Skip to main content

Ensuring Food Security by Improving “Freshwater Use Efficiency” or by Farming the Seas

  • Chapter
  • First Online:
Water, Energy & Food Sustainability in the Middle East

Abstract

The present chapter discusses water use and food production in a freshwater challenged world with a growing human population. Proposed approaches to ensure food security are multifaceted but simple. First, we need to improve water use efficiency in all food production systems. Second, we need to develop technology to farm dry or semi-arid areas of the world. Third, we should integrate various fields of agriculture and animal husbandry to improve water productivity. Fourth, we should learn to go for proven local technologies rather than glamourous setups that do not work in rural settings. Fifth, we should seriously start working on farming the oceans. Last but not least, we need to invest in education and training. The common thread in all these suggestions is the use of aquaculture to improve food production efficiency. These proposals are not novel ideas but most governments have failed to implement even the simplest of suggestions. However, now that climate change adaptation plans are at the forefront of international discussions, maybe more countries will implement suggestions for water use efficiency improvement summarized in this chapter in order to better ensure sustainable food production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Rahman, S., Ghanawi, J., Owaied, M. K., Holail, H., Farajalla, N., Haidar, M., & Saoud, I. P. (2011). Improving water use efficiency in semi-arid regions through integrated aquaculture/agriculture. Journal of Applied Aquaculture, 23, 212–230.

    Article  Google Scholar 

  • Al-Ahmed, A. A. (2004). Effluents and water quality in Tilapia farms in Kuwait. In Aquaculture–an ecologically sustainable and profitable venture, Book of Abstracts of the Aquaculture 2004 Conference (WAS Conference), Honolulu, Hawaii, USA.

    Google Scholar 

  • Al-Jaloud, A. A., Hussain, G., Alsadon, A. A., Siddiqui, A. Q., & Al-Najada, A. (1993). Use of aquaculture effluent as a supplemental source of nitrogen fertilizer to wheat crop. Arid Soil Research and Rehabilitation, 7, 233–241.

    Article  CAS  Google Scholar 

  • Alcamo, J., Dronin, N., Endejan, M., Golubev, G., & Kirilenko, A. (2007). A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Global Environmental Changes, 17(3–4), 429–444.

    Article  Google Scholar 

  • Allan, G. L., Banens, L. B., & Fielder, S. (2001). Developing commercial inland saline aquaculture in Australia: Part 2, Resource Inventory and Assessment, FRDC Project No. 98/335, NSW Fisheries Final Report Series No. 31, NSW, Australia.

    Google Scholar 

  • Arlosoroff, S. (1995). Water resources management within regional cooperation in the Middle East. In: M. Haddad & E. Feitelson (Eds.), The proceedings of the second workshop on joint management of shared aquifers (pp 1–31).

    Google Scholar 

  • Azevedo, C. M. S. B. (1998). Nitrogen transfer using 15 N as a tracer in an integrated aquaculture and agriculture system. Ph.D. dissertation, University of Arizona, Tucson, 105.

    Google Scholar 

  • Barnett, T., Adam, J., & Lettenmaier, D. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303–309.

    Article  CAS  Google Scholar 

  • Benemann, J. R. (2008). Opportunities and challenges in algae biofuels production [online]. In J. R. Benemann (Ed.), Line with Algae World 2008, 15. [cited 14 October 2011]. ww.futureenergyevents.com/algae/whitepaper/algae_positionpaper.pdf

    Google Scholar 

  • Berg, H., Michélsen, P., Troell, M., Folke, C., & Kautsky, N. (1996). Managing aquaculture for sustainability in tropical Lake Kariba, Zimbabwe. Ecological Economics, 18, 141–159.

    Article  Google Scholar 

  • Billard, R., & Servrin-Reyssac, J. (1992). The negative impacts of pond fish farming on the environment. In G. Barnabé & P. Kestemont (Eds.), Production, environment and quality (pp. 17–29). Oostende: European Aquaculture Society (EAS).

    Google Scholar 

  • Boyd, C. E., & Thunjai, T. (2003). Concentrations of major ions in waters of inland shrimp farms in China, Ecuador, Thailand, and the United States. Journal of the World Aquaculture Society, 34, 524–532.

    Article  Google Scholar 

  • Brummett, R. E. (1997). Farming fish to save water. Bioscience, 47, 402.

    Article  Google Scholar 

  • Brummett, R. E. (2007) Comparative analysis of the environmental costs of fish farming and crop production in arid areas. In D. M. Bartley, C. Brugère, D. Soto, P. Gerber & B. Harvey (Eds.), Comparative assessment of the environmental costs of aquaculture and other food production sectors: Methods for meaningful comparisons (pp 221–228). FAO/WFT Expert Workshop, Vancouver, Canada, 24–28 April 2006. FAO Fisheries Proceedings No. 10, Rome.

    Google Scholar 

  • Cajas-Canol, L., & Moffitt, C. M. (2008, September 10). Comparing footprints of trout and beef production. Journal of the World Aquaculture Society.

    Google Scholar 

  • Collins, A., & Russell, B. (2003). Inland prawn farming trail in Australia. Pond Study Tests Penaeus monodon Performance in Low Salinity Ground Water, Global Aquaculture Advocate, 74–75.

    Google Scholar 

  • Crespi, V., & Lovatelli, A. (2011). Aquaculture in desert and arid lands. Development constraints and opportunities. FAO Technical Workshop, Hermosillo, Mexico, 6–9 July 2010.

    Google Scholar 

  • Cruz, E. M., Al-Ameeri, A. A., Al-Ahmed, A. K., & Ridha, M. T. (2000). Partial budget analysis of Nile Tilapia Oreochromis niloticus cultured within an existing agricultural farm in Kuwait. Asian Fisheries Science, 3, 97–305.

    Google Scholar 

  • Davis, D. A., Boyd, C. E., Rouse, D. B., & Saoud, I. P. (2005). Effects of potassium, magnesium, and age on growth and survival of Litopenaeus vannamei post-larvae reared in inland low salinity well waters in West Alabama. Journal of the World Aquaculture Society, 36(3), 403–406.

    Google Scholar 

  • Diliman, J. (1989). Water rights in the occupied territories. Journal of Palestine Studies, 19, 46–48.

    Article  Google Scholar 

  • D’Silva, A. M., & Maughan, O. E. (1994). Multiple use of water: Integration of fish culture and tree growing. Agroforestry System, 26, 1–7.

    Article  Google Scholar 

  • D’Silva, A. M., & Maughan, O. E. (1996). Optimum density of Red Tilapia Oreochromis mossambicus x O. urolepishornorum in a pulsed-flow culture system. Journal of the World Aquaculture Society, 27, 126–129.

    Article  Google Scholar 

  • Doll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research, 38(4), 1037–1046.

    Article  Google Scholar 

  • Doroudi, M. S., Fielder, D. S., Allan, G. L., & Webster, G. K. (2006). Combined effects of salinity and potassium concentration on Juvenile Mulloway (Argyrosomus japonicus, Temminck and Schlegel) in inland saline groundwater. Aquaculture Research, 37, 1034–1039.

    Article  Google Scholar 

  • Doroudi, M. S., Webster, G. K., Allan, G. L., & Fielder, D. S. (2007). Survival and growth of silver perch (Bidyanus bidyanus), a salt-tolerant freshwater species, in inland saline groundwater from Southwestern New South Wales, Australia. Journal of the World Aquaculture Society, 38, 314–317.

    Article  Google Scholar 

  • Droogers, P. (2004). Adaptation to climate change to enhance food security and preserve environmental quality: Example for Southern Sri Lanka. Agricultural Water Management, 66(1), 15–33.

    Article  Google Scholar 

  • Droogers, P., & Aerts, J. (2005). Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins. Physics and Chemistry of the Earth Parts A/B/C, 30(6–7), 339–346.

    Article  Google Scholar 

  • Engle, C. R., Pomerleau, S., Fornshell, G., Hinshaw, J. M., Sloan, D., & Thompson, S. (2005). The economic impact of proposed effluent treatment options for production of trout Oncorhynchus mykiss in flow-through systems. Aquacultural Engineering, 32, 303–323.

