Skip to main content

Cloning of Economically Significant Sorghum Mutant Genes

  • Chapter
  • First Online:
The Sorghum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1215 Accesses

Abstract

Mutations, occurring either naturally or induced, are permanent alterations of the nucleotide sequence in organisms. These alterations occurring throughout the evolution of a species are responsible for creating immense genetic diversity. Such natural variation generated by mutations has been selected and extensively utilized in crop improvement in several agronomically important crops. In sorghum, mutations producing key agronomic traits such as nonshattering, dwarfing, photoperiod insensitivity, improved protein digestibility, and brown midrib phenotype resulted in establishment of sorghum as the fifth major cereal crop of the world. In addition to successful utilization of these mutations in breeding, understanding the mechanistic basis underlying these traits is equally important to assist in trait advancement. Hence, mutations underlying important agronomic traits were identified using approaches such as positional or map-based cloning, candidate-gene approach, and whole genome sequencing. This chapter provides an overview of key sorghum mutations that resulted in evolution of sorghum as a major source of food, forage, and bioenergy. Additionally, cloning strategies used to identify the underlying mutations and mechanistic basis of the phenotype of interest are discussed. Identification of mutations underlying agriculturally important traits can assist in developing molecular markers to enable precise introgression of selected traits into elite inbreds used in sorghum improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrero Farfan ID, Bergsma BR, Johal GS, Tuinstra MR (2012) A stable allele in sorghum and a molecular marker to facilitate selection. Crop Sci 52(5):2063–2069

    Article  Google Scholar 

  • Benmoussa M, Chandrashekar A, Ejeta G, Hamaker BR (2015) Cellular response to the high protein digestibility/high-lysine (hdhl) sorghum mutation. Plant Sci 241:70–77

    Article  CAS  PubMed  Google Scholar 

  • Blomstedt CK, Gleadow RM, O’Donnell N, Naur P, Jensen K, Laursen T, Olsen CE (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol 10(1):54–66

    Article  Google Scholar 

  • Blomstedt CK, O’Donnell N, Bjarnholt N, Neale AD, Hamill JD, Møller BL, and Gleadow RM (2016) Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Plant Cell Physiol 57(2):373–86

    Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum brown midrib gene encoding caffeic acid o-methyltransferase. Mol Genet Genomics 269(2):205–214

    CAS  PubMed  Google Scholar 

  • Busk PK, Møller BL (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol 129(3):1222–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a Phytochrome b. Plant Physiol 113(2):611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Délye C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53(5):728–746

    Article  Google Scholar 

  • Délye C, Zhang X, Michel S, Matéjicek A, Powles SB (2005) Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol 137(3):794–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Feigl F, Anger V (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91(1081):282–284

    Article  CAS  PubMed  Google Scholar 

  • Gorthy S, Mayandi K, Faldu D, Dalal M (2013) Molecular characterization of allelic variation in spontaneous brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Mol Breeding 31(4):795–803

    Article  CAS  Google Scholar 

  • Hansen KS, Kristensen C, Tattersall DB, Jones PR, Olsen CE, Bak S, Møller BL (2003) The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry 64(1):143–151

    Article  CAS  PubMed  Google Scholar 

  • Hilley J, Truong S, Olson S, Morishige D, Mullet J (2016) Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE 11(3):e0151271

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufman RC, Herald TJ, Bean SR, Wilson JD, Tuinstra MR (2013) Variability in tannin content, chemistry and activity in a diverse group of tannin containing sorghum cultivars. J Sci Food Agric 93(5):1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Kershner KS, Al-Khatib K, Krothapalli K, Tuinstra MR (2012) Genetic resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides in grain sorghum. Crop Sci 52(1):64–73

    Article  CAS  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2(10):815–822

    Article  CAS  PubMed  Google Scholar 

  • Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR (2013) Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 195(2):309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Li X, Shannon LM, Yeh C, Wang ML, Bai G, Peng Z et al (2012) Parallel domestication of the shattering1 genes in cereals. Nat Genet 44(6):720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302(5642):81–84

    Article  CAS  PubMed  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (Prr37) controls photoperiodic flowering in sorghum. PNAS 108(39):16469–16474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy RL, Morishige DT, Brady JA, Rooney WL, Yang S, Klein PE (2014) Ghd7 (Ma6) represses sorghum flowering in long days: alleles enhance biomass accumulation and grain production. Plant Genome 7(2):1–10

    Article  Google Scholar 

  • Ordonio RL, Yusuke I, Asako H, Kozue O, Shigemitsu K, Tsuyoshi T, Hiroshi M, Hidemi K, Makoto M, Takashi S (2014) Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Nat Sci Rep 4(June):1–10

    Google Scholar 

  • Quinby JR, Karper RE (1961) Inheritance of duration of growth in the milo group of sorghum. Crop Sci 1:8–10

    Article  Google Scholar 

  • Saballos A, Wilfred V, Loren R, Gebisa E (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1(3–4):193–204

    Article  Google Scholar 

  • Saballos A, Gebisa E, Emiliano S, ChulHee K, Wilfred V (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (l.) moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181(2):783–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saballos A, Scott SE, Emiliano S, Timothy FP, Zhanguo X, ChulHee K, Jeffrey PF, Wilfred V (2012) Brown midrib2 (bmr2) encodes the major 4-coumarate:coenzyme a ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). Plant J 70(5):818–830

    Article  CAS  PubMed  Google Scholar 

  • Sattler SE, Aaron SJ, Eric HJ, Nathan PA, Deanna FL, Gautam S, Jeffrey PF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150(2):584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler SE, Ana S, Zhanguo X, Deanna FL, Wilfred V, and Jeffrey PF (2014) Characterization of novel sorghum brown midrib mutants from an EMS-mutagenized population. G3 4(11):2115–2124

    Google Scholar 

  • Scully ED, Gries T, Funnell-Harris DL, Xin Z, Kovacs FA, Vermerris W, Sattler SE (2016) Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J Integr Plant Biol 58(2):136–149

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Hugo CE, Sayan D, Uzay SU, Chengbo Z, Hui G, Valorie GH, Zhengxiang G, Thomas CE, Andrew PH (2013) Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. PNAS 110(39):15824–15829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uga Y, Kazuhiko S, Satoshi O, Jagadish R, Manabu I, Naho H, Yuka K et al (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid o-methyltransferase. Plant Cell 7(4):407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Natalia D, John MA, Clint C (2015) Genetic manipulation of lignocellulosic biomass for bioenergy. Current opinion chemical biology. Energy Mechanist Biol 29(December):32–39

    Google Scholar 

  • Wu Y, Xianran L, Wenwen X, Chengsong Z, Zhongwei L, Yun W, Jiarui L et al (2012) Presence of tannins in sorghum grains is conditioned by different natural alleles of tannin1. PNAS 109(26):10281–10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Lingling Y, Xiaomei G, David HR, Joachim M (2013) Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum. Nat Commun 4:2217

    PubMed  Google Scholar 

  • Xin Z, Ming WL, Noelle BA, Gloria B, Cleve F, Gary P, John B (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Rebecca ML, Daryl MT, Patricia KE, William RL, John ME (2014a) Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE 9(8):e105352

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Brock WD, Daryl MT, John ME (2014b) CONSTANS is a photoperiod-regulated activator of flowering in sorghum. BMC Plant Biol 14(May):148

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep R. Marla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Marla, S.R. (2016). Cloning of Economically Significant Sorghum Mutant Genes. In: Rakshit, S., Wang, YH. (eds) The Sorghum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-47789-3_13

Download citation

Publish with us

Policies and ethics