Skip to main content

Antimicrobial/Antifouling Surfaces Obtained by Surface Modification

  • Chapter
  • First Online:
Polymers against Microorganisms

Abstract

A major issue in the use of biomaterials in natural environments and in particular in hospitals is related to the microorganism adhesion to the biomaterial surface. In this context, the focus of scientists and biomedical manufacturers turned to the development of coatings capable of resisting bacterial colonization and that can be placed on the surfaces of medical devices.

In this chapter, a variety of concepts and approaches are currently being explored in order to produce materials with anti-infective properties that could be employed for biorelated applications will be described. As will be depicted, the strategies are proposed to either reduce or prevent bacterial adhesion. They basically can be divided into two different methodologies: the first type of methodologies include those strategies that either involve chemical modification to introduce antimicrobial activity or are intrinsically antimicrobial. The second type refers to those methodologies that resort to the formation of micro/nanostructures at the biomaterial surface. This chapter will focus on the first group, i.e., the description of the different strategies to chemically modify the polymer surface to improve their antifouling properties or to provide antimicrobial activity.

However, prior to the description of the different methodologies to fabricate antimicrobial surfaces the approaches that are available in order to modify the chemical composition of a particular surface will be first analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices. 2009;6(5):553–67.

    Article  Google Scholar 

  2. Vasilev K, Griesser SS, Griesser HJ. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process Polym. 2011;8(11):1010–23.

    Article  Google Scholar 

  3. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–9.

    Article  Google Scholar 

  4. Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34(34):8533–54.

    Article  Google Scholar 

  5. Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4(1):46–71.

    Article  Google Scholar 

  6. Vatansever F, De Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013;37(6):955–89.

    Article  Google Scholar 

  7. Arciola CR, Montanaro L, Moroni A, Giordano M, Pizzoferrato A, Donati ME. Hydroxyapatite-coated orthopaedic screws as infection resistant materials: in vitro study. Biomaterials. 1999;20(4):323–7.

    Article  Google Scholar 

  8. Petrini P, Arciola CR, Pezzali I, Bozzini S, Montanaro L, Tanzi MC, Speziale P, Visai L. Antibacterial activity of zinc modified titanium oxide surface. Int J Artif Organs. 2006;29(4):434–42.

    Google Scholar 

  9. Arciola CR, Radin L, Alvergna P, Cenni E, Pizzoferrato A. Heparin surface-treatment of poly(methylmethacrylate) alters adhesion of a Staphylococcus-aureus strain—utility of bacterial fatty-acid analysis. Biomaterials. 1993;14(15):1161–4.

    Article  Google Scholar 

  10. Arciola CR, Maltarello MC, Cenni E, Pizzoferrato A. Disposable contact-lenses and bacterial adhesion—in-vitro comparison between ionic high-water-content and nonionic low-water-content lenses. Biomaterials. 1995;16(9):685–90.

    Article  Google Scholar 

  11. Arciola CR, Caramazza R, Pizzoferrato A. In-vitro adhesion of Staphylococcus-epidermidis on heparin-surface-modified intraocular lenses. J Cataract Refract Surg. 1994;20(2):158–61.

    Article  Google Scholar 

  12. Arciola CR, Bustanji Y, Conti M, Campoccia D, Baldassarri L, Samori B, Montanaro L. Staphylococcus epidermidis—fibronectin binding and its inhibition by heparin. Biomaterials. 2003;24(18):3013–9.

    Article  Google Scholar 

  13. Huh MW, Kang IK, Lee DH, Kim WS, Lee DH, Park LS, Min KE, Seo KH. Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge. J Appl Polym Sci. 2001;81(11):2769–78.

    Article  Google Scholar 

  14. Yang JM, Lin HT, Wu TH, Chen CC. Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid. J Appl Polym Sci. 2003;90(5):1331–6.

    Article  Google Scholar 

  15. Conte A, Buonocore GG, Sinigaglia M, Del Nobile MA. Development of immobilized lysozyme based active film. J Food Eng. 2007;78(3):741–5.

    Article  Google Scholar 

  16. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5(3):877–82.

    Article  Google Scholar 

  17. Badrossamay MR, Sun G. Preparation of rechargeable biocidal polypropylene by reactive extrusion with diallylamino triazine. Eur Polym J. 2008;44(3):733–42.

    Article  Google Scholar 

  18. Sun YY, Chen TY, Worley SD, Sun G. Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J Polym Sci Part A Polym Chem. 2001;39(18):3073–84.

    Article  Google Scholar 

  19. Badrossamay MR, Sun G. Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion. J Biomed Mater Res Part B Appl Biomater. 2009;89B(1):93–101.

    Article  Google Scholar 

  20. Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev. 2009;109(11):5437–527.

    Article  Google Scholar 

  21. Guyomard A, Dé E, Jouenne T, Malandain J-J, Muller G, Glinel K. Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater. 2008;18(5):758–65.

    Article  Google Scholar 

  22. Park D, Wang J, Klibanov AM. One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal. Biotechnol Prog. 2006;22(2):584–9.

    Article  Google Scholar 

  23. Gour N, Ngo KX, Vebert-Nardin C. Anti-infectious surfaces achieved by polymer modification. Macromol Mater Eng. 2014;299(6):648–68.

    Article  Google Scholar 

  24. Bieser AM, Thomann Y, Tiller JC. Contact-active antimicrobial and potentially self-polishing coatings based on cellulose. Macromol Biosci. 2011;11(1):111–21.

    Article  Google Scholar 

  25. Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98(11):5981–5.

    Article  Google Scholar 

  26. Bagheri M, Beyermann M, Dathe M. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother. 2009;53(3):1132–41.

    Article  Google Scholar 

  27. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. Covalent immobilization of antimicrobial peptides (AMPS) onto biomaterial surfaces. Acta Biomater. 2011;7(4):1431–40.

    Article  Google Scholar 

  28. Haldar J, An D, De Cienfuegos LA, Chen J, Klibanov AM. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci U S A. 2006;103(47):17667–71.

    Article  Google Scholar 

  29. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465–71.

    Article  Google Scholar 

  30. Waschinski CJ, Zimmermann J, Salz U, Hutzler R, Sadowski G, Tiller JC. Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater. 2008;20(1):104–8.

    Article  Google Scholar 

  31. Kurt P, Wood L, Ohman DE, Wynne KJ. Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir. 2007;23(9):4719–23.

    Article  Google Scholar 

  32. Lichter JA, Rubner MF. Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir. 2009;25(13):7686–94.

    Article  Google Scholar 

  33. Pan Y, Xiao H. Rendering rayon fibres antimicrobial and thermal-responsive via layer-by-layer self-assembly of functional polymers. In: Cao Z, He YH, Sun L, Cao XQ, editors. Application of chemical engineering, Pts 1–3. 2011. p. 1103–6.

    Google Scholar 

  34. Cecius M, Jerome C. A fully aqueous sustainable process for strongly adhering antimicrobial coatings on stainless steel. Prog Org Coat. 2011;70(4):220–3.

    Article  Google Scholar 

  35. Lin J, Qiu SY, Lewis K, Klibanov AM. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog. 2002;18(5):1082–6.

    Article  Google Scholar 

  36. Fuchs AD, Tiller JC. Contact-active antimicrobial coatings derived from aqueous suspensions. Angew Chem Int Ed Engl. 2006;45(40):6759–62.

    Article  Google Scholar 

  37. Pasquier N, Keul H, Heine E, Moeller M. From multifunctionalized poly(ethylene imine)s toward antimicrobial coatings. Biomacromolecules. 2007;8(9):2874–82.

    Article  Google Scholar 

  38. Thome J, Hollander A, Jaeger W, Trick I, Oehr C. Ultrathin antibacterial polyammonium coatings on polymer surfaces. Surf Coating Technol. 2003;174:584–7.

    Article  Google Scholar 

  39. Bazaka K, Jacob MV, Vi Khanh T, Crawford RJ, Ivanova EP. The effect of polyterpenol thin film surfaces on bacterial viability and adhesion. Polymers. 2011;3(1):388–404.

    Article  Google Scholar 

  40. Xing BG, Yu CW, Chow KH, Ho PL, Fu DG, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc. 2002;124(50):14846–7.

    Article  Google Scholar 

  41. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP. Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. J Am Chem Soc. 2007;129(47):14793–9.

    Article  Google Scholar 

  42. Stallard CP, Mcdonnell KA, Onayemi OD, O’Gara JP, Dowling DP. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases. 2012;7(1–4):31.

    Google Scholar 

  43. Leckband D, Sheth S, Halperin A. Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci Polym Ed. 1999;10(10):1125–47.

    Article  Google Scholar 

  44. Roosjen A, Kaper HJ, Van Der Mei HC, Norde W, Busscher HJ. Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology. 2003;149(11):3239–46.

    Article  Google Scholar 

  45. Hsu S-H, Tang C-M, Lin C-C. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials. 2004;25(25):5593–601.

    Article  Google Scholar 

  46. Lewis AL, Cumming ZL, Goreish HH, Kirkwood LC, Tolhurst LA, Stratford PW. Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials. 2001;22(2):99–111.

    Article  Google Scholar 

  47. Hirota K, Murakami K, Nemoto K, Miyake Y. Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiol Lett. 2005;248(1):37–45.

    Article  Google Scholar 

  48. Fujii K, Matsumoto HN, Koyama Y, Iwasaki Y, Ishihara K, Takakuda K. Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer. J Vet Med Sci. 2008;70(2):167–73.

    Article  Google Scholar 

  49. Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29(35):4592–7.

    Article  Google Scholar 

  50. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192–9.

    Article  Google Scholar 

  51. Lalani R, Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules. 2012;13(6):1853–63.

    Article  Google Scholar 

  52. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–48.

    Article  Google Scholar 

  53. Ackart WB, Camp RL, Wheelwright WL, Byck JS. Antimicrobial polymers. J Biomed Mater Res. 1975;9(1):55–68.

    Article  Google Scholar 

  54. Desai NP, Hossainy SFA, Hubbell JA. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials. 1992;13(7):417–20.

    Article  Google Scholar 

  55. Bridgett MJ, Davies MC, Denyer SP. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials. 1992;13(7):411–6.

    Article  Google Scholar 

  56. Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19(7–9):851–9.

    Article  Google Scholar 

  57. Kohnen W, Jansen B. Polymer materials for the prevention of catheter-related infections. Zentralbl Bakteriol. 1995;283(2):175–86.

    Article  Google Scholar 

  58. Lu Y, Yue Z, Wang W, Cao Z. Strategies on designing multifunctional surfaces to prevent biofilm formation. Front Chem Sci Eng. 2015;9(3):324–35.

    Article  Google Scholar 

  59. Neoh KG, Kang ET. Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications. ACS Appl Mater Interfaces. 2011;3(8):2808–19.

    Article  Google Scholar 

  60. Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed Engl. 2014;53(7):1746–54.

    Article  Google Scholar 

  61. Kathmann EE, White LA, Mccormick CL. Water soluble polymers. 70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer. 1997;38(4):879–86.

    Article  Google Scholar 

  62. Viklund C, Irgum K. Synthesis of porous zwitterionic sulfobetaine monoliths and characterization of their interaction with proteins. Macromolecules. 2000;33(7):2539–44.

    Article  Google Scholar 

  63. Shivapooja P, Yu Q, Orihuela B, Mays R, Rittschof D, Genzer J, López GP. Modification of silicone elastomer surfaces with zwitterionic polymers: short-term fouling resistance and triggered biofouling release. ACS Appl Mater Interfaces. 2015;7(46):25586–91.

    Article  Google Scholar 

  64. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res. 1998;39(2):323–30.

    Article  Google Scholar 

  65. Wielema TA, Engberts J. Zwitterionic polymers. 1. Synthesis of a novel series of poly(vinylsulfobetaines)—effect of structure of polymer on solubility in water. Eur Polym J. 1987;23(12):947–50.

    Article  Google Scholar 

  66. Miura M, Akutsu F, Kunimoto F, Ito H, Nagakubo K. Grafting via macrozwitterions. Graft copolymerisation of acrylic acid from diphenyl–4-vinylphenylphosphine sites on a polymer backbone. Makromol Chem Rapid. 1984;5(2):109–13.

    Article  Google Scholar 

  67. Jaeger W, Wendler U, Lieske A, Bohrisch J. Novel modified polymers with permanent cationic groups. Langmuir. 1999;15(12):4026–32.

    Article  Google Scholar 

  68. Salamone JC, Volksen W, Israel SC, Olson AP, Raia DC. Preparation of inner salt polymers from vinylimidazolium sulfobetaines. Polymer. 1977;18(10):1058–62.

    Article  Google Scholar 

  69. Shao Q, Jiang S. Effect of carbon spacer length on zwitterionic carboxybetaines. J Phys Chem B. 2013;117(5):1357–66.

    Article  Google Scholar 

  70. Bernards MT, Cheng G, Zhang Z, Chen S, Jiang S. Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules. 2008;41(12):4216–9.

    Article  Google Scholar 

  71. Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed Engl. 2008;47(46):8831–4.

    Article  Google Scholar 

  72. Cao Z, Mi L, Mendiola J, Ella-Menye J-R, Zhang L, Xue H, Jiang S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew Chem Int Ed Engl. 2012;51(11):2602–5.

    Article  Google Scholar 

  73. Cao Z, Brault N, Xue H, Keefe A, Jiang S. Manipulating sticky and non-sticky properties in a single material. Angew Chem Int Ed Engl. 2011;50(27):6102–4.

    Article  Google Scholar 

  74. Cao B, Tang Q, Li L, Humble J, Wu H, Liu L, Cheng G. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv Healthc Mater. 2013;2(8):1096–102.

    Article  Google Scholar 

  75. Mi L, Jiang S. Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. Biomaterials. 2012;33(35):8928–33.

    Article  Google Scholar 

  76. Medlin J. Germ warfare. Environ Health Perspect. 1997;105(3):290–2.

    Article  Google Scholar 

  77. Nohr RS, Macdonald JG. New biomaterials through surface segregation phenomenon—new quaternary ammonium-compounds as antibacterial agents. J Biomater Sci Polym Ed. 1994;5(6):607–19.

    Article  Google Scholar 

  78. Shearer AEH, Paik JS, Hoover DG, Haynie SL, Kelley MJ. Potential of an antibacterial ultraviolet-irradiated nylon film. Biotechnol Bioeng. 2000;67(2):141–6.

    Article  Google Scholar 

  79. Campoccia D, Montanaro L, Speziale P, Arciola CR. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials. 2010;31(25):6363–77.

    Article  Google Scholar 

  80. Klibanov AM. Permanently microbicidal materials coatings. J Mater Chem. 2007;17(24):2479–82.

    Article  Google Scholar 

  81. Lin J, Qiu SY, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng. 2003;83(2):168–72.

    Article  Google Scholar 

  82. Lin J, Murthy SK, Olsen BD, Gleason KK, Klibanov AM. Making thin polymeric materials, including fabrics, microbicidal and also water-repellent. Biotechnol Lett. 2003;25(19):1661–5.

    Article  Google Scholar 

  83. Milovic NM, Wang J, Lewis K, Klibanov AM. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng. 2005;90(6):715–22.

    Article  Google Scholar 

  84. Worley SD, Sun G. Biocidal polymers. Trends Polym Sci. 1996;4(11):364–70.

    Google Scholar 

  85. Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7.

    Article  Google Scholar 

  86. Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14(3):585–601.

    Article  Google Scholar 

  87. Sun X, Cao Z, Porteous N, Sun Y. An N-halamine-based rechargeable antimicrobial and biofilm controlling polyurethane. Acta Biomater. 2012;8(4):1498–506.

    Article  Google Scholar 

  88. Bagheri M, Beyermann M, Dathe M. Mode of action of cationic antimicrobial peptides defines the tethering position and the efficacy of biocidal surfaces. Bioconjug Chem. 2012;23(1):66–74.

    Article  Google Scholar 

  89. Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32(16):3899–909.

    Article  Google Scholar 

  90. Arciola CR, Campoccia D, Montanaro L. Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials. 2002;23(6):1495–502.

    Article  Google Scholar 

  91. Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci. 2011;1241(1):104–21.

    Article  Google Scholar 

  92. Kiran MD, Giacometti A, Cirioni O, Balaban N. Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int J Artif Organs. 2008;31(9):761–70.

    Google Scholar 

  93. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2011;55(6):2655–61.

    Article  Google Scholar 

  94. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627–9.

    Article  Google Scholar 

  95. Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol. 2011;193(20):5616–22.

    Article  Google Scholar 

  96. Kolodkin-Gal I, Cao S, Chai L, Böttcher T, Kolter R, Clardy J, Losick R. A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell. 2012;149(3):684–92.

    Article  Google Scholar 

  97. Faure E, Vreuls C, Falentin-Daudré C, Zocchi G, Van De Weerdt C, Martial J, Jérôme C, Duwez AS, Detrembleur C. A green and bio-inspired process to afford durable anti-biofilm properties to stainless steel. Biofouling. 2012;28(7):719–28.

    Article  Google Scholar 

  98. Kaplan JB, Lovetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, Izano EA. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot. 2012;65(2):73–7.

    Article  Google Scholar 

  99. Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, Sukhishvili SA. Noneluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces. 2012;4(9):4708–16.

    Article  Google Scholar 

  100. Dean SN, Bishop BM, Van Hoek ML. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011;11(1):1–13.

    Article  Google Scholar 

  101. Jorge P, Lourenço A, Pereira MO. New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. Biofouling. 2012;28(10):1033–61.

    Article  Google Scholar 

  102. Qi X, Poernomo G, Wang K, Chen Y, Chan-Park MB, Xu R, Chang MW. Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale. 2011;3(4):1874–80.

    Article  Google Scholar 

  103. Olofsson A-C, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol. 2003;69(8):4814–22.

    Article  Google Scholar 

  104. Juda M, Paprota K, Jałoza D, Malm A, Rybojad P, Goździuk K. EDTA as a potential agent preventing formation of Staphylococcus epidermidis biofilm on polichloride vinyl biomaterials. Ann Agric Environ Med. 2008;15(2):237–41.

    Google Scholar 

  105. Tan H, Peng Z, Li Q, Xu X, Guo S, Tang T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant Staphylococcus. Biomaterials. 2012;33(2):365–77.

    Article  Google Scholar 

  106. Cirioni O, Giacometti A, Ghiselli R, Dell’Acqua G, Gov Y, Kamysz W, Łukasiak J, Mocchegiani F, Orlando F, D’Amato G, Balaban N, Saba V, Scalise G. Prophylactic efficacy of topical temporin A and RNAIII-inhibiting peptide in a subcutaneous rat Pouch model of graft infection attributable to staphylococci with intermediate resistance to glycopeptides. Circulation. 2003;108(6):767–71.

    Article  Google Scholar 

  107. Giacometti A, Cirioni O, Gov Y, Ghiselli R, Del Prete MS, Mocchegiani F, Saba V, Orlando F, Scalise G, Balaban N, Dell’Acqua G. RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(6):1979–83.

    Article  Google Scholar 

  108. Baveja JK, Willcox MDP, Hume EBH, Kumar N, Odell R, Poole-Warren LA. Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials. 2004;25(20):5003–12.

    Article  Google Scholar 

  109. Lönn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA. Furanones, potential agents for preventing staphylococcus epidermidis biofilm infections? J Antimicrob Chemother. 2009;63(2):309–16.

    Article  Google Scholar 

  110. Christensen LD, Van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Høiby N, Bjarnsholt T, Givskov M. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother. 2012;67(5):1198–206.

    Article  Google Scholar 

  111. Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol. 2006;296(2–3):149–61.

    Article  Google Scholar 

  112. Böttcher T, Kolodkin-Gal I, Kolter R, Losick R, Clardy J. Synthesis and activity of biomimetic biofilm disruptors. J Am Chem Soc. 2013;135(8):2927–30.

    Article  Google Scholar 

  113. Caro A, Humblot V, Méthivier C, Minier M, Salmain M, Pradier C-M. Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces. J Phys Chem B. 2009;113(7):2101–9.

    Article  Google Scholar 

  114. Muszanska AK, Busscher HJ, Herrmann A, Van Der Mei HC, Norde W. Pluronic–lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. Biomaterials. 2011;32(26):6333–41.

    Article  Google Scholar 

  115. Arciola CR, Montanaro L, Costerton JW. New trends in diagnosis and control strategies for implant infections. Int J Artif Organs. 2011;34(9):727–36.

    Article  Google Scholar 

  116. Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1–13.

    Article  Google Scholar 

  117. Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater. 2004;16(12):957–61.

    Article  Google Scholar 

  118. Laloyaux X, Fautré E, Blin T, Purohit V, Leprince J, Jouenne T, Jonas AM, Glinel K. Temperature-responsive polymer brushes switching from bactericidal to cell-repellent. Adv Mater. 2010;22(44):5024–8.

    Article  Google Scholar 

  119. Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26(33):6684–92.

    Article  Google Scholar 

  120. Cavallaro A, Taheri S, Vasilev K. Responsive and “Smart” antibacterial surfaces: common approaches and new developments (review). Biointerphases. 2014;9(2):029005.

    Article  Google Scholar 

  121. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin—isolation, characterization of 2 active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53.

    Article  Google Scholar 

  122. Zasloff M, Martin B, Chen HC. Antimicrobial activity of synthetic magainin peptides and several analogs. Proc Natl Acad Sci U S A. 1988;85(3):910–3.

    Article  Google Scholar 

  123. Pangilinan KD, Santos CM, Estillore NC, Rodrigues DF, Advincula RC. Temperature-responsiveness and antimicrobial properties of CNT–PNIPAM hybrid brush films. Macromol Chem Phys. 2013;214(4):464–9.

    Article  Google Scholar 

  124. Wei T, Yu Q, Zhan W, Chen H. A smart antibacterial surface for the on-demand killing and releasing of bacteria. Adv Healthc Mater. 2016;5(4):449–56.

    Article  Google Scholar 

  125. Ulijn RV. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem. 2006;16(23):2217–25.

    Article  Google Scholar 

  126. Tian Z, Zhang Y, Liu X, Chen C, Guiltinan MJ, Allcock HR. Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polym Chem. 2013;4(6):1826–35.

    Article  Google Scholar 

  127. Kanellakopoulou K, Kolia M, Anastassiadis A, Korakis T, Giamarellos-Bourboulis EJ, Andreopoulos A, Dounis E, Giamarellou H. Lactic acid polymers as biodegradable carriers of fluoroquinolones: an in vitro study. Antimicrob Agents Chemother. 1999;43(3):714–6.

    Google Scholar 

  128. Han SY, Yoon SH, Cho KH, Cho HJ, An JH, Ra YS. Biodegradable polymer releasing antibiotic developed for drainage catheter of cerebrospinal fluid: in vitro results. J Korean Med Sci. 2005;20(2):297–301.

    Article  Google Scholar 

  129. Ravindra S, Varaprasad K, Reddy NN, Vimala K, Raju KM. Biodegradable microspheres for controlled release of an antibiotic ciprofloxacin. J Polym Environ. 2011;19(2):413–8.

    Article  Google Scholar 

  130. Woo GLY, Mittelman MW, Santerre JP. Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials. 2000;21(12):1235–46.

    Article  Google Scholar 

  131. Anaya P, Cárdenas G, Lavayen V, García A, O’Dwyer C. Chitosan gel film bandages: correlating structure, composition, and antimicrobial properties. J Appl Polym Sci. 2013;128(6):3939–48.

    Article  Google Scholar 

  132. Eldin MSM, Soliman EA, Hashem AI, Tamer TM. Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications. Adv Polym Technol. 2012;31(4):414–28.

    Article  Google Scholar 

  133. Elsabee MZ, Abdou ES. Chitosan based edible films and coatings: a review. Mater Sci Eng C. 2013;33(4):1819–41.

    Article  Google Scholar 

  134. Geng X, Yang R, Huang J, Zhang X, Wang X. Evaluation antibacterial activity of quaternary-based chitin/chitosan derivatives in vitro. J Food Sci. 2013;78(1):M90–7.

    Article  Google Scholar 

  135. Torres-Giner S, Ocio MJ, Lagaron JM. Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci. 2008;8(3):303–14.

    Article  Google Scholar 

  136. Sebastien F, Stephane G, Copinet A, Coma V. Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym. 2006;65(2):185–93.

    Article  Google Scholar 

  137. Kurita K. Chemistry and application of chitin and chitosan. Polym Degrad Stab. 1998;59(1–3):117–20.

    Article  Google Scholar 

  138. Dai T, Tanaka M, Huang Y-Y, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011;9(7):857–79.

    Article  Google Scholar 

  139. Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci. 2010;355(1–2):53–9.

    Article  Google Scholar 

  140. Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules. 2013;14(4):1103–12.

    Article  Google Scholar 

  141. Tanihara M, Suzuki Y, Nishimura Y, Suzuki K, Kakimaru Y. Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides. 1998;19(3):421–5.

    Article  Google Scholar 

  142. Wu S, Buthe A, Jia H, Zhang M, Ishii M, Wang P. Enzyme-enabled responsive surfaces for anti-contamination materials. Biotechnol Bioeng. 2013;110(6):1805–10.

    Article  Google Scholar 

  143. Eby DM, Luckarift HR, Johnson GR. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces. 2009;1(7):1553–60.

    Article  Google Scholar 

  144. Satishkumar R, Sankar S, Yurko Y, Lincourt A, Shipp J, Heniford BT, Vertegel A. Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob Agents Chemother. 2011;55(9):4379–85.

    Article  Google Scholar 

  145. Spagnul C, Turner LC, Boyle RW. Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B Biol. 2015;150:11–30.

    Article  Google Scholar 

  146. Banerjee I, Mondal D, Martin J, Kane RS. Photoactivated antimicrobial activity of carbon nanotube-porphyrin conjugates. Langmuir. 2010;26(22):17369–74.

    Article  Google Scholar 

  147. Page K, Wilson M, Parkin IP. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem. 2009;19(23):3819–31.

    Article  Google Scholar 

  148. Sun G, Hong KH. Photo-induced antimicrobial and decontaminating agents: recent progresses in polymer and textile applications. Text Res J. 2013;83(5):532–42.

    Article  Google Scholar 

  149. Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. Innovative strategies to overcome biofilm resistance. Biomed Res Int. 2013;2013:13.

    Article  Google Scholar 

  150. Lazzeri D, Rovera M, Pascual L, Durantini EN. Photodynamic studies and photoinactivation of escherichia coli using meso-substituted cationic porphyrin derivatives with asymmetric charge distribution. Photochem Photobiol. 2004;80(2):286–93.

    Article  Google Scholar 

  151. Banfi S, Caruso E, Buccafurni L, Battini V, Zazzaron S, Barbieri P, Orlandi V. Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria. J Photochem Photobiol B Biol. 2006;85(1):28–38.

    Article  Google Scholar 

  152. Felipe FS, Ying-Ying H, Michael RH. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat Antiinfect Drug Discov. 2013;8(2):108–20.

    Article  Google Scholar 

  153. Rolim JPML, De-Melo MAS, Guedes SF, Albuquerque-Filho FB, De Souza JR, Nogueira NAP, Zanin ICJ, Rodrigues LKA. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B Biol. 2012;106:40–6.

    Article  Google Scholar 

  154. Kömerik N, Nakanishi H, Macrobert AJ, Henderson B, Speight P, Wilson M. In vivo killing of porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother. 2003;47(3):932–40.

    Article  Google Scholar 

  155. Lee C-F, Lee C-J, Chen C-T, Huang C-T. Δ-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures. J Photochem Photobiol B Biol. 2004;75(1–2):21–5.

    Article  Google Scholar 

  156. Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63(12):515–82.

    Article  Google Scholar 

  157. Tallosy SP, Janovak L, Menesi J, Nagy E, Juhasz A, Balazs L, Deme I, Buzas N, Dekany I. Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films. Environ Sci Pollut Res. 2014;21(19):11155–67.

    Article  Google Scholar 

  158. Charpentier PA, Burgess K, Wang L, Chowdhury RR, Lotus AF, Moula G. Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology. 2012;23(42):9.

    Article  Google Scholar 

  159. Bahloul W, Melis F, Bounor-Legare V, Cassagnau P. Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol-gel method. Mater Chem Phys. 2012;134(1):399–406.

    Article  Google Scholar 

  160. Pant HR, Pandeya DR, Nam KT, Baek W-I, Hong ST, Kim HY. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater. 2011;189(1–2):465–71.

    Article  Google Scholar 

  161. Wang ZB, Li GC, Peng HR, Zhang ZK, Wang X. Study on novel antibacterial high-impact polystyrene/TiO2 nanocomposites. J Mater Sci. 2005;40(24):6433–8.

    Article  Google Scholar 

  162. Su W, Wang S, Wang X, Fu X, Weng J. Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf Coating Technol. 2010;205(2):465–9.

    Article  Google Scholar 

  163. Huang C-J, Chen Y-S, Chang Y. Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes. ACS Appl Mater Interfaces. 2015;7(4):2415–23.

    Article  Google Scholar 

  164. Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J. Salt-responsive zwitterionic polymer brushes with tunable friction and antifouling properties. Langmuir. 2015;31(33):9125–33.

    Article  Google Scholar 

  165. Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson LS, Stenius P. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules. 2007;8(7):2149–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez-Hernández, J. (2017). Antimicrobial/Antifouling Surfaces Obtained by Surface Modification. In: Polymers against Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-47961-3_5

Download citation

Publish with us

Policies and ethics