    Article  Google Scholar 

  • Escobar, J., Lora, E., Venturini, O., Yáñez, E., Castillo, E., & Almazan, O. (2009). Biofuels: Environment, technology and food security. Renewable and Sustainable Energy Reviews, 13(6–7), 1275–1287.

    Article  CAS  Google Scholar 

  • FAO. (2009). How to feed the World in 2050. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Fielder, D. S., Bardsleya, W. J., & Allan, G. L. (2001). Survival and growth of Australian snapper, Pagrus auratus, in saline groundwater from inland New South Wales, Australia. Aquaculture, 201, 73–90.

    Article  Google Scholar 

  • Fielder, D.S., Raizada, S., Chadha, N. K., & Allan, G. L. (2008, August) Development of hatchery and grow out technology for Macrobrachium rosenbergii using saline groundwater in Northern India (pp , 3–6). Skretting Australasian Aquaculture 2008, Brisbane, Australia.

    Google Scholar 

  • Fischer, G., Tubiello, F., van Velthuizen, H., & Wiberg, D. (2007). Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technological Forecasting and Society Change, 74(7), 1083–1107.

    Article  Google Scholar 

  • Fishelson, L., & Loya, Y. (1969). Experiments on rearing Tilapia-hybrids in brackish water pond near the dead sea. Limnology, 17, 602–610.

    Google Scholar 

  • Forsberg, J. A., & Neill, W. H. (1997). Saline groundwater as an aquaculture medium: Physiological studies on the red drum, Sciaenops ocellatus. Environmental Biology of Fishes, 49, 19–128.

    Article  Google Scholar 

  • Forsberg, J. A., Dorsett, P. W., & Neill, W. H. (1996). Survival and growth of red drum Sciaenops ocellatus in saline groundwaters of West Texas, USA. Journal of the World Aquaculture Society, 27, 462–474.

    Article  Google Scholar 

  • Ghate, S. R., & Burtle, G. J. (1993). Water quality in channel catfish ponds intermittently drained for irrigation. In J. K. Wang (Ed.), Techniques for modern aquaculture (pp. 177–186). St. Joseph: ASAE pub..

    Google Scholar 

  • Gleick, P. (1992). Water and conflict. In The workshop on environmental change, water resources and international conflict, University of Toronto, June 1991.

    Google Scholar 

  • Goldstein, L., & Forster, R. P. (1970). Nitrogen metabolism in fishes. In J. W. Campbell (Ed.), Comparative biochemistry of nitrogen metabolism, The vertebrates (Vol. 2, pp. 495–518). New York: Academic Press.

    Google Scholar 

  • Haddad, M., & Mizyed, N. (1996). Water resources in the middle east: Conflict and solutions. In T. Allan (Ed.), The proceedings of the workshop on water peace and the middle east: Negotiating resources of the Jordan River Basin. New York: Tauris Academic Studies.

    Google Scholar 

  • Haddadin, M. (1989, April 4–6). Water resources in the Arab World, and its strategic importance. In The proceedings of the conference on water resources in the Arab World, and its strategic importance. Amman: Jordan University.

    Google Scholar 

  • Hamdy, A., & Lacirignola, C. (1999, March 1–5) Mediterranean water resources: Major challenges towards the 21st century. In International seminar on: Mediterranean water resources: Major challenges towards the 21st century, Cairo (Egypt).

    Google Scholar 

  • Hanjra, M., & Qureshi, M. (2010). Global Water Crisis and Future Food Security in an Era of Climate Change. Food Policy, 35(5), 365–377.

    Article  Google Scholar 

  • Hochman, E., & Brill, E. (1994). Fish production in a super-intensive controlled system in the Israeli Desert. In Y. C. Shang, P. S. Leung, C. S. Lee, M. S. Su & I. C. Liao (Eds.), Socioeconomics of aquaculture. Tungkang Marine Laboratory Conference Proceedings (Vol. 4, pp. 281–295).

    Google Scholar 

  • Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management, 21, 35–48.

    Article  Google Scholar 

  • Ingram, B. A., McKinnon, L. J., & Gooley, G. J. (2002). Growth and survival of selected aquatic animals in two saline groundwater evaporation basins: An Australian case study. Aquaculture Research, 33, 425–436.

    Article  Google Scholar 

  • IPCC. (2007). Climate change 2007: Synthesis report. In: R. K. Pachauri & A. Reisinger (Eds.), Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, IPCC, Geneva, Switzerland.

    Google Scholar 

  • Jain, A. K., Kumar, G., & Mukherjee, S. C. (2006). Survival and growth of early Juveniles of Barramundi, Lates calcarifer (Bloch, 1790) in inland saline groundwater. Journal of Biology Research, 5, 93–97.

    Google Scholar 

  • Joshi, P. K., & Tyagi, N. K. (1994). Salt affected and waterlogged soil in India: A review. In: M. Svendsen & A. Gulati (Eds.), Strategic change in Indian irrigation (pp. 237–252). New Delhi/Washington, DC: ICAR/IFPRI.

    Google Scholar 

  • Kautsky, N., Berg, H., Folke, C., Larsson, J., & Troell, M. (1997). Ecological footprint assessment of resource use and development in Shrimp and Tilapia aquaculture. Aquaculture Research, 28, 753–766.

    Article  Google Scholar 

  • Kolkovski, S., Simon, Y., Hulata, G., & Ayaril, N. (2011). Desert aquaculture. In J. S. Lucas & P. C. Southgate (Eds.), Aquaculture: Farming aquatic animals and plants (2nd ed., pp. 107–125). Oxford: Wiley.

    Google Scholar 

  • Lewis, W. M., Yoop, J. H., Schramm, J., & Brandesburg, H. L. (1978). Use of hydroponics to maintain quality of recirculated water in fish culture system. Transactions of the American Fisheries Society, 107, 92–99.

    Article  Google Scholar 

  • Lovell, T. (1989). Nutrition and feeding of fish. New York: AVI, Van Nostrand Reinhold.

    Book  Google Scholar 

  • Marshall, W. S., & Grosell, M. (2006). Ion transport, osmoregulation, and acid–base balance. In D. H. Evans & J. B. Claiborne (Eds.), The physiology of fishes (pp. 177–230). Boca Raton: CRC Press.

    Google Scholar 

  • McIntosh, D., & Fitzsimmons, K. (2003). Characterization of effluent from an inland, low salinity shrimp farm: what contribution could this water make if used for irrigation? Aquacultural Engineering, 27, 147–156.

    Article  Google Scholar 

  • McMichael, A., Powles, J., Butler, C., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. The Lancet, 370(9594), 1253–1263.

    Article  Google Scholar 

  • McMurtry, M. R., Nelson, P. V., Sanders, D. C., & Hodges, L. (1990). Sand culture of vegetables using recirculated aquaculture effluents. Applied Agricultural Research, 5(4), 280–284.

    Google Scholar 

  • McMurtry, M. R., Sanders, D. C., Nelson, P. V., & Nash, A. (1993). Mineral nutrient concentration and uptake by tomato irrigated with recirculating aquaculture water as influenced by quantity of fish waste products supplied. Journal of Plant Nutrition, 16, 407–419.

    Article  CAS  Google Scholar 

  • McNevin, A. A., Boyd, C. E., Silapajarn, O., & Silapajarn, K. (2004). Ionic supplementation of pond waters for inland culture of marine shrimp. Journal of the World Aquaculture Society, 35, 460–467.

    Article  Google Scholar 

  • Mourad, N., Kreydiyyeh, S., Ghanawi, J., & Saoud, I. P. (2012). Aquaculture of marine fish in inland low salinity well water: Potassium is not the only limiting element. Fisheries and Aquaculture Journal, 42, 1–12.

    Google Scholar 

  • Naegal, L. C. A. (1977). Combined production of fish and plants in recirculating water. Aquaculture, 10, 17–24.

    Article  Google Scholar 

  • Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405, 1017–1024.

    Google Scholar 

  • NRC. (1983). Nutrient requirements of warm-water fishes and shellfishes (Rev. edn.). Washington, DC: National Research Council, National Academy Press.

    Google Scholar 

  • Olah, J., & Sinha, V. R. P. (1986). Energy costs in carp farming systems. NACA/WP/86/35. Bangkok: Network of Aquaculture Centres in Asia.

    Google Scholar 

  • Olson, G. L. (1992). The use of trout manure fertilizer for Idaho crops. In J. Blake, J. Donald & W. Magette (Eds.), National livestock, poultry and aquaculture waste management (pp. 198–205). St. Joseph: American Society of Agricultural Engineers, ASAE Pub. 03–92.

    Google Scholar 

  • Palada, M., Cole, W., & Crossman, S. (1999). Influence of effluents from intensive aquaculture and sludge on growth and yield of bell peppers. Journal of Sustainable Agriculture, 14(4), 85–103.

    Article  Google Scholar 

  • Pant, J., Demaine, H., & Edwards, P. (2005). Bio-resource flow in integrated agriculture-aquaculture systems in a tropical monsoonal climate: A case study in Northeast Thailand. Agricultural Systems, 83(2), 203–219.

    Article  Google Scholar 

  • Parker, D., Anouti, A., & Dickenson, G. (1990). Integrated fish/plant production system: Experimental results. ERL report 90-34 (pp. 12). Tucson: University of Arizona.

    Google Scholar 

  • Partridge, G. J., & Creeper, J. (2004). Skeletal myopathy in Juvenile Barramundi, Lates calcarifer (Bloch), cultured in potassium-deficient saline groundwater. Journal of Fish Diseases, 27, 523–530.

    Article  CAS  Google Scholar 

  • Partridge, G. J., & Furey, A. (2002, September 16–20). Culturing snapper in Dumbleyung – A case study for determining the potential for inland saline groundwater to grow marine fish in Western Australia. In 8th national conference and workshop on the Productive Use and Rehabilitation of Saline Lands (PURSL), Fremantle, Western Australia, Australia, Promaco, Perth, Australia.

    Google Scholar 

  • Partridge, G. J., & Lymbery, A. J. (2008). The effect of salinity on the requirement for potassium by Barramundi (Lates calcarifer) in saline groundwater. Aquaculture, 278, 164–170.

    Article  CAS  Google Scholar 

  • Partridge, G. J., Sarre, G. A., Ginbey, B. M., Kay, G. D., & Jenkins, G. I. (2006). Finfish production in a static, inland saline water body using a Semi-Intensive Floating Tank System (SIFTS). Aquacultural Engineering, 35, 109–121.

    Article  Google Scholar 

  • Piemental, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., Barsky, T., Tariche, S., Schreck, J., & Alpert, S. (1997) Water resources: Agriculture, the environment and society. Bioscience, 47, 97–106.

    Google Scholar 

  • Prangnell, D. I., & Fotedar, R. (2005). The effect of potassium concentration in inland saline water on the growth and survival of the Western King Shrimp, Penaeus latisulcatus Kishinouye, 1896. Journal of Applied Aquaculture, 17, 19–34.

    Article  Google Scholar 

  • Pruginin, Y., Fishelson, L., & Koren, A. (1988). “Intensive Tilapia farming in brackish water from an Israeli desert aquifer. In Second international symposium on Tilapia in aquaculture (pp. 75–81).

    Google Scholar 

  • Rakocy, J. E., Hargreaves, J. A., & Bailey, D. S. (1993). Nutrient accumulation in a recirculating aquaculture system integrated with vegetable hydroponics. In J. K. Wang (Ed.), Techniques for modern aquaculture (pp. 148–158). St. Joseph: ASAE Publication 02–93.

    Google Scholar 

  • Rees, W. E. (1992). Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environment and Urbanization, 4, 121–130.

    Article  Google Scholar 

  • Rosenzweig, C., & Parry, M. (1994). Potential impact of climate change on world food supply. Nature, 367, 133–138.

    Article  Google Scholar 

  • Roy, L. A., Davis, D. A., Saoud, I. P., & Henry, R. P. (2007). Effects of varying levels of aqueous potassium and magnesium on survival, growth, and respiration of the pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters. Aquaculture, 262(2), 461–469.

    Article  CAS  Google Scholar 

  • Roy, L. A., Davis, D. A., Nguyen, T. N., & Saoud, I. P. (2009). Supplementation of chelated magnesium to diets of the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters of west Alabama. Journal of the World Aquaculture Society, 40(2), 248–254.

    Article  Google Scholar 

  • Saoud, I. P., & Davis, D. A. (2005). Effects of betaine supplementation to feeds of shrimp reared at extreme salinities. North American Journal of Aquaculture, 67, 351–353.

    Article  Google Scholar 

  • Saoud, I. P., Davis, D. A., & Rouse, D. B. (2003). Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217, 373–383.

    Article  Google Scholar 

  • Saoud, I. P., Roy, L. A., & Davis, D. A. (2007). Chelated potassium and arginine supplementation in diets of pacific white shrimp reared in low-salinity waters of West Alabama. North American Journal of Aquaculture, 69, 265–270.

    Article  Google Scholar 

  • Seawright, D. E. (1993). A method for investigating nutrient dynamics in integrated aquaculture-hydroponics system. In: J. K. Wang (Ed.), Techniques for modern aquaculture (pp. 137–147). St. Joseph: ASAE Publication 02–93.

    Google Scholar 

  • Shakeeb-Ur, R., Jain, A. K., Reddy, A. K., Kuman, G., & Raju, K. D. (2005). Ionic manipulation of inland saline groundwater for enhancing survival and growth of Penaeus monodon (Fabricius). Aquaculture Research, 36, 1149–1156.

    Article  Google Scholar 

  • Smith, M., Veth, P., Hiscock, P., & Wallis, L. A. (2008). Global desert in perspective. In M. Smith, P. Veth & P. Hiscock (Eds.), Desert peoples: Archaeological perspectives (pp. 1–14). Blackwell Publishing.

    Google Scholar 

  • Spash, C. (2007). The economics of climate change impacts à la Stern: Novel and Nuanced or rhetorically restricted? Ecological Economics, 63(4), 706–713.

    Article  Google Scholar 

  • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock’s long shadow: Environmental issues and options. Livestock Environment and Development Initiative. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Stockholm Environment Institute (SEI). (1997). Comprehensive assessment of the freshwater resources of the World.

    Google Scholar 

  • Tucker, V. A. (1969). The energetics of bird flight. Scientific American, 220(5), 70–78.

    Article  CAS  Google Scholar 

  • United Nations Convention to Combat Desertification (UNCCD). (2007). Desertification, exacerbated by climate change, represents one of the greatest environmental challenges of our times [online]. UNCCD thematic fact sheet series No. 1. Climate Change and Desertification. [cited 14 October 2011]. www.unccd.int/documents/Desertificationandclimatechange.pdf

  • Water and Environmental Studies Center (WESC). (1995). Middle east regional study on water supply and demand development. Phase I study report submitted to the German Agency for Technical Cooperation (GTZ), The An-Najah National University, Nablus.

    Google Scholar 

  • Watten, B. J., & Buch, R. L. (1984). Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in small-scale recirculating water system. Aquaculture, 41, 271–283.

    Article  Google Scholar 

  • Wackernagel, M., & Rees, W. E. (1996). Our ecological footprint: Reducing human impact on the Earth. Gabriola Island: New Society Publishers.

    Google Scholar 

  • Zweig, R. D. (1986, May–June). An integrated fish culture hydroponics vegetable production system. Aquaculture Magazine, pp. 34–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Patrick Saoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saoud, I.P. (2017). Ensuring Food Security by Improving “Freshwater Use Efficiency” or by Farming the Seas. In: Murad, S., Baydoun, E., Daghir, N. (eds) Water, Energy & Food Sustainability in the Middle East. Springer, Cham. https://doi.org/10.1007/978-3-319-48920-9_15

Download citation

Publish with us

Policies and ethics