Skip to main content

Contributions of Fuzzy Concepts to Data Clustering

  • Chapter
  • First Online:
Fuzzy Sets, Rough Sets, Multisets and Clustering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 671))

  • 966 Accesses

Abstract

This chapter tries to answer the fundamental question of what main contributions of fuzzy clustering to the theory of cluster analysis from theoretical viewpoints. While fuzzy clustering is thought to be clearly useful by users of this technique, others think that the concept of fuzziness is not needed in clustering. Thus the usefulness of fuzzy clustering is not trivial. The discussion here is divided into two: one is on fuzzy c-means which is best-known fuzzy method of clustering. However, there is another techniques, discussed by Zadeh, in hierarchical clustering which is equivalent to the old technique of the single linkage. This chapter overviews the both techniques, beginning from basic discussion of fuzzy c-means, and introducing the fundamental concept of fuzzy classifiers and its usefulness. A concept of inductive clustering is introduced which means that a result of clustering can be extended to a partition of the whole space. Moreover hierarchical fuzzy clustering is briefly discussed where the transitive closure gives a simple algebraic form of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Basu, I. Davidson, K.L. Wagstaff, Constrained Clustering, CRC Press, Boca Raton, 2009.

    Google Scholar 

  2. J.C. Bezdek, Fuzzy Mathematics in Pattern Classification, Ph.D. Thesis, Cornell Univ., Ithaca, NY, 1973.

    Google Scholar 

  3. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, 1981.

    Google Scholar 

  4. J.C. Bezdek, J. Keller, R. Krishnapuram, N.R. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, Kluwer, Boston, 1999.

    Google Scholar 

  5. O. Chapelle, B. Schölkopf, A. Zien, eds., Semi-Supervised Learning, MIT Press, Cambridge, Massachusetts, 2006.

    Google Scholar 

  6. R.N. Davé, R. Krishnapuram, Robust clustering methods: a unified view, IEEE Trans. on Fuzzy Systems, Vol. 5, pp. 270–293, 1997.

    Google Scholar 

  7. D. Dumitrescu, B. Lazzerini, L.C. Jain, Fuzzy Sets and Their Application to Clustering and Training, CRC Press, Boca Raton, Florida, 2000.

    Google Scholar 

  8. R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, 1973.

    Google Scholar 

  9. J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. of Cybernetics, Vol. 3, pp. 32–57, 1974.

    Google Scholar 

  10. J.C. Dunn, Well-separated clusters and optimal fuzzy partitions, J. of Cybernetics, Vol. 4, pp. 95–104, 1974.

    Google Scholar 

  11. M. Ester, H.-P. Kriegel, J. Sander, X.W. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Proc. of 2nd Intern. Conf. on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, pp. 226–231, 1996.

    Google Scholar 

  12. B.S. Everitt, Cluster Analysis, 3rd Ed., Arnold, London, 1993.

    Google Scholar 

  13. M. Girolami, Mercer kernel based clustering in feature space, IEEE Trans. on Neural Networks, Vol. 13, No. 3, pp. 780–784, 2002.

    Google Scholar 

  14. E.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, IEEE CDC, San Diego, California, pp. 761–766, 1979.

    Google Scholar 

  15. R.J. Hathaway, J.C. Bezdek, Switching regression models and fuzzy clustering, IEEE Trans. on Fuzzy Systems, Vol. 1, No. 3, pp. 195–204, 1993.

    Google Scholar 

  16. F. Höppner, F. Klawonn, R. Kruse, T. Runkler, Fuzzy Cluster Analysis, Jhon Wiley & Sons, 1999

    Google Scholar 

  17. H. Ichihashi, K. Honda, N. Tani, Gaussian mixture PDF approximation and fuzzy c-means clustering with entropy regularization, Proc. of Fourth Asian Fuzzy Systems Symposium, Vol. 1, pp. 217–221, 2000.

    Google Scholar 

  18. H. Ichihashi, K. Miyagishi, K. Honda, Fuzzy c-means clustering with regularization by K-L information, Proc. of 10th IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 924–927, 2001.

    Google Scholar 

  19. A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ, 1988.

    Google Scholar 

  20. L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York, 1990.

    Google Scholar 

  21. T. Kohonen, Self-Organizing Maps, 2nd Ed., Springer, Berlin, 1997.

    Google Scholar 

  22. R. Krishnapuram, J. M. Keller, A possibilistic approach to clustering, IEEE Trans. on Fuzzy Systems, Vol. 1, pp. 98–110, 1993.

