Skip to main content

Top-Down Approaches in Physics

  • Chapter
  • First Online:
Knowledge and Time
  • 987 Accesses

Abstract

Chapters 6 and 7 contain Primas’ account of the conceptual lessons of quantum physics. They contrast the familiar bottom-up approach (Chap. 6) with a less discussed top-down point of view (Chap. 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Compare Houtappel et al. (1965, p. 596) and Wigner (1964b). The distinction between initial conditions and laws of nature is due to Newton’s (1729) Philosophiae Naturalis Principia Mathematica, even though in an implicit fashion.

  2. 2.

    The term physicalism was introduced into philosophy by Otto Neurath (1932, p. 405, editor’s translation): “There are no ‘explanations’ which would not be physical statements”, and Rudolf Carnap (1932, p. 463): “Each matter of fact in science can be explained as a physical matter of fact, i.e. by quantitatively determinable properties of a space-time position”. Later, Herbert Feigl (1963, pp. 227f) stated that “physicalism claims that the facts and laws of the natural and the social sciences can all be derived—at least in principle—from the theoretical assumptions of physics”.

  3. 3.

    Editor’s note: Although the causal closure of the physical is still defended by influential philosophers of science today (e.g., Spurrett 1999; Papineau 2001), there is an increasing number of cautious and critical voices as well (e.g., Montero 2003; Bishop 2006; Atmanspacher and Filk 2012).

  4. 4.

    From a letter by Pauli to Heisenberg of June 15, 1935 (von Meyenn 1985, p. 404, editor’s translation).

  5. 5.

    This is demonstrated by the Unruh effect (Unruh 1976). Compare the review by Crispino et al. (2008).

  6. 6.

    In his fundamental study of the relation between a W*-algebra (also called von Neumann algebra) and its commutant, Tomita (1967) discovered that each left Hilbert algebra is associated with a one-parameter group of automorphisms of the left von Neumann algebra, and that every faithful normal positive functional \(\rho \) on a von Neumann algebra ℳ induces a left Hilbert algebra structure on ℳ and gives rise to a one-parameter group \(\{\sigma_{\rho ,s}|s\in \mathbb{R}\}\) of automorphisms of ℳ. His original paper was difficult to read and little notice was taken of it until Takesaki (1970) gave a full account of Tomita’s theory.

  7. 7.

    Compare also Araki (1968), Bratteli and Robinson (1981).

  8. 8.

    See Takesaki (1970). A state functional \(\rho \in \mathcal{M}_{*}\) on a W*-algebra ℳ with a \(\sigma \)-weakly continuous one-parameter group of automorphism \(\alpha_{s}\) of ℳ satisfies the KMS condition at the parameter value \(\beta \) (\(0<\beta <\infty \)) with respect to \(\{\alpha_{s}|s\in \mathbb{R}\}\) if for any \(A,B\in \mathcal{M}\) there exists a complex function \(z\mapsto F_{A,B}(z)\) analytic on the strip \(\{z\in \mathbb{C} | 0<\text{Im} z<\beta \}\) and continuous on the closure of this strip such that \(F_{A,B}(s)=\rho \{\alpha_{s}(A) B \} , F_{A,B}(s+i\beta ) = \rho \{B \alpha_{s}(A) \}\) for all \(s\in \mathbb{R}\).

    Since the basic elements of modular theory were discovered independently by mathematicians and physicists, there is still a trivial but unfortunate discrepancy in the formulation of the KMS condition. Mathematicians define the modular flow with opposite sign than physicists, so that there is a sign change in the definition of the KMS condition.

  9. 9.

    See also Landsman’s review of Haag’s book (Landsman 1996, p. 512). Editor’s note: For a compact recent introduction into the basic concepts of algebraic quantum field theory with slightly different emphases than in the following sections see Fredenhagen (2015).

  10. 10.

    The Minkowski space ℳ is the simplest solution of the Einstein field equations in the absence of matter and provides the natural mathematical background of the special theory of relativity. It is a four-dimensional real vector space equipped with a non-degenerate symmetric bilinear form \(g:\mathscr{M}\times \mathscr{M}\to \mathbb{R}\). A point \(\boldsymbol {x}\) in Minkowski space ℳ is called an event and can be described by the Cartesian space-time coordinates \(\mathbf{x}= (x^{0},x^{1},x^{2},x^{3}) = (c t, x,y,z)\), where \(c\) is the speed of light in vacuum. The Minkowski inner product is a non-degenerate symmetric bilinear form of signature \((-,+,+,+)\), defined by \(g(\mathbf{x},\bar{\mathbf{x}})= \sum_{\mu ,\nu =0}^{3}g_{\mu ,\nu }x ^{\mu } \bar{x}^{\nu }\), where \(g_{\mu ,\nu }\) represents the geometry of space-time. The Minkowski metric is given by the diagonal matrix \((g_{\mu ,\nu })\) with elements \(g_{0,0}=- 1\), \(g_{1,1}=g_{2,2}=g _{3,3}=+ 1\), so that \(g(\boldsymbol {x},\bar{\boldsymbol{x}})=- x^{0} \bar{x}^{0}+x^{1} \bar{x}^{1} + x^{2} \bar{x}^{2}+x^{3} \bar{x}^{3}\). The Minkowski norm \(\|\boldsymbol {x}\|\) of a vector \(\boldsymbol {x}\) is \(\|\boldsymbol {x}\|^{2}=-(x^{0})^{2}+(x^{1})^{2}+(x ^{2})^{2}+ (x^{3})^{2}, x^{0}=c t\), which can be positive, negative or zero.

  11. 11.

    The relation between the traditional way to formulate quantum field theory in terms of distribution-valued fields and local algebraic quantum field theory is not quite trivial. Since in general fields are not observables, a physical theory is not characterized by the smeared fields \(\varphi (f)\) but by the net \(\mathscr{O}\to \mathcal{M}(\mathscr{O})\) of W*-algebras \(\mathcal{M(\mathscr{O})}\) of local observables. For details compare Roberts (2004).

  12. 12.

    http://www.imar.ro/~purice/conferences/2011/EUNCG4/Talks/Cadamuro.pdf.

  13. 13.

    For more details, precise formulations and proofs compare Pauli (1955), Lüders and Zumino (1958), Streater and Wightman (1964).

  14. 14.

    Compare the introductions by Horuzhy (1990), Haag (1992), Baumgärtel and Wollenberg (1992), and Araki (1999).

  15. 15.

    Non-pure state functionals are often called “mixed states” but we shall avoid this misleading term since they do not refer to any kind of (classical) mixture.

  16. 16.

    More generally, for every vector state there exist observables localized in complementary wedge-shaped regions in Minkowski space-time that maximally violate Bell’s inequalities (Summers and Werner 1987). For further generalizations compare also Summers and Werner (1988, 1995).

  17. 17.

    This result is related to the Unruh effect (Unruh 1976), which states that to a uniformly accelerated observer the vacuum state in Minkowski space-time appears as a modular \(\beta_{U}\)-KMS equilibrium state, where \(\beta_{U}=2\pi c/\hbar a\), \(a\) is the local acceleration, and \(c\) is the speed of light. The modular KMS equilibrium state is often interpreted as a thermal equilibrium state with Unruh temperature \(T_{U}=1/(k_{B}\beta_{U})\), where \(k_{B}\) is the Boltzmann constant.

  18. 18.

    Recall that Wigner (1939) identified relativistic particle states with irreducible positive energy representations of the Poincaré group.

  19. 19.

    The split property is a consequence of the Buchholz-Wichmann nuclearity condition. See Buchholz and Wichmann (1986) and Buchholz et al. (1987).

  20. 20.

    A binary relation is called an equivalence relation if and only if it is reflexive, symmetric and transitive. If \(a\sim b\) means “\(a\) is equivalent to \(b\)”, then the following independent conditions are valid: (i) reflexivity: \(a\sim a\); (ii) symmetry: \(a\sim b\) implies \(b\sim a\); (iii) transitivity: \(a\sim b\) and \(b\sim c\) imply \(a\sim c\). Compare Eq. (2.3a)–(2.3c).

  21. 21.

    Redlich (1968) objected correctly that this postulate is not a “law”, but he missed the crucial point that the transitivity of a relation between pairs of systems implies the existence of a state function which takes on the same value for all such systems.

  22. 22.

    Carathéodory stated this result without proof. Many later authors who referred to it did tacitly assume certain uniqueness and continuity properties. For a precise formulation see Whaples (1952) and Lenker (1979).

  23. 23.

    For some improvements in the technical clustering conditions compare Bratteli and Robinson (1981, Chap. 5.4). The clustering requirement excludes the mixture of different phases and selects a pure phase.

  24. 24.

    Recall that a normal state \(\rho \in \mathcal{M}_{*}\) of a W*-algebra ℳ is faithful if for every \(M\in \mathcal{M}\) the relation \(\rho (M)=0\) implies \(M=0\). Every faithful normal state \(\rho \) on a W*-algebra ℳ defines a one-parameter family \(\{\sigma_{\rho ,s}|s\in \mathbb{R}\}\) of modular automorphisms \(\sigma_{\rho ,s}\) on ℳ (compare Appendix A.5).

References

  • Araki H (1968) Multiple time analyticity of a statistical state satisfying the KMS boundary condition. Publ Res Inst Math Sci Kyoto Univ 4:361–371. Quoted in Sect 7.3

    Article  MathSciNet  MATH  Google Scholar 

  • Araki H (1999) Mathematical theory of quantum fields. Oxford University Press, Oxford. Quoted in Sect 7.3

    MATH  Google Scholar 

  • Atmanspacher H (2009) Contextual emergence. Scholarpedia 4(3):7997. Available at www.scholarpedia.org/article/Contextual_emergence. Quoted in Sect 6.5

    Article  ADS  Google Scholar 

  • Atmanspacher H, Filk T (2012) Determinism, causation, prediction, and the affine time group. J Conscious Stud 19(5/6):75–94. Quoted in Sects 7.1, 12.3

    Google Scholar 

  • Baumgärtel H (1995) Operator algebraic methods in quantum field theory, vol 7. Akademie, Berlin. Quoted in Sects 7.3, 8.5

    MATH  Google Scholar 

  • Baumgärtel H, Wollenberg M (1992) Causal nets of operator algebras. Mathematical aspects of algebraic quantum field theory. Akademie, Berlin. Quoted in Appendix A.5

    MATH  Google Scholar 

  • Bishop RC (2006) The hidden premise in the causal argument for physicalism. Analysis 66:44–52. Quoted in Sect 7.1

    Article  Google Scholar 

  • Bisognano JJ, Wichmann EH (1975) On the duality condition for a Hermitian scalar field. J Math Phys 16:985–1007. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bisognano JJ, Wichmann EH (1976) On the duality condition for quantum fields. J Math Phys 17:303–321. Quoted in Sect 7.3

    Article  ADS  MathSciNet  Google Scholar 

  • du Bois-Reymond E (1872) Die Grenzen des Naturerkennens. Veit & Comp, Leipzig. Quoted in Sect 7.1

    MATH  Google Scholar 

  • Borchers HJ, Yngvason J (2001) On the PCT-theorem in the theory of local observables. In: Longo R (ed) Mathematical physics in mathematics and physics: quantum and operator algebraic aspects. American Mathematical Society, Providence, pp 39–64. Quoted in Sect 7.3

    Google Scholar 

  • Born M (1921) Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik. Phys Z 22:218–224, 249–254, 282–286. Quoted in Sect 7.1

    Google Scholar 

  • Bratteli O, Robinson DW (1981) Operator algebras and quantum statistical mechanics. II. Equilibrium states models in quantum statistical mechanics. Springer, New York. Quoted in Sects 7.3, 7.4, 8.5, 9.4, Appendix A.2

    MATH  Google Scholar 

  • Brunetti R, Guido D, Longo R (2002) Modular localization and Wigner particles. Rev Math Phys 14:759–785. Quoted in Sect 7.3

    Article  MathSciNet  MATH  Google Scholar 

  • Buchholz D, Wichmann EH (1986) Causal independence and the energy-level density of states in local quantum field theory. Commun Math Phys 106:321–344. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Buchholz D, D’Antoni C, Fredenhagen K (1987) The universal structure of local algebras. Commun Math Phys 111:123–135. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Buchholz D, Solveen C (2013) Unruh effect and the concept of temperature. Class Quantum Gravity 30:085011. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bunge M (1973) Philosophy of physics. Reidel, Dordrecht. Quoted in Sects 6.1, 7.1

    Book  Google Scholar 

  • Bunge M (1985) Treatise on basic philosophy, volume 7. Epistemology & methodology, III: philosophy of science and technology. Reidel, Dordrecht. Quoted in Sect 7.1

    Book  Google Scholar 

  • Carathéodory C (1909) Untersuchungen über die Grundlagen der Thermodynamik. Math Ann 67:355–386. Quoted in Sects 7.1, 7.4

    Article  MathSciNet  Google Scholar 

  • Carnap R (1932) Die physikalische Spache als Universalsprache der Wissenschaft. Erkenntnis 2:432–465. Quoted in Sect 7.1

    Article  MATH  Google Scholar 

  • Carnap R (1936) Testability and meaning. Philos Sci 3:419–471. Quoted in Sect 7.1

    Article  MATH  Google Scholar 

  • Connes A (2001) Noncommutative geometry—year 2000. In: Alon N et al. (eds) Visions in mathematics. Birkhäuser, Basel, pp 481–559. Quoted in Sects 5.5, 7.3

    Google Scholar 

  • Connes A (2005) A view of mathematics. Accessible at www.irem.uhp-nancy.fr/Lomb/maths.pdf. Quoted in Sect 7.4

  • Connes A, Rovelli C (1994) Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Class Quantum Gravity 11:2899–2917. Quoted in Sect 7.4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Connes A, Størmer E (1978) Homogeneity of the state space of factors of type III1. J Funct Anal 28:187–196. Quoted in Sect 7.3

    Article  MATH  Google Scholar 

  • Crick F (1994) The astonishing hypothesis. The scientific search for the soul. Simon and Schuster, London. Quote in Sect 7.1

    Google Scholar 

  • Crispino LCB, Higuchi A, Matsas GEA (2008) The Unruh effect and its applications. Rev Mod Phys 80:787–838. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond A 117:610–624. Quoted in Sect 7.3

    Article  ADS  MATH  Google Scholar 

  • Doplicher S, Longo R (1984) Standard and split inclusions of von Neumann algebras. Invent Math 75:493–536. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Driessler W (1977) On the type of local algebras in quantum field theory. Commun Math Phys 53:295–297. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Eddington A (1918) Report on the relativity theory of gravitation. Fleetway, London. Quoted in Sect 7.2

    MATH  Google Scholar 

  • Einstein A (1919) Time, space, and gravitation. The Times (London) 28 November 1919, pp 13–14. Quoted in Sect 7.2

    Google Scholar 

  • Ellis GFR (2002) Cosmology and local physics. Int J Mod Phys A 17:2667–2671. Quoted in Sect 7.1

    Article  ADS  MathSciNet  Google Scholar 

  • Ellis GFR (2008) On the nature of causation in complex systems. Trans R Soc S Afr 63:69–84. Quoted in Sect 7.1

    Article  Google Scholar 

  • Ellis GFR (2009) Top-down causation and the human brain. In: Murphy N, Ellis GFR, O’Connor T (eds) Downward causation and the neurobiology of free will. Springer, Berlin, pp 63–81. Quoted in Sect 7.1

    Chapter  Google Scholar 

  • de Facio B, Taylor DC (1973) Commutativity and causal independence. Phys Rev D 8:2729–2731. Quoted in Sect 7.3

    Article  ADS  MathSciNet  Google Scholar 

  • Feigl H (1963) Physicalism, unity of science and the foundation of psychology. In: Schilpp PA (ed) The philosophy of Rudolf Carnap. Open Court, La Salle, pp 227–267. Quoted in Sect 7.1

    Google Scholar 

  • Feyerabend PK (1962) Explanation, reduction and empiricism. In: Feigl H, Maxwell G (eds) Minnesota studies in the philosophy of science III. University of Minnesota Press, Minneapolis, pp 28–97. Quoted in Sect 7.1

    Google Scholar 

  • Fowler R, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge. Quoted in Sects 7.1, 7.4

    MATH  Google Scholar 

  • Fraser D (2008) The fate of “particles” in quantum field theories with interactions. Stud Hist Philos Mod Phys 39:841–858. Quoted in Sect 7.3

    Article  MathSciNet  MATH  Google Scholar 

  • Fredenhagen K (1993) Global observables in local quantum physics. In: Araki H, Ito LR, Kishimoto A, Ojima I (eds) Quantum and non-commutative analysis. Kluwer Academic, Dordrecht, pp 41–51. Quoted in Sect 7.3

    Chapter  Google Scholar 

  • Fredenhagen K (2015) An introduction to quantum field theory. In: Brunetti R et al. (eds) Advances in algebraic quantum field theory. Springer, Berlin, pp 1–30. Quoted in Sect 7.3

    Chapter  Google Scholar 

  • Guggenheim EA (1949) Thermodynamics. An advanced treatment for chemists and physicists. North-Holland, Amsterdam. Quoted in Sect 7.1

    MATH  Google Scholar 

  • Haag R (1970) Observables and fields. In: Deser S, Grisaru M, Pendleton H (eds) Lectures on elementary particles and quantum field theory, vol 2. MIT Press, Cambridge, pp 1–89. Quoted in Sect 7.3

    Google Scholar 

  • Haag R (1992) Local quantum physics. Springer, Berlin. Quoted in Sect 7.3, Appendix A.5

    Book  MATH  Google Scholar 

  • Haag R (1999) Objects, events, and localization. In: Blanchard P, Jadczyk AZ (eds) Quantum future. Springer, Berlin, pp 58–79. Quoted in Sect 7.3

    Google Scholar 

  • Haag R (2010) Some people and some problems met in half a century of commitment to mathematical physics. Eur Phys J H 35:263–307. Quoted in Sect 7.3

    Article  MathSciNet  Google Scholar 

  • Haag R, Hugenholtz NM, Winnink M (1967) On the equilibrium states in quantum statistical mechanics. Commun Math Phys 5:215–236. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Haag R, Kastler D (1964) An algebraic approach to quantum field theory. J Math Phys 5:848–861. Quoted in Sects 6.5, 7.3, 12.1

    Article  ADS  MATH  Google Scholar 

  • Haag R, Kastler D, Trych-Pohlmeyer EB (1974) Stability and equilibrium states. Commun Math Phys 38:173–193. Quoted in Sect 7.4

    Article  ADS  MathSciNet  Google Scholar 

  • Haken H (1983) Synergetics. Springer, Berlin. Quoted in Sect 7.2

    Book  MATH  Google Scholar 

  • Halvorson H (2001) Locality, localization, and the particle concept. Topics in the foundation of quantum field theory. Dissertation, University of Pittsburgh. Quoted in Sects 7.3, 8.5

    Google Scholar 

  • Hegerfeldt GC (1974) Remark on causality and particle localization. Phys Rev D 10:3320–3321. Quoted in Sect 7.3

    Article  ADS  Google Scholar 

  • Heisenberg W, Pauli W (1929) Zur Quantendynamik der Wellenfelder. Z Phys 56:1–61. Quoted in Sect 7.3

    Article  ADS  MATH  Google Scholar 

  • Hertz H (1892) Untersuchungen über die Ausbreitung der elektrischen Kraft. Johann Ambrosius Barth, Leipzig. Quoted in Sect 7.2

    MATH  Google Scholar 

  • Hertz H (1896) Miscellaneous papers. Macmillan, London, transl by Jones DE and Schott GA. Quoted in Sect 7.2

    MATH  Google Scholar 

  • Horuzhy SS (1990) Introduction to algebraic quantum field theory. Kluwer Academic, Dordrecht. Quoted in Sect 7.3

    Google Scholar 

  • Houtappel RMF, Van Dam H, Wigner EP (1965) The conceptual basis and use of the geometric invariance principles. Rev Mod Phys 37:595–632. Quoted in Sect 7.1

    Article  ADS  MathSciNet  Google Scholar 

  • Jordan P (1927) Kausalität und Statistik in der modernen Physik. Naturwissenschaften 15:105–110. Quoted in Sect 7.3

    Article  ADS  MATH  Google Scholar 

  • Jordan P, Wigner E (1928) Über das Paulische Äquivalenzverbot. Z Phys 47:631–651. Quoted in Sect 7.3

    Article  ADS  MATH  Google Scholar 

  • Kadison RV, Ringrose JR (1983) Fundamentals of the theory of operator algebras. I. Elementary theory. Academic Press, New York. Quoted in Sect 7.3

    MATH  Google Scholar 

  • Kadison RV, Ringrose JR (1986) Fundamentals of the theory of operator algebras. II. Advanced theory. Academic Press, Orlando. Quoted in Sects 7.3, 8.5, 9.7, Appendices A.2, A.5

    MATH  Google Scholar 

  • Kemeny JG, Oppenheim P (1956) On reduction. Philos Stud 7:6–19. Quoted in Sect 7.1

    Article  Google Scholar 

  • Landau LJ (1987a) On the non-classical structure of the vacuum. Phys Lett A 123:115–118. Quoted in Sect 7.3

    Article  ADS  MathSciNet  Google Scholar 

  • Landau LJ (1987b) On the violation of Bell’s inequality in quantum theory. Phys Lett A 120:54–56. Quoted in Sect 7.3

    Article  ADS  MathSciNet  Google Scholar 

  • Landsman NP (1996) Essay review: local quantum physics. Stud Hist Philos Mod Phys 27:511–524. Erratum: Stud Hist Philos Mod Phys 28:i–ii (1997). Quoted in Sect 7.3

    Article  Google Scholar 

  • Lenker TD (1979) Carathéodory’s concept of temperature. Synthese 42:167–171. Quoted in Sect 7.4

    Article  MathSciNet  Google Scholar 

  • Lüders G (1954) On the equivalence of invariance under time reversal and under particle-antiparticle conjugation for relativistic field theories. K Dan Vidensk Selsk 28(5):1–17. Quoted in Sect 7.3

    MathSciNet  MATH  Google Scholar 

  • Lüders G, Zumino B (1958) Connection between spin and statistics. Phys Rev 110:1450–1453. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • von Meyenn K (ed) (1985) Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band II: 1930–1939. Springer, Berlin. Quoted in Sect 7.2

    Google Scholar 

  • Montero B (2003) Varieties of causal closure. In: Walter S, Heckmann H-D (eds) Physicalism and mental causation. Imprint Academic, Exeter, pp 173–187. Quoted in Sect 7.1

    Google Scholar 

  • Mund J, Schroer B, Yngvason J (2006) String-localized quantum fields and modular localization. Commun Math Phys 268:621–672. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nagel E (1961) The structure of science. Harcourt, Brace & World, New York. Quoted in Sect 7.1

    Google Scholar 

  • Neurath O (1932) Soziologie im Physikalismus. Erkenntnis 2:393–431. Quoted in Sect 7.1

    Article  MATH  Google Scholar 

  • Neurath O (1983) Philosophical papers 1913–1946. Reidel, Dordrecht. Quoted in Sect 7.1

    Book  Google Scholar 

  • Newton I (1729) The mathematical principles of natural philosophy. University of California Press, Berkeley, Cajori F (ed), transl by Motte A. Quoted in Sects 7.1, 8.3

    MATH  Google Scholar 

  • Papineau D (2001) The rise of physicalism. In: Gillett C, Loewer BM (eds) Physicalism and its discontents. Cambridge University Press, Cambridge, pp 3–36. Quoted in Sect 7.1

    Chapter  Google Scholar 

  • Pauli W (1955) Exclusion principle, Lorentz group and reflection of space-time and charge. In: Pauli W (ed) Niels Bohr and the development of physics. Pergamon, London, pp 30–51. Quoted in Sect 7.3

    Google Scholar 

  • Perez JF, Wilde IF (1977) Localization and causality in relativistic quantum mechanics. Phys Rev D 16:315–317. Quoted in Sect 7.3

    Article  ADS  Google Scholar 

  • Primas H (1981) Chemistry, quantum mechanics, and reductionism. Springer, Berlin. Quoted in Sects 6.2, 6.4, 6.5, 7.1, 8.5, and in the Preface

    Book  Google Scholar 

  • Primas H (1985) Kann Chemie auf Physik reduziert werden? Erster Teil: Das Molekulare Programm, Zweiter Teil: Die Chemie der Makrowelt. Chem Unserer Zeit 19:109–119, 160–166. Quoted in Sect 7.1

    Article  Google Scholar 

  • Redhead M (1995) More ado about nothing. Found Phys 25:123–137. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Redlich O (1968) Fundamental thermodynamics since Carathéodory. Rev Mod Phys 40:556–563. Quoted in Sect 7.4

    Article  ADS  Google Scholar 

  • Reeh H, Schlieder S (1961) Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Feldern. Nuovo Cimento 22:1051–1068. Quoted in Sect 7.3

    Article  MATH  Google Scholar 

  • Roberts JE (2004) More lectures on algebraic quantum field theory. In: Doplicher S, Longo R (eds) Noncommutative geometry. Springer, Berlin, pp 321–338. Quoted in Sect 7.3

    Google Scholar 

  • Rovelli C (1993a) Statistical mechanics of gravity and the thermodynamical origin of time. Class Quantum Gravity 10:1549–1566. Quoted in Sect 7.4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rovelli C (1993b) The statistical state of the universe. Class Quantum Gravity 10:1567–1578. Quoted in Sect 7.4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rovelli C (2001) Quantum spacetime: what do we know? In: Callender C, Huggett N (eds) Physics meets philosophy at the Planck scale: contemporary theories in quantum gravity. Cambridge University Press, Cambridge, pp 101–122. Quoted in Sect 7.4

    Chapter  Google Scholar 

  • Rovelli C (2011) Forget time. Found Phys 41:1475–1490. Quoted in Sect 7.4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheibe E (1988) Paul Feyerabend und die rationalen Rekonstruktionen. In: Hoyningen-Huene P, Hirsch G (eds) Wozu Wissenschaftsphilosophie? de Gruyter, Berlin, pp 149–171. Quoted in Sect 7.1

    Google Scholar 

  • Schlick M (1985) General theory of knowledge. Open Court, Chicago. transl by Blumberg AE. Quoted in Sect 7.1

    Google Scholar 

  • Schroer B (2000) Basic quantum theory and measurement from the viewpoint of local quantum physics. In: Doebner H-D et al. (eds) Trends in quantum mechanics. World Scientific, Singapore, pp 274–286. Quoted in Sect 7.3

    Google Scholar 

  • Schroer B (2006) String theory and the crisis in particle physics. Int J Mod Phys D 17:2373–2431. Quoted in Sect 7.3

    Article  ADS  MATH  Google Scholar 

  • Schroer B (2007) New constructions in local quantum physics. In: de Monvel AB et al. (ed) Rigorous quantum field theory. Birkhäuser, Basel, pp 283–300. Quoted in Sect 7.3

    Chapter  Google Scholar 

  • Schroer B (2010a) Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I. The two antagonistic localizations and their asymptotic compatibility. Stud Hist Philos Mod Phys 41:104–127. Quoted in Sect 7.3

    Article  MathSciNet  MATH  Google Scholar 

  • Schroer B (2010b) Localization and the interface between quantum mechanics, quantum field theory and quantum gravity II. The search of the interface between QFT and QG. Stud Hist Philos Mod Phys 41:293–308. Quoted in Sect 7.3

    Article  MathSciNet  MATH  Google Scholar 

  • Schroer B (2010c) Pascual Jordan’s legacy and the ongoing research in quantum field theory. Eur Phys J H 35:377–434. Quoted in Sect 7.3

    Article  Google Scholar 

  • Segal IE (1964) Quantum fields and analysis in the solution manifolds of differential equations. In: Martin WT, Segal IE (eds) Proceedings of a conference on the theory and applications of analysis in function space. MIT Press, Cambridge, pp 129–153. Quoted in Sect 7.3

    Google Scholar 

  • Spurrett D (1999) The completeness of physics. Thesis at the University of Natal, full text available at http://cogprints.org/3379/1/DSTHESIS.pdf. Quoted in Sect 7.1

  • Strătilă S (1981) Modular theory in operator algebras. Abacus Press, Kent. Quoted in Sect 7.3

    MATH  Google Scholar 

  • Strătilă S, Zsidó L (1979) Lectures on von Neumann algebras. Abacus Press, Kent. Quoted in Sect 7.3 and Appendix A.6

    MATH  Google Scholar 

  • Streater RF, Wightman AS (1964) PCT, spin and statistics, and all that. Benjamin, New York, Quoted in Sects 6.2, 7.3

    MATH  Google Scholar 

  • Summers SJ (1990) On the independence of local algebras in quantum field theory. Rev Math Phys 2:201–247. Quoted in Sect 7.3

    Article  MathSciNet  MATH  Google Scholar 

  • Summers SJ (2009) Subsystems and independence in relativistic microscopic physics. Stud Hist Philos Mod Phys 40:133–141. Quoted in Sects 7.3, 8.5

    Article  MathSciNet  MATH  Google Scholar 

  • Summers SJ, Werner RF (1985) The vacuum violates Bell’s inequalities. Phys Lett A 110:257–259. Quoted in Sect 7.3

    Article  ADS  MathSciNet  Google Scholar 

  • Summers SJ, Werner RF (1987) Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun Math Phys 110:247–259. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Summers SJ, Werner RF (1988) Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann Inst Henri Poincaré 49:215–243. Quoted in Sect 7.3

    MathSciNet  MATH  Google Scholar 

  • Summers SJ, Werner RF (1995) On Bell’s inequalities and algebraic invariants. Lett Math Phys 33:321–334. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Swift J (1995) Gulliver’s travels: complete, authoritative text with biographical and historical contexts. Palgrave Macmillan, New York, originally published in 1726. Quoted in Sect 7.3

    Book  Google Scholar 

  • Takesaki M (1970) Tomita’s theory of modular Hilbert algebras and its applications. Springer, Berlin. Quoted in Sects 6.5, 7.3, Appendices A.5, A.6

    Book  MATH  Google Scholar 

  • Takesaki M (1979) Theory of operator algebras I. Springer, New York. Quoted in Sects 6.2, 6.5, 7.3, 8.5, Appendix A.2

    Book  MATH  Google Scholar 

  • Takesaki M (2003) Theory of operator algebras II. Springer, Berlin. Quoted in Sects 7.3, 8.5, Appendices A.5, A.6

    Book  MATH  Google Scholar 

  • Tomita M (1967) On canonical forms of von Neumann algebras (in Japanese). In: Fifth functional analysis symposium, Sendai, Mathematical Institute, Tohoku University. Compare Math Rev 0284822 (44 #2046) by Sakai S. Quoted in Sect 7.3 and Appendix A.5

    Google Scholar 

  • Unruh WG (1976) Notes on black-hole evaporation. Phys Rev D 14:870–892. Quoted in Sect 7.3

    Article  ADS  Google Scholar 

  • van der Waals JD (1927) Lehrbuch der Thermostatik, erster Teil: Allgemeine Thermostatik. Ambrosius Barth, Leipzig. Quoted in Sect 7.1

    MATH  Google Scholar 

  • Weinberg S (1972) Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley, New York. Quoted in Sect 7.3

    Google Scholar 

  • Werner RF (1987) Local preparability of states and the split property in quantum field theory. Lett Math Phys 13:325–329. Quoted in Sect 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Whaples G (1952) Carathéodory’s temperature equations. J Ration Mech Anal 1:301–307. Quoted in Sect 7.4

    MathSciNet  MATH  Google Scholar 

  • Wigner EP (1939) On unitary representations of the inhomogeneous Lorentz group. Ann Math 40:149–204. Quoted in Sects 6.2, 7.3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wigner EP (1964b) Events, laws of nature, and invariance principles. Science 145:995–999. Quoted in Sect 7.1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Primas, H. (2017). Top-Down Approaches in Physics. In: Atmanspacher, H. (eds) Knowledge and Time. Springer, Cham. https://doi.org/10.1007/978-3-319-47370-3_7

Download citation

Publish with us

Policies and ethics