Cyanobacteria in pollution control. J Sci Ind Res 55:685–692

    CAS  Google Scholar 

  • Subramanian G, Uma L (2001) Potential applications of cyanobacteria in environmental biotechnology. In: Lee YK (ed) Kojma H. Springer, Photosynthetic microorganisms in environmental biotechnology, pp 41–49

    Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104:119–190

    Article  CAS  Google Scholar 

  • Tien C-J, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17:379–389

    Article  CAS  Google Scholar 

  • Turner JS, Robinson NJ (1995) Cyanobacterial metallothioneins: biochemistry and molecular genetics. J Ind Microbiol 14:119–125

    Article  CAS  Google Scholar 

  • Van Den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Verma SK, Singh SP (1990) Factors regulating copper uptake in a cyanobacterium. Curr Microbiol 21:33–37

    Article  CAS  Google Scholar 

  • Verma SK, Singh HN (1991) Evidence for energy-dependent copper efflux as a mechanism of Cu2+ resistance in the cyanobacterium Nostoc calcicola. FEMS Microbiol Lett 84:291–294

    Article  CAS  Google Scholar 

  • Verma SK, Singh SP (1995) Multiple metal resistance in the cyanobacterium Nostoc muscorum. Bull Environ Contam Toxicol 54:614–619

    Article  CAS  Google Scholar 

  • Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    CAS  Google Scholar 

  • Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14:291–302

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    Article  CAS  Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Varadharajan R, Benemann JR (1998) Heavy metal binding and removal by Phormidium. Bull Environ Contam Toxicol 60:739–744

    Article  CAS  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 227:293–294

    Article  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC, Boca Raton, FL

    Google Scholar 

  • Whitton BA (1980) Zinc and plants in rivers and streams. In: de Nriagu JO (ed) Zinc in the environment: part II, health effects. Wiley, New York, pp 364–400

    Google Scholar 

  • Whitton BA, Shehata FHA (1982) Influence of cobalt, nickel, copper and cadmium on the blue-green alga Anacystis nidulans. Environ Pollut 27:275–281

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  CAS  Google Scholar 

  • Wilkinson SC, Goulding KH, Robinson PK (1990) Mercury removal by immobilized algae in batch culture systems. J Appl Phycol 2:223–230

    Article  Google Scholar 

  • Wurster M, Mundt S, Hammer E, Schauer F, Lindequist U (2003) Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. J Appl Phycol 15:171–176

    Article  CAS  Google Scholar 

  • Zweig RD, Morton JD, Stewart MM (1999) Source water quality for aquaculture: a guide for assessment. The World Bank, Washington, DC

    Book  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Head (Department of Botany) and Principal, Govt. Post-Graduate College, Rishikesh for providing required facilities. Financial assistance from UGC, New Delhi and UCOST, Dehradun is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Dhar Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pandey, V.D. (2017). Cyanobacteria-Mediated Heavy Metal Remediation. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_6

Download citation

Publish with us

Policies and ethics