Skip to main content

Abstract

The interaction of tourmaline mineral powders with de-ionized water and seawater and the inhibiting growth activity of marine bacteria and diatoms were investigated. The results show that negative ion release rate of tourmaline powders are somewhat reduced immersing in seawater for 24h. When tourmaline powders is added into de-ionized water or seawater, electric conductivity of the de-ionized water is increased with time under the static state, their pH tend to be 7, solution oxygen of de-ionized water keeps to be about 139% of the initial 4.9mg/L and solution oxygen of seawater tends to be its initial value under stirring. For the capability of inhibiting the growth activity of marine bacteria and diatom, lithium tourmaline is the strongest in the three type of tourmaline powders with similar size, magnesium tourmaline is slightly lower than lithium tourmaline, but iron tourmaline is extremely lower than the other two types. The capability of inhibiting the microbe activity increases with reducing the size of tourmaline particles and adding the content of tourmaline powders. Tourmaline mineral materials are prospective to use as an additive to antifouling coatings from this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barton, R.J.: Refinement of the crystal structure of buergerite and the absolute orientation of tourmaline. Acta Crystallogr 1969, B25, 1524–33.

    Article  Google Scholar 

  2. Setkova, T.; Shapovalov, Y.; Balitsky, V.: Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions. Journal of Crystal Growth 2011, 318 (1), 904–907.

    Article  Google Scholar 

  3. Yeh, J.T.; Hsiung, H.H.; Wei, W.; Zhu, P.; Chen, K.N.; Jiang, T.: Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites. J. Appl. Polym. Sci 2009, 113, 1097–1110.

    Article  Google Scholar 

  4. Song, S.H.; Kang, M.: Decomposition of 2-chlorophenol using a tourmaline photocatalytic system. J. Ind. Eng. Chem 2008, 14, 785–791.

    Article  Google Scholar 

  5. Yeredla, R.R.; Xu, H.F.: Incorporating strong polarity minerals of tourmaline with semiconductor titania to improve the photosplitting of water. J. Phys. Chem 2008, C112, 532–539.

    Google Scholar 

  6. Wang, Y.; Yeh, J.T.; Yue, T.J.; Yao, R.X.; Shen, X.Y.: Surface modification of superfine tourmaline powder with titanate coupling agent. Colloid Polymer Science 2006, 284, 1465–1470.

    Article  Google Scholar 

  7. Leonard, D.T.; Yu, M.H.; Kim, C.H.; Lee, Y.C.; Lee, D.H.; Kim, D.W.; Kim, C.S.: Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline. Applied Thermal Engineering 2011, 31, 2025–2031.

    Article  Google Scholar 

  8. Jiang, K; Sun, T.H.; Sun, L.N.; Li, H.B.: Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline, Journal of Environmental Sciences 2006, 18 (6), 1221–1225.

    Article  Google Scholar 

  9. Qiu, S.; Ma, F.; Wo, Y.; Xu, S.W.: Study on the biological effect of tourmaline on the cell membrane of E. coli. Surf. Interface Anal 2010.

    Google Scholar 

  10. Qiu, S.; Xu, S.W.; Ma, F.; Yang, J.X.; Lv, X.L.:. The biological promotion effect of a new biological promotive ceramsite. J. Wuhan Univ. Technol. 2010, 25 (4), 604–608.

    Article  Google Scholar 

  11. Yao, Z.T.; Xia, M.S.; Zhang, H.M.; Hu, C.H.: Effect of tourmaline on growth in nitrifying bacteria and formation and maturation of biofilm. Fisheries Sci 2007.26 (8), 461–464.

    Google Scholar 

  12. Jin, H.M.; Hang, G.B.; Zhang, G.P.; Effects of tourmaline on the proliferation of human endothelial cells using millicell membrane culture dish. J. China Microcircul 2003, 7, 309–311.

    Google Scholar 

  13. Zhang, S.; Li, A.; Cui, D.; Duan, S.; Yang, J.; Ma, F.; Shi, S.; Ren, N.: Biological improvement on combined mycelial pellet for aniline treatment by tourmaline in SBR process. Bioresource technology 2011, 102, 9282–5.

    Article  Google Scholar 

  14. Ruan, D.; Zhang, L.N.; Zhang, Z.J.; Xia, X.M.: Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J. Polym. Sci. Pol. Phys 2004, 42, 367–373.

    Article  Google Scholar 

  15. Liang, J.S.; Meng, J.P.; Liang, G.C.; Feng, Y.W.; Ding, Y.: Preparation and photocatalytic activity of composite films containing clustered TiO2 particles and mineral tourmaline powders. T. Nonferr. Metal. Soc. 2006, 16, S542–S546.

    Article  Google Scholar 

  16. Tijing, L. D.; Ruelo, M. T. G.; Amarjargal, A.; Pant, H. R.; Park, C.-H; Kim, D. W.; Kim, C. S.: Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chemical Engineering Journal 2012, 197, 41–48.

    Article  Google Scholar 

  17. Amarjargal, A.; Tijing, L. D.; Ruelo, M. T. G.; Park, C.-H.; Pant, H. R.; Vista Iv, F. P.; Lee, D. H.; Kim, C. S.: Inactivation of bacteria in batch suspension by fluidized ceramic tourmaline nanoparticles under oscillating radio frequency electric fields. Ceramics International 2013, 39, 2141–2145.

    Article  Google Scholar 

  18. Tijing, L. D.; Amarjargal, A.; Jiang, Z.; Ruelo, M. T. G.; Park, C.-H.; Pant, H. R.; Kim, D.- W.; Lee, D. H.; Kim, C. S.: Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared by electrospinning and UV photoreduction. Current Applied Physics 2013, 13, 205–210.

    Article  Google Scholar 

  19. Hideaki Nogami: Additive for antifouling paint. United States Patent 6001157, 1999

    Google Scholar 

  20. Rosenhahn, A.; Ederth, T.; Pettitt, M. E.: Advanced nanostructures for the control of biofouling: The FP6 EU Integrated Project AMBIO. Biointerphases 2008, 3, IR1–5.

    Article  Google Scholar 

  21. Almeida, E.; Diamantino, T. C; de Sousa, O.: Marine paints: The particular case of antifouling paints. Progress in Organic Coatings 2007, 59, 2–20.

    Article  Google Scholar 

  22. Chambers, L. D.; Stokes, K. R.; Walsh, F. C.; Wood, R. J. K.: Modern approaches to marine antifouling coatings. Surface and Coatings Technology 2006, 201, 3642–3652.

    Article  Google Scholar 

  23. Chelsea M. Magin, S. P. C. A. B. B.: Non-toxic antifouling strategies. materials today 2010, 13, 36–44.

    Article  Google Scholar 

  24. Tijing, L. D.; Amarjargal, A.; Jiang, Z.; Ruelo, M. T. G.; Park, C.-H.; Pant, H. R.; Kim, D.-W.; Lee, D. H.; Kim, C. S.: Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared by electrospinning and UV photoreduction. Current Applied Physics 2013, 13, 205–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Qi, Y., Zhang, Z., Li, W. (2013). Interaction of Tourmaline Mineral Powders with Sea Water and Its Anti-Microbial Properties. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_30

Download citation

Publish with us

Policies and ethics