Skip to main content

Design of Prosthetic Leg Socket from Kenaf Fibre Based Composites

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Prosthetic socket is one of important part as it involved interface or connecting link between stump and prosthetic components. Besides the functionality of socket itself, it also involved satisfaction on patient due to the force distribution and pressure on stump. Selecting the right liner is essential in order to ensure theĀ prosthesisĀ fits well and is comfortable to wear. The quality and comfort of a prosthetic socket and its design can determine the daily extent of period, as the patients can use their artificial limbs and lead as normal life as possible. Technological advancement has led to wider range of modern orthopedic and prosthetic device. Fibre reinforced composites are most widely used for upper- and lower- limb prostheses due to their superior strength and excellent biocompatibility. In this review, the use of fibre reinforced composite materials for prostheses are viewed. This review article intended to present general information regarding the structure and function of type and application for current prosthetic socket design for the benefit of the reader. This paper also discussed the comfort measurement of residual limb on prosthetic socket.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abilash N, Sivapragash M (2013) Environmental benefits of eco-friendly natural fiber reinforced polymeric composite materials. Int J Appl Innov Eng Manag 2:53ā€“59

    Google ScholarĀ 

  • Andrysek J (2010) Lower-limb prosthetic technologies in the developing world: a review of literature from 1994ā€“2010. Prosthet Orthot Int 34:378ā€“398. doi:10.3109/03093646.2010.520060

    ArticleĀ  Google ScholarĀ 

  • Baars ECT, Geertzen JHB (2005) Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int 29:27ā€“37. doi:10.1080/17461550500069612

    ArticleĀ  Google ScholarĀ 

  • Berke GM, Fergason J, Milani JR et al (2010) Comparison of satisfaction with current prosthetic care in veterans and servicemembers from Vietnam and OIF/OEF conflicts with major traumatic limb loss. J Rehabil Res Dev 47:361ā€“371. doi:10.1682/JRRD.2009.12.0193

    ArticleĀ  Google ScholarĀ 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221ā€“274. doi:10.1016/S0079-6700(98)00018-5

    ArticleĀ  Google ScholarĀ 

  • Colombo G, Filippi S, Rizzi C, Rotini F (2010) A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Comput Ind 61:513ā€“523. doi:10.1016/j.compind.2010.03.008

    ArticleĀ  Google ScholarĀ 

  • Facoetti G, Gabbiadini S, Colombo G, Rizzi C (2010) Knowledge-based system for guided modeling of sockets for lower limb prostheses. Comput Aided Des Appl 7:723ā€“737. doi:10.3722/cadaps.2010.723-737

    Google ScholarĀ 

  • Faustini MC, Neptune RR, Crawford RH et al (2006) An experimental and theoretical framework for manufacturing prosthetic sockets for transtibial amputees. IEEE Trans Neural Syst Rehabil Eng 14:304ā€“310. doi:10.1109/TNSRE.2006.881570

    ArticleĀ  Google ScholarĀ 

  • Hagberg K, BrĆ„nemark R (2001) Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int 25:186ā€“194. doi:10.1080/03093640108726601

    ArticleĀ  Google ScholarĀ 

  • Han Y, Liu F, Dowd G, Zhe J (2015) A thermal management device for a lower-limb prosthesis. Appl Therm Eng 82:246ā€“252. doi:10.1016/j.applthermaleng.2015.02.078

    ArticleĀ  Google ScholarĀ 

  • Hasan NS, Sobuz HR, Auwalu AS, Tamanna N (2015) Investigation into the suitability of kenaf fibre to produce structural concrete. doi:10.5185/amlett.2015.5818

  • Irawan AP, Soemardi TP, Widjajalaksmi K, Reksoprodjo AHS (2011) Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int J Mech Mater Eng 6:46ā€“50

    Google ScholarĀ 

  • Jensen JS, Raab W (2007) Clinical field testing of vulcanized Jaipur rubber feet for trans-tibial amputees in low-income countries. Prosthet Orthot Int 31:105ā€“115. doi:10.1080/03093640600867233

    ArticleĀ  Google ScholarĀ 

  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371ā€“376. doi:10.1016/j.compositesa.2003.09.016

    ArticleĀ  Google ScholarĀ 

  • Kapp S, Miller JA (2002) Lower limb prosthetics. In: Care combat amputee, pp 297ā€“310. doi:http://dx.doi.org/10.1016/B978-081514601-8.50026-4

  • Kelly BM (2009) AAOS atlas of orthoses and assistive devices. JAMA J Am Med Assoc 301:2598ā€“2599

    Google ScholarĀ 

  • Klute GK, Rowe GI, Mamishev AV, Ledoux WR (2007) The thermal conductivity of prosthetic sockets and liners. Prosthet Orthot Int 31:292ā€“299. doi:10.1080/03093640601042554

    ArticleĀ  Google ScholarĀ 

  • Kramer A, Sardo K, Slocumb W et al (2015) Analysis of bamboo reinforced composites for use in orthotic and prosthetic application. American Academy of Orthotists & Prosthetists, Washington

    Google ScholarĀ 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856ā€“873

    ArticleĀ  Google ScholarĀ 

  • Lake C, Supan TJ (1997) The incidence of dermatological problems in the silicone suspension sleeve user. Am Acad Orthotists Prosthetists 9:97ā€“106

    Google ScholarĀ 

  • Mahjoub R, Yatim JM, Mohd Sam AR, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103ā€“113. doi:10.1016/j.conbuildmat.2014.01.036

    ArticleĀ  Google ScholarĀ 

  • Marks L, Michael J (2001) Science, medicine, and the future: artificial limbs. BMJ 323:732ā€“735. doi:10.1136/bmj.323.7315.732

    ArticleĀ  Google ScholarĀ 

  • Martinez-Villalpando EC, Weber J, Elliott G, Herr H (2008) Design of an agonist-antagonist active knee prosthesis. In: Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2008, pp 529ā€“534

    Google ScholarĀ 

  • Me RC, Ibrahim R, Tahir PM (2012) Natural based biocomposite material for prosthetic socket fabrication. Alam Cipta 5:27ā€“34

    Google ScholarĀ 

  • Manohar RN (2016) Study on use of natural fiber composites in prosthetic. Technical report, BIT-Pilani, pp 1ā€“21

    Google ScholarĀ 

  • Muller M, Staats TB, Leach M, Fothergill I (2007) Total surface bearing trans-tibial socket design impression techniques. J Proc 77

    Google ScholarĀ 

  • Nair A, Hanspal RS, Zahedi MS et al (2008) Analyses of prosthetic episodes in lower limb amputees. Prosthet Orthot Int 32:42ā€“49. doi:10.1080/03093640701610615

    ArticleĀ  Google ScholarĀ 

  • Peery JT, Klute GK, Blevins JJ, Ledoux WR (2006) A three-dimensional finite element model of the transtibial residual limb and prosthetic socket to predict skin temperatures. IEEE Trans Neural Syst Rehabil Eng 14:336ā€“343

    Google ScholarĀ 

  • Rahman HA (2009) Global climate change and its effects on human habitat and environment in Malaysia. Malaysian J Environ Manag 10:17ā€“32

    Google ScholarĀ 

  • RajÅ„ĆŗkovĆ” V, MichalĆ­kovĆ” M, BednarčƭkovĆ” L et al (2014) Biomechanics of lower limb prostheses. Procedia Eng 96:382ā€“391. doi:10.1016/j.proeng.2014.12.107

    ArticleĀ  Google ScholarĀ 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189ā€“1224. doi:10.1016/S0266-3538(00)00241-4

  • Rogers B, Bosker G, Faustini M et al (2008) Case report: variably compliant transtibial prosthetic socket fabricated using solid freeform fabrication. J Prosthetics Orthot 20:1ā€“7. doi:10.1097/JPO.0b013e31815ea839

    ArticleĀ  Google ScholarĀ 

  • Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87ā€“96

    ArticleĀ  Google ScholarĀ 

  • Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr Build Mater 123:15ā€“26. doi:10.1016/j.conbuildmat.2016.06.131

    ArticleĀ  Google ScholarĀ 

  • Scholz M-S, Blanchfield JP, Bloom LD et al (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Technol 71:1791ā€“1803. doi:10.1016/j.compscitech.2011.08.017

    ArticleĀ  Google ScholarĀ 

  • Sengeh DM, Herr H (2013) A variable-impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data. J Prosthet Orthosis 25:129ā€“137. doi:10.1097/JPO.0b013e31829be19c

    ArticleĀ  Google ScholarĀ 

  • Silver-Thorn MB (2004) Design of artificial limbs for lower extremity amputees. Stand Handb Biomed Eng Des 33:1ā€“30

    Google ScholarĀ 

  • Smith DG (2003) Transtibial amputations: successes and challenges. inMotion 13:57ā€“63

    Google ScholarĀ 

  • Strait E, McGimpsey G, Bradford T (2006) Limb prosthetics services and devices. White Pap, pp 1ā€“35

    Google ScholarĀ 

  • Uellendahl JE (1998) Prosthetic primer: materials used in prosthetics part I. inMotion 8:1ā€“48

    Google ScholarĀ 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259ā€“1264

    ArticleĀ  Google ScholarĀ 

  • Zheng YP, Mak AF, Leung AK (2001) State-of-the-art methods for geometric and biomechanical assessments of residual limbs: a review. J Rehabil Res Dev 38:487ā€“504

    Google ScholarĀ 

Download references

Acknowledgements

All authors acknowledge the Ministry of Higher Education for Exploratory Research Grant Scheme (ERGS) Grant No: 5527184 and Universiti Putra Malaysia, for supporting this research finding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nurhanisah, M.H., Saba, N., Jawaid, M., Paridah, M.T. (2017). Design of Prosthetic Leg Socket from Kenaf Fibre Based Composites. In: Jawaid, M., Salit, M., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49382-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49382-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49381-7

  • Online ISBN: 978-3-319-49382-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics