Skip to main content

Growth Pattern and Size-Dependent Properties of Lead Chalcogenide Nanoclusters

  • Chapter
  • First Online:
Clusters

Abstract

In this chapter we review the structural evolution of lead-chalcogenide (PbX) n (X = S, Se, and Te; n = 1–32) nanoclusters and how various properties of these clusters change with increasing cluster size. We first give an overview of different experimental techniques that are used to synthesize or generate lead sulfide clusters. The growth mechanism and size-dependent electronic structure and stabilities of these clusters obtained from density functional theory (DFT) based computational studies are also discussed in detail. The importance of the synergy between computational study and experiments is demonstrated by focusing on lead sulfide clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60:535–537

    Article  CAS  Google Scholar 

  2. Ekimov AI, Efros L, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56:921–924

    Article  CAS  Google Scholar 

  3. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solutions. J Chem Phys 79:1086

    Article  CAS  Google Scholar 

  4. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the exitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673

    Article  CAS  Google Scholar 

  5. Wang C, Wehrenberg BL, Woo CY, Guyot-Sionnest P (2004) Light emission and amplification in charged CdSe quantum dots. J Phys Chem B 108(26):9027–9031

    Article  CAS  Google Scholar 

  6. Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Size-dependent properties of CdSe quantum dots. Phys Rev B 71:201307(R)

    Article  Google Scholar 

  7. Al-Salim N, Young AG, Tilley RD, McQuillan AJ, Xia J (2007) Synthesis of CdSe nanocrystals in coordinating and noncoordinating solvents: Solvent’s role in evolution of the optical and structural properties. Chem Mater 19(21):5185–5193

    Article  CAS  Google Scholar 

  8. Kilina SV, Kilin DS, Prezhdo OV (2009) Breaking the phonon bottleneck in PbSe and CdSe Quantum dots: Time-domain density functional theory of charge carried relaxation. ACS Nano 3(1):93–99

    Article  CAS  Google Scholar 

  9. Kilina SV, Velizhabin KA, Ivanov S, Prezhdo OV, Tretiak S (2012) Surface Ligands increase photoexcitation relaxation rates in CdSe quantum dots. ACS Nano 6(7):6515–6524

    Article  CAS  Google Scholar 

  10. Rosetti R, Hull R, Gilson JM, Brus LE (1985) Hybrid electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites. J Chem Phys 83:1406

    Article  Google Scholar 

  11. Nozik AJ, Williams F, Nenadovic MT, Rajh T, Micic OI (1985) Size quantization in small semiconductor particles. J Phys Chem 89:397–399

    Article  Google Scholar 

  12. Nenadovic MT, Comor MI, Vasic V, Micic OI (1990) Transient bleaching of small PbS colloids. influence of surface properties. J Phys Chem 94:6390–6396

    Article  CAS  Google Scholar 

  13. Wu S, Zeng H, Schelly ZA (2005) Preparation of ultrasmall, uncapped PbS quantum dots via electroporation of vesicles. Langmuir 21:686–691

    Google Scholar 

  14. Cao H, Wang G, Zhang S, Zhang X (2006) Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 17:3280–3287

    Article  CAS  Google Scholar 

  15. Peterson JJ, Krauss TD (2006) Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett 6:510–514

    Article  CAS  Google Scholar 

  16. Peterson JJ, Huang L, Delerue C, Allan G, Krauss TD (2007) Uncovering forbidden optical transitions in PbSe nanocrystals. Nano Lett 7(12):3827–3831

    Article  CAS  Google Scholar 

  17. Moreels I, Fritzinger B, Martins JC, Hens Z (2008) Surface chemistry of Colloidal PbSe nanocrystals. J Am Chem Soc 130(45):15081–15086

    Article  CAS  Google Scholar 

  18. Koupanou E, Ahualli S, Glatter O, Delgado A, Krumeich F, Leontidis E (2010) Stabilization of lead sulfide nanoparticles by polyamines in aqueous solutions. A structural study of dispersions. Langmuir 26(22):16909–16920

    Article  CAS  Google Scholar 

  19. Cademartiri L, Montanari E, Calestani G, Migliori A, Guagliardi A, Ozin GA (2006) Size-dependent extinction coefficients of PbS quantum dots. J Am Chem Soc 128:10337

    Article  CAS  Google Scholar 

  20. Sykora M, Koposov AY, McGuire JA, Schulze RK, Tretiak O, Pietryga JM, Klimov VI (2010) Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 4(4):2021–2034

    Article  CAS  Google Scholar 

  21. Wang Y, Herron N (1987) Optical properties of cadmium sulfide and lead(II) sulfide clusters encapsulated in zeolites. J Phys Chem 91:257–260

    Article  CAS  Google Scholar 

  22. Moller K, Bein T, Herron N, Mahler W, Wang Y (1989) Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural analysis with x-ray absorption spectroscopy. Inorg Chem 28:2914–2919

    Article  CAS  Google Scholar 

  23. Krauss TD, Wise FW (1997) Coherent acoustic phonons in a semiconductor quantum dot. Phys Rev Lett 79:5102

    Article  CAS  Google Scholar 

  24. Okuno T, Lipovskii AA, Ogawa T, Amagai I, Masumoto Y (2000) Strong confinement of PbSe and PbS quantum dots. J Lumin 491:87–89

    Google Scholar 

  25. Bakueva L, Musikhin S, Hines MA, Chang TWF, Tzolov M, Scholes GD, Sargent EH (2003) Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl Phys Lett 82:2895–2897

    Article  CAS  Google Scholar 

  26. McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142

    Article  CAS  Google Scholar 

  27. Deen GR, Hara M (2005) Preparation and Characterization of PbS nanoclusters made by using a powder method on ionomers. Polymer 46:10883

    Article  CAS  Google Scholar 

  28. Na YJ, Kim HS, Park J (2008) Morphology-controlled lead selenide nanocrystals and their insitu growth on carbon nanotubes. J Phys Chem C 112(30):11218–11226

    Article  CAS  Google Scholar 

  29. Wise FW (2000) Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res 33:773–780

    Article  CAS  Google Scholar 

  30. Kane RS, Cohen RE, Silbey R (1996) Theoretical study of the electronic structure of PbS nanoclusters. J Phys Chem 100:7928–7932

    Article  CAS  Google Scholar 

  31. Kang K, Daneshvar K, Tsu R (2004) Size dependence saturation and absorption of PbS quantum dots. Microelectron J 35:629–633

    Article  CAS  Google Scholar 

  32. Wundke K, Potting S, Auxier J, Schulzgen A, Peyghambarian N, Borrelli NF (2000) PbS quantum-dot-doped glasses for ultrashort-pulse generation. Appl Phys Lett 76:10–12

    Article  CAS  Google Scholar 

  33. Brus LE (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560

    Article  CAS  Google Scholar 

  34. Marino CP, Guerin JD, Nixon ER (1974) Infrared spectra of some matrix-isolated germanium, tin, and lead chalcogenides. J Mol Spectrosc 51:160–165

    Article  CAS  Google Scholar 

  35. Teichman RA, Nixon ER (1975) Vibronic spectra of matrix-isolated lead sulfide. J Mol Spectrosc 54:78–86

    Article  CAS  Google Scholar 

  36. Colin R, Drowart J (1962) Thermodynamic study of tin sulfide and lead sulfide using a mass spectrometer. J Chem Phys 37:1120–1125

    Article  CAS  Google Scholar 

  37. Saito Y, Mihama K, Noda T (1983) Binary compound clusters formed by free jet expansion. Jpn J Appl Phys 22:L179

    Article  Google Scholar 

  38. Saito Y, Suzuki M, Noda T, Mihama K (1985) Study on fragmentation of ionized atom-clusters by time-of-flight mass spectrometry. Jpn J Appl Phys 25:L627

    Article  Google Scholar 

  39. Fancher CA, de Clercq HL, Bowen KH (2002) Photoelectron spectroscopy of PbS. Chem Phys Lett 366:197–199

    Article  CAS  Google Scholar 

  40. Zeng H, Schelly ZA, Ueno-Noto K, Marynick DS (2005) Density functional study of the structures of lead sulfide clusters (PbS) n (n = 1 − 9). J Phys Chem A 109:1616–1620

    Article  CAS  Google Scholar 

  41. He J, Liu C, Li F, Sa R, Wu K (2008) Size-dependence of stability and optical properties of lead sulfide clusters. Chem Phys Lett 457:163–168

    Article  CAS  Google Scholar 

  42. Koirala P, Kiran B, Kandalam AK, Fancher CA, de Clercq HL, Bowen KH (2011) Structural evolution and stabilities of neutral and anionic clusters of lead sulfide: joint anion photoelectron and computational studies. J Chem Phys 135:134311

    Article  Google Scholar 

  43. Kiran B, Kandalam AK, Rallabandi R, Koirala P, Li X, Tang X, Wang Y, Fairbrother H, Gantefoer G, Bowen K (2012) (PbS)32: a baby crystal. J Chem Phys 136:024317

    Article  CAS  Google Scholar 

  44. Gupta SK, He H, Banyai D, Kandalam AK, Pandey R (2013) Electron tunneling characteristics of a cubic quantum dot, (PbS)32. J Chem Phys 139:244307

    Article  Google Scholar 

  45. Argeri M, Fraccarollo A, Grassi F, Marchese L, Cossi M (2011) Density Functional Theory modeling of PbSe nanoclusters: effect of surface passivation on shape and composition. J Phys Chem C 115:11382–11389

    Article  CAS  Google Scholar 

  46. Zeng Q, Shi J, Yang M, Wang F, Chen J (2013) Structures and optical absorptions of PbSe clusters from ab initio calculations. J Chem Phys 139:094305

    Article  Google Scholar 

  47. Mulugeta Y, Woldeghebriel H (2014) Structural evolution and stabilities of (PbTe) n (n = 1–20) clusters. Comput Theor Chem 1039:40

    Article  CAS  Google Scholar 

  48. Mulugeta Y, Woldeghebriel H (2014) Size effects on the structural and electronic properties of lead telluride clusters. J Quant Chem, Int. doi:10.1002/qua.24817

    Google Scholar 

  49. Rosetti R, Hull R, Gibson JM, Brus LR (1985) Hybrid Electronic properties between the molecular and solid state limits: lead sulfide and silver halide crystallites. J Chem Phys 83:1406–1410

    Article  Google Scholar 

  50. Wang Y, Suna A, Mahler W, Kasowski R (1987) PbS in polymers. From molecules to bulk solids. J Chem Phys 87:7315–7322

    Article  CAS  Google Scholar 

  51. Sankaran Y, Cummins CC, Schrock RR, Cohen RE, Silbey RJ (1990) Small PbS clusters prepared via ROMP block copolymer technology. J Am Chem Soc 112:6858–6859

    Article  CAS  Google Scholar 

  52. Kane RS, Cohen RE, Silbey R (1996) Synthesis of PbS nanoclusters within block copolymer nanoreactors. Chem Mater 8:1919–1924

    Article  CAS  Google Scholar 

  53. Yue J, Cohen RE (1994) Nanoreactors for inorganic cluster synthesis. Supramol Sci 1:117–120

    Article  CAS  Google Scholar 

  54. Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–255

    Article  CAS  Google Scholar 

  55. Noda Y, Masumoto K, Ohba S, Saito Y, Toriumi K, Iwata Y, Shibuya I (1987) Temperature dependence of atomic thermal parameters of lead chalcogenides, PbS, PbSe, and PbTe. Acta Cryst C 43:1443

    Article  Google Scholar 

  56. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508

    Article  CAS  Google Scholar 

  57. Delley B (2000) From molecules to solids with DMol3 approach. J Chem Phys 113:7756 (DMol3 is available as part of Materials Studio)

    Google Scholar 

  58. Perdew JP (1991) Generalized gradient approximations for exchange and correlation: A look backward and forward. Physica B 172:1–6

    Article  CAS  Google Scholar 

  59. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66:155125

    Article  Google Scholar 

  60. Sun Q, Rao BK, Jena P, Stolcic Kim Y, Gantefor G, Castleman A (2004) Appearance of bulk properties in small tungsten oxide clusters. J. Chem. Phys. 121:9417–9422

    Article  CAS  Google Scholar 

  61. Catlow CRA, Bromley ST, Hamad S, Mora-Fonz M, Sokol AA, Woodley SM (2010) Phys Chem Chem Phys 12:786

    Article  CAS  Google Scholar 

  62. Veliah S, Pandey R, Li YS, Newsam JM, Vessal B (1995) Density functional study of structural and electronic properties of cube-like MgO clusters. Chem Phys Lett 235(1–2):53–57

    Article  CAS  Google Scholar 

  63. Glaus S, Calzaferri G (1999) Silver chloride clusters and surface states. J Phys Chem B 103:5622

    Article  CAS  Google Scholar 

  64. Wei SH, Zunger A (1997) Electronic and structural anomalies in lead chalcogenides. Phys Rev B 55:13605

    Article  CAS  Google Scholar 

  65. Albanesi EA, Okoye CMI, Rodrigues CO, Peltzer y Blanca EL, Petukhov AG (2000) Electronic structure, structural properties, and dielectric functions of IV-VI semiconductors: PbSe and PbTe. Phys Rev B 66:16589

    Article  Google Scholar 

  66. Hummer K, Gruneis A, Kresse G (2007) Structural and electronic properties of lead chalcogenides from first principles. Phys Rev B 75:195211

    Article  Google Scholar 

  67. Ekuma CE, Singh DJ, Jarrell M (2012) Optical properties of PbTe and PbSe. Phys Rev B 85:085205

    Article  Google Scholar 

  68. Franceschett A (2008) Structural and electronic properties of PbSe nanocrystals from first principles. Phys Rev B 78:075418

    Article  Google Scholar 

  69. An JM, Franceschetti A, Dudiy SV, Zunger A (2006) The peculiar electronic structure of PbSe quantum dots. Nano Lett 6:2728–2735

    Article  CAS  Google Scholar 

  70. Kamisaka H, Kilina SV, Yamashita K, Prezhdo OV (2008) Ab initio study of temperature and pressure dependence of energy and phonon-induced dephasing of electronic excitations in CdSe and PbSe quantum dots. J Phys Chem C 112:7800–7808

    Article  CAS  Google Scholar 

  71. Gai Y, Peng H, Li J (2009) Electronic properties of nonstoichiometric PbSe quantum dots from first principles. J Phys Chem C 113:21506

    Article  CAS  Google Scholar 

  72. Bartnik AC, Efros Al L, Koh W-K, Murray CB, Wise FW (2010) Electronic states and optical properties of PbSe nanorods and nanowires. Phys Rev B 82:195313

    Article  Google Scholar 

  73. Davlen (1969) A review of the semiconductor properties of PbTe, PbSe, PbS, and PbO. Infrared Phys 9:141

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge all students and collaborators who contributed to our original papers on the lead-sulfide nanoclusters: Pratik Koirala, Rameshu Rallabandi, Xiang Li, Xin Tang, Yi Wang, Gerd Gantefoer, and Kit H. Bowen. The authors (AFG, WHS, and AKK) are thankful to West Chester University, College of Arts and Sciences for supporting part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Kandalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gill, A.F., Sawyer, W.H., Salavitabar, K., Kiran, B., Kandalam, A.K. (2017). Growth Pattern and Size-Dependent Properties of Lead Chalcogenide Nanoclusters. In: Nguyen, M., Kiran, B. (eds) Clusters. Challenges and Advances in Computational Chemistry and Physics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-48918-6_9

Download citation

Publish with us

Policies and ethics