    Google Scholar 

  23. R.-P. Li and M. Mukaidono, A maximum entropy approach to fuzzy clustering, Proc. of the 4th IEEE Intern. Conf. on Fuzzy Systems (FUZZ-IEEE/IFES’95), Yokohama, Japan, March 20–24, 1995, pp. 2227–2232, 1995.

    Google Scholar 

  24. J.B. MacQueen, Some methods of classification and analysis of multivariate observations, Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., pp. 281–297, 1967.

    Google Scholar 

  25. G. McLachlan, D. Peel, Finite Mixture Models, Wiley, New York, 2000.

    Google Scholar 

  26. S. Miyamoto, Fuzzy Sets in Information Retrieval and Cluster Analysis, Kluwer, Dordrecht, 1990.

    Google Scholar 

  27. S. Miyamoto, M. Mukaidono, Fuzzy \(c\)-means as a regularization and maximum entropy approach, Proc. of the 7th International Fuzzy Systems Association World Congress (IFSA’97), June 25–30, 1997, Prague, Czech, Vol. II, pp. 86–92, 1997.

    Google Scholar 

  28. S. Miyamoto, Introduction to Cluster Analysis, Morikita-Shuppan, Tokyo, 1999 (in Japanese).

    Google Scholar 

  29. S. Miyamoto, D. Suizu, Fuzzy \(c\)-means clustering using kernel functions in support vector machines, Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol. 7, No. 1, pp. 25–30, 2003.

    Google Scholar 

  30. S. Miyamoto, H. Ichihashi, K. Honda, Algorithms for Fuzzy Clustering, Springer, Berlin, 2008.

    Google Scholar 

  31. S. Miyamoto, Statistical and non-statistical models in clustering: an introduction and recent topics, A. Okada, D. Vicari, G. Ragozini, Eds., Analysis and Modelling of Complex Data in Behavioural and Social Sciences, JCS-CLADAG 12, Anacapri, Italy, Sept. 3–4, 2012, Cleup, Padova, ISBN 978-88-6129-916-0, pp. 3–6 (Web and USB Proc.) 2012.

    Google Scholar 

  32. S. Miyamoto, An Overview of Hierarchical and Non-hierarchical Algorithms of Clustering for Semi-supervised Classification, V. Torra et al. (Eds.): MDAI 2012, LNAI 7647, pp. 1–10, 2012.

    Google Scholar 

  33. S. Miyamoto, Inductive and Non-inductive Methods of Clustering, Proc. of 2012 IEEE International Conference on Granular Computing, Aug. 11–12, Hangzhou, China, pp. 12–17, 2012.

    Google Scholar 

  34. R.A. Redner, H.F. Walker, Mixture densities, maximum likelihood and the EM algorithm, SIAM Review, Vol. 26, No. 2, pp. 195–239, 1984.

    Google Scholar 

  35. K. Rose, E. Gurewitz, and G. Fox, “A deterministic annealing approach to clustering,” Pattern Recognition Letters, Vol. 11, pp. 589–594, 1990.

    Google Scholar 

  36. B. Schölkopf, A.J. Smola, Learning with Kernels, the MIT Press, 2002.

    Google Scholar 

  37. N. Shental, A. Bar-Hillel, T. Hertz, D. Weinshall, Computing Gaussian mixture models with EM using equivalence constraints, In: Advances in Neural Information Processing Systems, Vol. 16, 2004.

    Google Scholar 

  38. V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

    Google Scholar 

  39. V.N. Vapnik, The Nature of Statistical Learning Theory: 2nd Ed., Springer, New York, 2000.

    Google Scholar 

  40. N. Wang, X. Li, X. Luo, Semi-supervised Kernel-based Fuzzy \(c\)-Means with Pairwise Constraints, Proc. of WCCI 2008, pp. 1099–1103, 2008.

    Google Scholar 

  41. Wishart, D.: Mode analysis: a generalization of nearest neighbour which reduces chaining effects, In: A.J. Cole, ed., Numerical Taxonomy, Proc. Colloq., in Numerical Taxonomy, Univ. of St. Andrews, pp. 283–311, 1968.

    Google Scholar 

  42. L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, Vol. 3, pp. 177–200, 1971.

    Google Scholar 

  43. X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, Morgan and Claypool, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaaki Miyamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Miyamoto, S. (2017). Contributions of Fuzzy Concepts to Data Clustering. In: Torra, V., Dahlbom, A., Narukawa, Y. (eds) Fuzzy Sets, Rough Sets, Multisets and Clustering. Studies in Computational Intelligence, vol 671. Springer, Cham. https://doi.org/10.1007/978-3-319-47557-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47557-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47556-1

  • Online ISBN: 978-3-319-47557-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics