Skip to main content

Polyaniline Synthesis and Its Wide-Range Sensor and Electronic Applications

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Conducting polymers (CPs) are the class of improvised organic substances showing the electrical properties analogous to metals. CPs have been trending in the research arena only because of the economic importance, better environmental stability, and improved electrical conductivity, which includes mechanical properties, electromechanical properties, and optical properties. The review also stresses on synthesis techniques, their innovation in structural properties for developing various applications in the field of mechanical sciences. New forecasts from the characterization and how they prove useful in developing certain applications are being discussed. The CPs are being used in various systems, to make the system robust in nature. The various applications include electrostatic materials, conducting adhesives, electromagnetic shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures having sensoric systems, diodes, and transistors. The assessment brings in some of the potential applications of these polymers as binders with nanofibers and nanotubes in the gas sensors, nanodiodes, field-effect transistors for the transmission of power, and supercapacitors for energy storage and its prospects in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nguyen D, Yoon H (2016) Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers 8(4):118

    Article  Google Scholar 

  2. Li Y (2015) Conducting polymers. In: Organic Optoelectronic Materials, vol 91. Springer, Cham, pp 23–50

    Chapter  Google Scholar 

  3. Stejskal J, Gilbert R (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74(5):857–867

    Article  Google Scholar 

  4. Negi YS, Adhyapak PV (2002) Development in polyaniline conducting polymers. J Macromol Sci Part C 42(1):35–53

    Article  Google Scholar 

  5. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484

    Article  Google Scholar 

  6. Wu C-G, Bein T (1994) Conducting carbon wires in ordered, nanometer-sized channels. Science 266:1013–1015

    Article  Google Scholar 

  7. Tourillon G, Garnier F (1982) New electrochemically generated organic conducting polymers. J Electroanal Chem Interfacial Electrochem 135(1):173–178

    Article  Google Scholar 

  8. Manaf A, Bimantoro A, Hafizah MA (2017) Synthesis and microwave characterization of conductive polyaniline prepared by continuous polymerization process. In: IOP conference series: materials science and engineering. IOP Publishing. https://doi.org/10.1088/1757-899X/223/1/012051

  9. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mater Device 1(3):225–255

    Article  MathSciNet  Google Scholar 

  10. Hafizah ME, Bimantoro A, Manaf A (2016) Synthesized of conductive polyaniline by solution polymerization technique. Procedia Chem 19:162–165

    Article  Google Scholar 

  11. Bhadra S et al (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    Article  Google Scholar 

  12. Ray A, MacDiarmid AG (1989) Structure-property relationships in polyanilines. Graduate School of Arts and Sciences, University of Pennsylvania, p xxvi, 311 leaves. https://repository.upenn.edu/dissertations/AAI8922589

  13. Feng J, MacDiarmid AG (1999) Poly-anilines: synthesis, characterization and applications. University of Pennsylvania, p xxiv, 233p. https://search.proquest.com/openview/e60bec1751191520889c58260f162991/1?pq-origsite=gscholar&cbl=18750&diss=y

  14. Mohamoud MA, Ben Aoun S (2014) Electrochemical behaviour of stand-alone polyaniline–poly(vinyl alcohol) composite films. J Taibah Univ Sci 8(4):337–342

    Article  Google Scholar 

  15. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590

    Article  Google Scholar 

  16. Zheng W, MacDiarmid AG (1997) Polyaniline: intermolecular interactions, molecular conformation and morphology. University of Pennsylvania, p xxi, 188p. https://repository.upenn.edu/dissertations/AAI9814931

  17. Asturias-Soberanis GE, MacDiarmid AG (1992) Oxidative and polymeric acid doping of polyaniline and related Donnan phenomena. Graduate School of Arts and Sciences, University of Pennsylvania, p xxiii, 395 leaves. https://repository.upenn.edu/dissertations/AAI9227607

  18. Tang X, MacDiarmid AG (1991) Polyaniline: elucidation of intrinsic properties through processing. Graduate School of Arts and Sciences, University of Pennsylvania, p xxviii, 380 leaves. https://repository.upenn.edu/dissertations/AAI9212013

  19. Asha, Goyal SL, Kishore N (2013) Synthesis and X-ray diffraction study of polyaniline doped with chromium oxide. AIP Conf Proc 1536(1):617–618

    Article  Google Scholar 

  20. Kaitsuka Y, Goto H (2016) UV light induces dedoping of polyaniline. Polymers 8(2):34

    Article  Google Scholar 

  21. Avlyanov JK et al (1995) Polyaniline: conformational changes induced in solution by variation of solvent and doping level. Synth Met 72(1):65–71

    Article  Google Scholar 

  22. MacDiarmid A, Epstein AJ (1994) The concept of secondary doping as applied to polyaniline. Synth Met 65(2–3):103–116

    Article  Google Scholar 

  23. Pandey S (2016) Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J Sci Adv Mater Device 1(4):431–453

    Article  Google Scholar 

  24. Al-Daghman AN et al (2015) Synthesis and spectroscopic properties of conducting polymer polyaniline (ES). Synthesis 47, 18–22

    Google Scholar 

  25. Sapurina IY, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures New Polymers for Special Applications, book edited by Ailton De Souza Gomes, ISBN 978-953-51-0744-6, Published: September 12, 2012. https://doi.org/10.5772/48758

  26. Nguyen MT et al (1994) Synthesis and properties of novel water-soluble conducting polyaniline copolymers. Macromolecules 27(13):3625–3631

    Article  Google Scholar 

  27. Ito T, Shirakawa H, Ikeda S (1974) Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. J Polym Sci A Polym Chem 12(1):11–20

    Article  Google Scholar 

  28. Bukkawar S et al (2016) Sensibility of polyaniline nanofibers to biomarker of benzene recognized as a carcinogen. Perspect Sci 8:283–286

    Article  Google Scholar 

  29. Pillai, R. G., Zhao, J. H., Freund, M. S. and Thomson, D. J. (2008), Field-Induced Carrier Generation in Conjugated Polymer Semiconductors for Dynamic, Asymmetric Junctions. Adv. Mater., 20: 49–53. https://doi.org/10.1002/adma.200700854

  30. Yamamoto T, Sanechika K, Yamamoto A (1980) Preparation of thermostable and electric-conducting poly (2, 5-thienylene). J Polym Sci Part C Polym Lett 18(1):9–12

    Article  Google Scholar 

  31. Waltman RJ, Bargon J (1986) Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can J Chem 64(1):76–95

    Article  Google Scholar 

  32. Marsh G (2001) Electronic polymers revolution. Mater Today 4(1):4–6

    Article  Google Scholar 

  33. Zampetti E et al (2011) Effects of temperature and humidity on electrospun conductive nanofibers based on polyaniline blends. J Nanopart Res 13(11):6193–6200

    Article  Google Scholar 

  34. Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19(7):394–402

    Article  Google Scholar 

  35. Rapi S, Bocchi V, Gardini GP (1988) Conducting polypyrrole by chemical synthesis in water. Synth Met 24(3):217–221

    Article  Google Scholar 

  36. Shirakawa H et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 16(16):578–580

    Article  Google Scholar 

  37. Chiang CK et al (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098

    Article  Google Scholar 

  38. Armes S, Miller J (1988) Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate. Synth Met 22(4):385–393

    Article  Google Scholar 

  39. Angelopoulos M et al (1987) Polyaniline: processability from aqueous solutions and effect of water vapor on conductivity. Synth Met 21(1–3):21–30

    Article  Google Scholar 

  40. Min YG, MacDiarmid AG (1995) Determination of factors promoting increased conductivity in polyaniline. University of Pennsylvania, p xxiii, 176 leaves. https://repository.upenn.edu/dissertations/AAI9615096

  41. Wang P-C, MacDiarmid AG (2000) Critical dependency of properties of conducting polymer thin films on the hydrophobicity/hydrophilicity of substrate surfaces. University of Pennsylvania, p xxxii, 249p. https://repository.upenn.edu/dissertations/AAI9976489

  42. Blanchet GB, Fincher CR, Gao F (2003) Polyaniline nanotube composites: a high-resolution printable conductor. Appl Phys Lett 82(8):1290–1292

    Article  Google Scholar 

  43. Kaur G et al (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5(47):37553–37567

    Article  Google Scholar 

  44. Wang H et al (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161

    Article  Google Scholar 

  45. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes – a review. J Materiomics 2(1):37–54

    Article  MathSciNet  Google Scholar 

  46. Kausaite A, Ramanaviciene A, Ramanavicius A (2009) Polyaniline synthesis catalysed by glucose oxidase. Polymer 50(8):1846–1851

    Article  Google Scholar 

  47. MacDiarmid A et al (1987) Polyaniline: electrochemistry and application to rechargeable batteries. Synth Met 18(1–3):393–398

    Article  Google Scholar 

  48. Thiyagarajan M et al (2003) Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J Am Chem Soc 125(38):11502–11503

    Article  Google Scholar 

  49. Liu W et al (1999) The role of template in the enzymatic synthesis of conducting polyaniline. J Am Chem Soc 121(49):11345–11355

    Article  Google Scholar 

  50. Liu W et al (1999) Enzymatically synthesized conducting polyaniline. J Am Chem Soc 121(1):71–78

    Article  MathSciNet  Google Scholar 

  51. Chiou NR, Epstein AJ (2005) Polyaniline nanofibers prepared by dilute polymerization. Adv Mater 17(13):1679–1683

    Article  Google Scholar 

  52. Collins GE, Buckley L (1996) Conductive polymer-coated fabrics for chemical sensing. Synth Met 78(2):93–101

    Article  Google Scholar 

  53. Liu J-M et al (1992) Novel template guided synthesis of poly aniline. MRS Online Proc Libr Arch 247, p.601–606. https://doi.org/10.1557/PROC-247-601

  54. Cho SJ et al (2002) Hydrogen sorption in HCl-treated polyaniline and polypyrrole: new potential hydrogen storage media. In: Fuel chemistry division, 224th national meeting of the American Chemical Society, vol 47. pp 790–791. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/47_2_Boston_10-02_0269.pdf

  55. Cho SJ et al (2007) H2 sorption in HCl-treated polyaniline and polypyrrole. Catal Today 120(3):336–340

    Article  Google Scholar 

  56. Rajesh, Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B Chem 136(1):275–286

    Article  Google Scholar 

  57. Mohammadi A et al (1990) Conducting polymers prepared by template polymerization: polypyrrole. Polymer 31(3):395–399

    Article  Google Scholar 

  58. Neoh K, Tan T, Kang ET (1988) Chemical synthesis and characterization of polypyrrole-chlorine complex. Polymer 29(3):553–558

    Article  Google Scholar 

  59. Ramanavicius A et al (2012) Conducting and electrochemically generated polymers in sensor design (mini review). Procedia Eng 47:825–828

    Article  Google Scholar 

  60. Waltman RJ, Bargon J, Diaz A (1983) Electrochemical studies of some conducting polythiophene films. J Phys Chem 87(8):1459–1463

    Article  Google Scholar 

  61. Reynolds JR et al (1989) Electrically conductive polymers. In: Conductive polymers and plastics. Springer, pp 1–40. https://link.springer.com/chapter/10.1007/978-1-4613-0851-5_1

  62. LaCroix JC, Diaz A (1988) Electrolyte effects on the switching reaction of polyaniline. J Electrochem Soc 135(6):1457–1463

    Article  Google Scholar 

  63. Diaz A, Logan J (1980) Electroactive polyaniline films. J Electroanal Chem Interfacial Electrochem 111(1):111–114

    Article  Google Scholar 

  64. Zaidan K et al (2011) Synthesis and characterization of (Pani/n-si) solar cell. Energy Procedia 6:85–91

    Article  Google Scholar 

  65. Fan T et al (2015) Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synth Met 199:79–86

    Article  Google Scholar 

  66. Pinto N et al (2003) Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett 83(20):4244–4246

    Article  Google Scholar 

  67. Ravichandran R et al (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7(Suppl 5):S559–S579

    Article  Google Scholar 

  68. Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B Chem 136(1):275–286

    Article  Google Scholar 

  69. Scrosati B (1989) Conducting polymers and their applications. Mater Sci Forum 42:207–220

    Article  Google Scholar 

  70. Geetha S et al (2009) EMI shielding: methods and materials – a review. J Appl Polym Sci 112(4):2073–2086

    Article  Google Scholar 

  71. Somani PR, Radhakrishnan S (2003) Electrochromic materials and devices: present and future. Mater Chem Phys 77(1):117–133

    Article  Google Scholar 

  72. Dai Z, Ansaloni L, Deng L (2016) Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review. Green Energy Environ 1(2):102–128

    Article  Google Scholar 

  73. Yang M-W et al (2014) Temperature swing adsorption process for CO2 capture using polyaniline solid sorbent. Energy Procedia 63:2351–2358

    Article  Google Scholar 

  74. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353

    Article  Google Scholar 

  75. Rathee K et al (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54

    Google Scholar 

  76. Humpolicek P et al (2012) Biocompatibility of polyaniline. Synth Met 162(7–8):722–727

    Article  Google Scholar 

  77. Yang Y, Pei Q, Heeger A (1996) Efficient blue polymer light-emitting diodes from a series of soluble poly (paraphenylene) s. J Appl Phys 79(2):934–939

    Article  Google Scholar 

  78. Gustafsson G et al (1992) Flexible light-emitting diodes made from soluble conducting polymers. Nature 357(6378):477–479

    Article  Google Scholar 

  79. Misra, S. C. K., and Subhas Chandra. Electronic applications of semiconducting polymers. (1994), Indian Journal of Chemistry – Section A (IJC-A) Vol.33A (06), p.583-594 [June 1994], 0975-0975(Online); 0376–4710 (Print). http://nopr.niscair.res.in/handle/123456789/40913

  80. Chandrasekhar P, Naishadham K (1999) Broadband microwave absorption and shielding properties of a poly (aniline). Synth Met 105(2):115–120

    Article  Google Scholar 

  81. Ahuja T, Mir IA, Kumar D (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28(5):791–805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanabasava V. Ganachari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganachari, S.V., Mogre, P., Tapaskar, R.P., Yaradoddi, J.S., Banapurmath, N.R. (2018). Polyaniline Synthesis and Its Wide-Range Sensor and Electronic Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_186-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_186-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics