Skip to main content

Targeting Chemotherapy Resistance in Glioblastoma Through Modulation of ABC Transporters

  • Chapter
  • First Online:
Resistance to Targeted Therapies Against Adult Brain Cancers

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT))

  • 555 Accesses

Abstract

Glioblastoma (GBM) is a highly aggressive Grade IV solid central nervous system neoplasm with an incidence rate of 3–4 per 100,000 people worldwide and the average 5-year survival rate of GBM patients is less than 5 %, leading to the fact that GBM is the most lethal form of brain tumor. The presence of several adenosine triphosphate-binding cassette (ABC) transporters is thought to contribute to the sustained progression of GBM tumours, inhibiting and rapidly removing anticancer drugs from GBM tumour cells. ABC transporters are transmembrane pumps which use ATP hydrolysis to facilitate translocation of substrates across cellular membranes. Overexpression of ABC transporters including P-gp (ABCB1), ABCCs, or MRPs and breast cancer-resistance protein (BCRP, ABCG2) on the GBM cells themselves is thought to instill chemoresistance and active drug extrusion at the tumor site rendering the temporal effect of successfully administered drugs negligible, if at all. In this regard, the role of individual ABC transporters and their contribution to chemoresistance and potential as targeted therapies of GBM chemosensitization will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

ATPase:

Adenosine triphosphatase

B-BB:

Blood-brain barrier

B-CFB:

Blood-cerebrospinal fluid barrier

B-TB:

Blood-tumor barrier

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

EGF:

Epithelial growth factor

Gy:

Gray (unit of ionizing radiation)

PD-1:

Programmed cell death protein 1

VEGF:

Vascular endothelial growth factor

References

  1. Xu YY, et al. Development of targeted therapies in treatment of glioblastoma. Cancer Biol Med. 2015;12(3):223–37.

    PubMed  PubMed Central  Google Scholar 

  2. Begley DJ. ABC transporters and the blood-brain barrier. Curr Pharm Des. 2004;10(12):1295–312.

    Article  CAS  PubMed  Google Scholar 

  3. Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci. 2010;31(6):246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller DS. Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther. 2015;97(4):395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier. Rev Neurosci. 2010;21(1):29–53.

    Article  CAS  PubMed  Google Scholar 

  6. Abe T, et al. Possible involvement of multidrug-resistance-associated protein (MRP) gene expression in spontaneous drug resistance to vincristine, etoposide and adriamycin in human glioma cells. Int J Cancer. 1994;58(6):860–4.

    Article  CAS  PubMed  Google Scholar 

  7. Benyahia B, et al. Multidrug resistance-associated protein MRP1 expression in human gliomas: chemosensitization to vincristine and etoposide by indomethacin in human glioma cell lines overexpressing MRP1. J Neurooncol. 2004;66(1-2):65–70.

    Article  CAS  PubMed  Google Scholar 

  8. Calatozzolo C, et al. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J Neurooncol. 2005;74(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  9. Dallas S, Schlichter L, Bendayan R. Multidrug resistance protein (MRP) 4- and MRP 5-mediated efflux of 9-(2-phosphonylmethoxyethyl)adenine by microglia. J Pharmacol Exp Ther. 2004;309(3):1221–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nies AT, et al. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience. 2004;129(2):349–60.

    Article  CAS  PubMed  Google Scholar 

  11. Regina A, et al. Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J Neurochem. 1998;71(2):705–15.

    Article  CAS  PubMed  Google Scholar 

  12. Tivnan A, et al. Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci. 2015;9(218).

    Google Scholar 

  13. Ostrom QT, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16 Suppl 4:iv1–63.

    Article  PubMed  PubMed Central  Google Scholar 

  14. IARC. Cancer incidence in five continents, vol. X. Lyon: IARC Scientific Publication; 2007. p. 164.

    Google Scholar 

  15. Jelsma R, Bucy PC. The treatment of glioblastoma multiforme of the brain. J Neurosurg. 1967;27(5):388–400.

    Article  CAS  PubMed  Google Scholar 

  16. Vinjamuri M, et al. Comparative analysis of temozolomide (TMZ) versus 1,3-bis (2-chloroethyl)-1 nitrosourea (BCNU) in newly diagnosed glioblastoma multiforme (GBM) patients. J Neurooncol. 2009;91(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  17. Stupp R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  18. Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6(8):591–602.

    Article  PubMed  CAS  Google Scholar 

  19. Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76(1):22–76.

    Article  PubMed  CAS  Google Scholar 

  20. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2001;7:141.

    Google Scholar 

  22. Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res. 2001;42(7):1007–17.

    CAS  PubMed  Google Scholar 

  23. Bianchet MA, et al. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J Bioenerg Biomembr. 1997;29(5):503–24.

    Article  CAS  PubMed  Google Scholar 

  24. Randak CO, Ver Heul AR, Welsh MJ. Demonstration of phosphoryl group transfer indicates that the ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) exhibits adenylate kinase activity. J Biol Chem. 2012;287(43):36105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azarian SM, Travis GH. The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease (ABCR). FEBS Lett. 1997;409(2):247–52.

    Article  CAS  PubMed  Google Scholar 

  26. Cremers FP, et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet. 1998;7(3):355–62.

    Article  CAS  PubMed  Google Scholar 

  27. Westerfeld C, Mukai S. Stargardt’s disease and the ABCR gene. Semin Ophthalmol. 2008;23(1):59–65.

    Article  PubMed  Google Scholar 

  28. Materna V, Lage H. Homozygous mutation Arg768Trp in the ABC-transporter encoding gene MRP2/cMOAT/ABCC2 causes Dubin-Johnson syndrome in a Caucasian patient. J Hum Genet. 2003;48(9):484–6.

    Article  CAS  PubMed  Google Scholar 

  29. Wada M, et al. Mutations in the canalicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum Mol Genet. 1998;7(2):203–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gillet JP, Gottesman MM. Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr Pharm Biotechnol. 2011;12(4):686–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ozvegy-Laczka C, et al. Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resist Updat. 2005;8(1-2):15–26.

    Article  PubMed  CAS  Google Scholar 

  32. Ueda K. Multidrug resistance of cancer cells mediated by ABC superfamily transporters. Nihon Rinsho. 1997;55(5):1024–9.

    CAS  PubMed  Google Scholar 

  33. van der Pol MA, et al. Function of the ABC transporters, P-glycoprotein, multidrug resistance protein and breast cancer resistance protein, in minimal residual disease in acute myeloid leukemia. Haematologica. 2003;88(2):134–47.

    PubMed  Google Scholar 

  34. Eraly SA. Implications of the alternating access model for organic anion transporter kinetics. J Membr Biol. 2008;226(1-3):35–42.

    Article  CAS  PubMed  Google Scholar 

  35. Holland IB. ABC transporters, mechanisms and biology: an overview. Essays Biochem. 2011;50(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  36. Furuta T, et al. Analysis of the structural and functional roles of coupling helices in the ATP-binding cassette transporter MsbA through enzyme assays and molecular dynamics simulations. Biochemistry. 2014;53(26):4261–72.

    Article  CAS  PubMed  Google Scholar 

  37. Fletcher JI, et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  38. Albrecht C, Viturro E. The ABCA subfamily--gene and protein structures, functions and associated hereditary diseases. Pflugers Arch. 2007;453(5):581–9.

    Article  CAS  PubMed  Google Scholar 

  39. Broccardo C, Luciani M, Chimini G. The ABCA subclass of mammalian transporters. Biochim Biophys Acta. 1999;1461(2):395–404.

    Article  CAS  PubMed  Google Scholar 

  40. Piehler AP, et al. ABCA-transporters: regulators of cellular lipid transport. Tidsskr Nor Laegeforen. 2007;127(22):2930–3.

    PubMed  Google Scholar 

  41. Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011;278(18):3226–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dvorakova L, et al. Eight novel ABCD1 gene mutations and three polymorphisms in patients with X-linked adrenoleukodystrophy: the first polymorphism causing an amino acid exchange. Hum Mutat. 2001;18(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  43. Kang JW, et al. Isolated cerebellar variant of adrenoleukodystrophy with a de novo adenosine triphosphate-binding cassette D1 (ABCD1) gene mutation. Yonsei Med J. 2014;55(4):1157–60.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kruska N, et al. Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochim Biophys Acta. 2015;1852(5):925–36.

    Article  CAS  PubMed  Google Scholar 

  45. Bram EE, et al. C421 allele-specific ABCG2 gene amplification confers resistance to the antitumor triazoloacridone C-1305 in human lung cancer cells. Biochem Pharmacol. 2007;74(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Zuo LF, Guo JW. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance. Mol Med Rep. 2014;9(4):1299–304.

    CAS  PubMed  Google Scholar 

  47. Rao VK, et al. Characterization of ABCG2 gene amplification manifesting as extrachromosomal DNA in mitoxantrone-selected SF295 human glioblastoma cells. Cancer Genet Cytogenet. 2005;160(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  48. Demeule M, et al. Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int J Cancer. 2001;93(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  49. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  50. Levati L, et al. Placenta growth factor induces melanoma resistance to temozolomide through a mechanism that involves the activation of the transcription factor NF-kappaB. Int J Oncol. 2011;38(1):241–7.

    CAS  PubMed  Google Scholar 

  51. Murakami M, et al. A mechanism of acquiring temozolomide resistance during transformation of atypical prolactinoma into prolactin-producing pituitary carcinoma: case report. Neurosurgery. 2011;68(6):E1761–7.

    Article  PubMed  Google Scholar 

  52. Malmer B, et al. Does a low frequency of P53 and Pgp expression in familial glioma compared to sporadic controls indicate biological differences? Anticancer Res. 2002;22(6C):3949–54.

    PubMed  Google Scholar 

  53. Bahr O, et al. P-glycoprotein and multidrug resistance-associated protein mediate specific patterns of multidrug resistance in malignant glioma cell lines, but not in primary glioma cells. Brain Pathol. 2003;13(4):482–94.

    Article  PubMed  Google Scholar 

  54. Matsumoto T, et al. Expression of P-glycoprotein in human glioma cell lines and surgical glioma specimens. J Neurosurg. 1991;74(3):460–6.

    Article  CAS  PubMed  Google Scholar 

  55. Munoz JL, et al. Temozolomide induces the production of epidermal growth factor to regulate MDR1 expression in glioblastoma cells. Mol Cancer Ther. 2014;13(10):2399–411.

    Article  CAS  PubMed  Google Scholar 

  56. Poller B, et al. Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm. 2011;8(2):571–82.

    Article  CAS  PubMed  Google Scholar 

  57. Shimomura M, et al. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines. Int J Oncol. 2012;40(4):995–1004.

    CAS  PubMed  Google Scholar 

  58. Sui H, Fan ZZ, Li Q. Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. J Int Med Res. 2012;40(2):426–35.

    Article  CAS  PubMed  Google Scholar 

  59. Tang Y, et al. Fast, stable induction of P-glycoprotein-mediated drug resistance in BT-474 breast cancer cells by stable transfection of ABCB1 gene. Anticancer Res. 2015;35(5):2531–8.

    CAS  PubMed  Google Scholar 

  60. Suzuki T, et al. Genetic analysis of human glioblastoma using a genomic microarray system. Brain Tumor Pathol. 2004;21:27–34.

    Article  CAS  PubMed  Google Scholar 

  61. Chan JY, Chu AC, Fung KP. Inhibition of P-glycoprotein expression and reversal of drug resistance of human hepatoma HepG2 cells by multidrug resistance gene (mdr1) antisense RNA. Life Sci. 2000;67(17):2117–24.

    Article  CAS  PubMed  Google Scholar 

  62. Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther. 2004;3(7):833–8.

    CAS  PubMed  Google Scholar 

  63. Li X, et al. Sensitization of multidrug-resistant human leukemia cells with MDR1-targeted antisense and inhibition of drug-mediated MDR1 induction. Leukemia. 1997;11(7):950–7.

    Article  CAS  PubMed  Google Scholar 

  64. Mattocks M, et al. Treatment of neutral glycosphingolipid lysosomal storage diseases via inhibition of the ABC drug transporter, MDR1. Cyclosporin A can lower serum and liver globotriaosyl ceramide levels in the Fabry mouse model. FEBS J. 2006;273(9):2064–75.

    Article  CAS  PubMed  Google Scholar 

  65. Motomura S, et al. Inhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdr1) antisense oligonucleotides. Blood. 1998;91(9):3163–71.

    CAS  PubMed  Google Scholar 

  66. Lamprecht A, Benoit JP. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J Control Release. 2006;112(2):208–13.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, et al. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. J Neurooncol. 2015;121(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  68. Rittierodt M, Tschernig T, Harada K. Modulation of multidrug-resistance-associated P-glycoprotein in human U-87 MG and HUV-ECC cells with antisense oligodeoxynucleotides to MDR1 mRNA. Pathobiology. 2004;71(3):123–8.

    Article  CAS  PubMed  Google Scholar 

  69. Becker CM, et al. Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro Oncol. 2015;17(9):1210–9.

    PubMed  PubMed Central  Google Scholar 

  70. Agarwal S, et al. Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos. 2013;41(1):33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Durmaz R, et al. The effects of anticancer drugs in combination with nimodipine and verapamil on cultured cells of glioblastoma multiforme. Clin Neurol Neurosurg. 1999;101(4):238–44.

    Article  CAS  PubMed  Google Scholar 

  72. Greenberg ML, et al. Etoposide, vincristine, and cyclosporin A with standard-dose radiation therapy in newly diagnosed diffuse intrinsic brainstem gliomas: a pediatric oncology group phase I study. Pediatr Blood Cancer. 2005;45(5):644–8.

    Article  PubMed  Google Scholar 

  73. Fellner S, et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest. 2002;110(9):1309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huet S, Chapey C, Robert J. Reversal of multidrug resistance by a new lipophilic cationic molecule, S9788. Comparison with 11 other MDR-modulating agents in a model of doxorubicin-resistant rat glioblastoma cells. Eur J Cancer. 1993;29A(10):1377–83.

    Article  CAS  PubMed  Google Scholar 

  75. Bajelan E, et al. Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J Pharm Pharm Sci. 2012;15(4):568–82.

    Article  CAS  PubMed  Google Scholar 

  76. Bates SE, et al. A phase I/II study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin Cancer Res. 2004;10(14):4724–33.

    Article  CAS  PubMed  Google Scholar 

  77. Cagliero E, et al. Reversal of multidrug-resistance using Valspodar (PSC 833) and doxorubicin in osteosarcoma. Oncol Rep. 2004;12(5):1023–31.

    CAS  PubMed  Google Scholar 

  78. Friedenberg WR, et al. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer. 2006;106(4):830–8.

    Article  PubMed  CAS  Google Scholar 

  79. Gruber A, et al. A phase I/II study of the MDR modulator valspodar (PSC 833) combined with daunorubicin and cytarabine in patients with relapsed and primary refractory acute myeloid leukemia. Leuk Res. 2003;27(4):323–8.

    Article  CAS  PubMed  Google Scholar 

  80. Lhomme C, et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol. 2008;26(16):2674–82.

    Article  CAS  PubMed  Google Scholar 

  81. O’Brien MM, et al. Phase I study of valspodar (PSC-833) with mitoxantrone and etoposide in refractory and relapsed pediatric acute leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2010;54(5):694–702.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bogush TA, et al. Parameters of specific antibody interaction with P-gp in T-cell leukemia Jurkat cells. Antibiot Khimioter. 2009;54(1-2):3–9.

    CAS  PubMed  Google Scholar 

  83. Gao YD, et al. An anti-P-gp/anti-CD3 bispecific antibody cytotoxic to human multidrug resistant KB cells. Zhonghua Zhong Liu Za Zhi. 2005;27(11):653–6.

    CAS  PubMed  Google Scholar 

  84. Ghetie MA, et al. An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD19, causes P-gp to translocate out of lipid rafts, and chemosensitizes a multidrug-resistant (MDR) lymphoma cell line. Blood. 2004;104(1):178–83.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang X, Xiao GG, Gao Y. Characterization of human colorectal cancer MDR1/P-gp Fab antibody. ScientificWorldJournal. 2013;2013:716289.

    PubMed  PubMed Central  Google Scholar 

  86. Kreisl WC, et al. P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide. J Nucl Med. 2010;51(4):559–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lazarova N, et al. Synthesis and evaluation of [N-methyl-11C]N-desmethyl-loperamide as a new and improved PET radiotracer for imaging P-gp function. J Med Chem. 2008;51(19):6034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang M, Gao M, Zheng QH. A high-yield route to synthesize the P-glycoprotein radioligand [11C]N-desmethyl-loperamide and its parent radioligand [11C]loperamide. Bioorg Med Chem Lett. 2013;23(19):5259–63.

    Article  CAS  PubMed  Google Scholar 

  89. Cappellano AM, et al. Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J Neurooncol. 2015;121(2):405–12.

    Article  CAS  PubMed  Google Scholar 

  90. Massimino M, et al. Results of nimotuzumab and vinorelbine, radiation and re-irradiation for diffuse pontine glioma in childhood. J Neurooncol. 2014;118(2):305–12.

    CAS  PubMed  Google Scholar 

  91. Advani R, et al. A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clin Cancer Res. 2001;7(5):1221–9.

    CAS  PubMed  Google Scholar 

  92. Bauer KS, et al. A phase I and pharmacologic study of idarubicin, cytarabine, etoposide, and the multidrug resistance protein (MDR1/Pgp) inhibitor PSC-833 in patients with refractory leukemia. Leuk Res. 2005;29(3):263–71.

    Article  CAS  PubMed  Google Scholar 

  93. Boote DJ, et al. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol. 1996;14(2):610–8.

    CAS  PubMed  Google Scholar 

  94. Chauncey TR, et al. A phase I study of induction chemotherapy for older patients with newly diagnosed acute myeloid leukemia (AML) using mitoxantrone, etoposide, and the MDR modulator PSC 833: a southwest oncology group study 9617. Leuk Res. 2000;24(7):567–74.

    Article  CAS  PubMed  Google Scholar 

  95. Chico I, et al. Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. J Clin Oncol. 2001;19(3):832–42.

    CAS  PubMed  Google Scholar 

  96. Dorr R, et al. Phase I/II study of the P-glycoprotein modulator PSC 833 in patients with acute myeloid leukemia. J Clin Oncol. 2001;19(6):1589–99.

    CAS  PubMed  Google Scholar 

  97. Fracasso PM, et al. Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. J Clin Oncol. 2001;19(12):2975–82.

    CAS  PubMed  Google Scholar 

  98. Fracasso PM, et al. Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (Valspodar), in refractory malignancies. J Clin Oncol. 2000;18(5):1124–34.

    CAS  PubMed  Google Scholar 

  99. Minami H, et al. Phase I study of intravenous PSC-833 and doxorubicin: reversal of multidrug resistance. Jpn J Cancer Res. 2001;92(2):220–30.

    Article  CAS  PubMed  Google Scholar 

  100. Uchiyama-Kokubu N, Watanabe T, Cohen D. Intracellular levels of two cyclosporin derivatives valspodar (PSC 833) and cyclosporin a closely associated with multidrug resistance-modulating activity in sublines of human colorectal adenocarcinoma HCT-15. Jpn J Cancer Res. 2001;92(10):1116–26.

    Article  CAS  PubMed  Google Scholar 

  101. Kumta SM, et al. Clinical significance of P-glycoprotein immunohistochemistry and doxorubicin binding assay in patients with osteosarcoma. Int Orthop. 2001;25(5):279–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shnyder SD, et al. P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma. Br J Cancer. 1998;78(6):757–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao ZG, et al. Association between P-glycoprotein expression and response to chemotherapy in patients with osteosarcoma: a systematic and meta-analysis. J Cancer Res Ther. 2014;10(Suppl):C206–9.

    PubMed  Google Scholar 

  104. Steinbach D, et al. Response to chemotherapy and expression of the genes encoding the multidrug resistance-associated proteins MRP2, MRP3, MRP4, MRP5, and SMRP in childhood acute myeloid leukemia. Clin Cancer Res. 2003;9(3):1083–6.

    CAS  PubMed  Google Scholar 

  105. Zhou DC, Zittoun R, Marie JP. Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia. Leukemia. 1995;9(10):1661–6.

    CAS  PubMed  Google Scholar 

  106. Cortez MA, et al. mRNA expression profile of multidrug resistance genes in childhood acute lymphoblastic leukemia. Low expression levels associated with a higher risk of toxic death. Pediatr Blood Cancer. 2009;53(6):996–1004.

    Article  PubMed  Google Scholar 

  107. Kourti M, et al. Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol. 2007;86(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  108. Stam RW, et al. Multidrug resistance genes in infant acute lymphoblastic leukemia: Ara-C is not a substrate for the breast cancer resistance protein. Leukemia. 2004;18(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  109. De Mattia E, et al. Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line FOLFIRI treatment. Pharmacogenet Genomics. 2013;23(10):549–57.

    Article  PubMed  CAS  Google Scholar 

  110. Hlavata I, et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27(2):187–96.

    Article  CAS  PubMed  Google Scholar 

  111. Nakumura T, et al. Gene expression profiles of ABC transporters and cytochrome P450 3A in Caco-2 and human colorectal cancer cell lines. Pharm Res. 2003;20(2):324–7.

    Article  PubMed  Google Scholar 

  112. Amoedo ND, et al. Expression of ABC transporters, p53, Bax, Bcl-2 in an archival sample of non-small cell lung cancer bearing a deletion in the EGFR gene. Int J Mol Med. 2009;23(5):609–14.

    CAS  PubMed  Google Scholar 

  113. Surowiak P, et al. Positive correlation between cyclooxygenase 2 and the expression of ABC transporters in non-small cell lung cancer. Anticancer Res. 2008;28(5B):2967–74.

    PubMed  Google Scholar 

  114. Greaves W, et al. Detection of ABCC1 expression in classical Hodgkin lymphoma is associated with increased risk of treatment failure using standard chemotherapy protocols. J Hematol Oncol. 2012;5:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Andreadis C, et al. Members of the glutathione and ABC-transporter families are associated with clinical outcome in patients with diffuse large B-cell lymphoma. Blood. 2007;109(8):3409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Abaan OD, et al. Multidrug resistance mediated by MRP1 gene overexpression in breast cancer patients. Cancer Invest. 2009;27(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  117. Faneyte IF, Kristel PM, van de Vijver MJ. Multidrug resistance associated genes MRP1, MRP2 and MRP3 in primary and anthracycline exposed breast cancer. Anticancer Res. 2004;24(5A):2931–9.

    CAS  PubMed  Google Scholar 

  118. Kovalev AA, Tsvetaeva DA, Grudinskaja TV. Role of ABC-cassette transporters (MDR1, MRP1, BCRP) in the development of primary and acquired multiple drug resistance in patients with early and metastatic breast cancer. Exp Oncol. 2013;35(4):287–90.

    CAS  PubMed  Google Scholar 

  119. Taheri M, Mahjoubi F. MRP1 but not MDR1 is associated with response to neoadjuvant chemotherapy in breast cancer patients. Dis Markers. 2013;34(6):387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bosman MC, et al. Decreased affinity of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) D269H/E195R to osteoprotegerin (OPG) overcomes TRAIL resistance mediated by the bone microenvironment. J Biol Chem. 2014;289(2):1071–8.

    Article  CAS  PubMed  Google Scholar 

  121. Lehnert S. Prediction of tumor response to therapy: molecular markers and the microenvironment. Apoptosis and chips: an overview of the proceedings. Radiat Res. 2000;154(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  122. Mace TA, et al. The potential of the tumor microenvironment to influence Apo2L/TRAIL induced apoptosis. Immunol Invest. 2006;35(3-4):279–96.

    Article  CAS  PubMed  Google Scholar 

  123. Whiteside TL. Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: implications for immunotherapy. Vaccine. 2002;20 Suppl 4:A46–51.

    Article  CAS  PubMed  Google Scholar 

  124. Comerford KM, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62(12):3387–94.

    CAS  PubMed  Google Scholar 

  125. Meijer TW, et al. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res. 2012;18(20):5585–94.

    Article  CAS  PubMed  Google Scholar 

  126. Cole SP, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258(5088):1650–4.

    Article  CAS  PubMed  Google Scholar 

  127. Harris MJ, et al. Identification of the apical membrane-targeting signal of the multidrug resistance-associated protein 2 (MRP2/MOAT). J Biol Chem. 2001;276(24):20876–81.

    Article  CAS  PubMed  Google Scholar 

  128. Konno T, et al. Identification of domains participating in the substrate specificity and subcellular localization of the multidrug resistance proteins MRP1 and MRP2. J Biol Chem. 2003;278(25):22908–17.

    Article  CAS  PubMed  Google Scholar 

  129. Fromm MF, et al. Human MRP3 transporter: identification of the 5′-flanking region, genomic organization and alternative splice variants. Biochim Biophys Acta. 1999;1415(2):369–74.

    Article  CAS  PubMed  Google Scholar 

  130. Lee YM, et al. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics. 2004;14(4):213–23.

    Article  CAS  PubMed  Google Scholar 

  131. Wielinga PR, et al. Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells. Mol Pharmacol. 2002;62(6):1321–31.

    Article  CAS  PubMed  Google Scholar 

  132. Noji Y, et al. Identification of two novel missense mutations (p.R1221C and p.R1357W) in the ABCC6 (MRP6) gene in a Japanese patient with pseudoxanthoma elasticum (PXE). Intern Med. 2004;43(12):1171–6.

    Article  CAS  PubMed  Google Scholar 

  133. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005;204(3):216–37.

    Article  CAS  PubMed  Google Scholar 

  134. Flens MJ, et al. Tissue distribution of the multidrug resistance protein. Am J Pathol. 1996;148(4):1237–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ren XQ, et al. A positively charged amino acid proximal to the C-terminus of TM17 of MRP1 is indispensable for GSH-dependent binding of substrates and for transport of LTC4. Biochemistry. 2002;41(48):14132–40.

    Article  CAS  PubMed  Google Scholar 

  136. Balcerczyk A, et al. MRP1-transfected cells do not show increased resistance against oxidative stress. Free Radic Res. 2003;37(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  137. Hirrlinger J, et al. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J Neurochem. 2001;76(2):627–36.

    Article  CAS  PubMed  Google Scholar 

  138. Krause MS, et al. MRP1/GS-X pump ATPase expression: is this the explanation for the cytoprotection of the heart against oxidative stress-induced redox imbalance in comparison to skeletal muscle cells? Cell Biochem Funct. 2007;25(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  139. Abe T, et al. Chemosensitisation of spontaneous multidrug resistance by a 1,4-dihydropyridine analogue and verapamil in human glioma cell lines overexpressing MRP or MDR1. Br J Cancer. 1995;72(2):418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Abe T, et al. Expression of multidrug resistance protein gene in patients with glioma after chemotherapy. J Neurooncol. 1998;40(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  141. de Faria GP, et al. Differences in the expression pattern of P-glycoprotein and MRP1 in low-grade and high-grade gliomas. Cancer Invest. 2008;26(9):883–9.

    Article  PubMed  CAS  Google Scholar 

  142. Peignan L, et al. Combined use of anticancer drugs and an inhibitor of multiple drug resistance-associated protein-1 increases sensitivity and decreases survival of glioblastoma multiforme cells in vitro. Neurochem Res. 2011;36(8):1397–406.

    Article  CAS  PubMed  Google Scholar 

  143. Burkhart CA, et al. Small-molecule multidrug resistance-associated protein 1 inhibitor reversan increases the therapeutic index of chemotherapy in mouse models of neuroblastoma. Cancer Res. 2009;69(16):6573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Henderson MJ, et al. ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst. 2011;103(16):1236–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Keppler D, Konig J. Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB J. 1997;11(7):509–16.

    CAS  PubMed  Google Scholar 

  146. Albermann N, et al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol. 2005;70(6):949–58.

    Article  CAS  PubMed  Google Scholar 

  147. Bodo A, et al. Differential modulation of the human liver conjugate transporters MRP2 and MRP3 by bile acids and organic anions. J Biol Chem. 2003;278(26):23529–37.

    Article  CAS  PubMed  Google Scholar 

  148. Devgun MS, et al. Novel mutations in the Dubin-Johnson syndrome gene ABCC2/MRP2 and associated biochemical changes. Ann Clin Biochem. 2012;49(Pt 6):609–12.

    Article  CAS  PubMed  Google Scholar 

  149. Keitel V, et al. A common Dubin-Johnson syndrome mutation impairs protein maturation and transport activity of MRP2 (ABCC2). Am J Physiol Gastrointest Liver Physiol. 2003;284(1):G165–74.

    Article  CAS  PubMed  Google Scholar 

  150. Toh S, et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. Am J Hum Genet. 1999;64(3):739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schaub TP, et al. Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma. J Am Soc Nephrol. 1999;10(6):1159–69.

    CAS  PubMed  Google Scholar 

  152. Van Aubel RA, et al. Multidrug resistance protein mrp2 mediates ATP-dependent transport of classic renal organic anion p-aminohippurate. Am J Physiol Renal Physiol. 2000;279(4):F713–7.

    PubMed  Google Scholar 

  153. Roth KS, Foreman JW, Segal S. The Fanconi syndrome and mechanisms of tubular transport dysfunction. Kidney Int. 1981;20(6):705–16.

    Article  CAS  PubMed  Google Scholar 

  154. Bauer B, et al. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab. 2008;28(6):1222–34.

    Article  CAS  PubMed  Google Scholar 

  155. Hoffmann K, et al. Expression of the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res. 2006;69(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  156. Potschka H, Fedrowitz M, Loscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther. 2003;306(1):124–31.

    Article  CAS  PubMed  Google Scholar 

  157. Zhang J, et al. Hyperammonemia enhances the function and expression of P-glycoprotein and Mrp2 at the blood-brain barrier through NF-kappaB. J Neurochem. 2014;131(6):791–802.

    Article  CAS  PubMed  Google Scholar 

  158. Matsumoto Y, et al. Chemotherapy for gliomas based on the expression levels of drug resistant genes. No Shinkei Geka. 2001;29(7):625–30.

    CAS  PubMed  Google Scholar 

  159. Matsumoto Y, Tamiya T, Nagao S. Resistance to topoisomerase II inhibitors in human glioma cell lines overexpressing multidrug resistant associated protein (MRP) 2. J Med Invest. 2005;52(1-2):41–8.

    Article  PubMed  Google Scholar 

  160. Weiss J, et al. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos. 2007;35(3):340–4.

    Article  CAS  PubMed  Google Scholar 

  161. Borst P, et al. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92(16):1295–302.

    Article  CAS  PubMed  Google Scholar 

  162. Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol. 2014;10(10):1337–54.

    Article  CAS  PubMed  Google Scholar 

  163. Caronia D, et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study. PLoS One. 2011;6(10), e26091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. de Rotte MC, et al. ABCB1 and ABCC3 gene polymorphisms are associated with first-year response to methotrexate in juvenile idiopathic arthritis. J Rheumatol. 2012;39(10):2032–40.

    Article  PubMed  CAS  Google Scholar 

  165. Muller PJ, et al. Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients. Int J Cancer. 2009;124(7):1669–74.

    Article  PubMed  CAS  Google Scholar 

  166. O’Brien C, et al. Functional genomics identifies ABCC3 as a mediator of taxane resistance in HER2-amplified breast cancer. Cancer Res. 2008;68(13):5380–9.

    Article  PubMed  CAS  Google Scholar 

  167. Yang J, et al. Effect of variation of ABCB1 and ABCC3 genotypes on the survival of bone tumor cases after chemotherapy. Asian Pac J Cancer Prev. 2013;14(8):4595–8.

    Article  PubMed  Google Scholar 

  168. Yee SW, et al. Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia. J Hum Genet. 2013;58(6):353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kuan CT, et al. MRP3: a molecular target for human glioblastoma multiforme immunotherapy. BMC Cancer. 2010;10:468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Kuan CT, et al. Recombinant single-chain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer. 2010;127(3):598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Carozzo A, et al. Dual role of cAMP in the transcriptional regulation of multidrug resistance-associated protein 4 (MRP4) in pancreatic adenocarcinoma cell lines. PLoS One. 2015;10(3), e0120651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Copsel S, et al. Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. J Biol Chem. 2011;286(9):6979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Moon C, et al. Compartmentalized accumulation of cAMP near complexes of multidrug resistance protein 4 (MRP4) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes to drug-induced diarrhea. J Biol Chem. 2015;290(18):11246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pattabiraman PP, Pecen PE, Rao PV. MRP4-mediated regulation of intracellular cAMP and cGMP levels in trabecular meshwork cells and homeostasis of intraocular pressure. Invest Ophthalmol Vis Sci. 2013;54(3):1636–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sassi Y, et al. Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB J. 2012;26(3):1009–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sellers ZM, et al. MRP4 and CFTR in the regulation of cAMP and beta-adrenergic contraction in cardiac myocytes. Eur J Pharmacol. 2012;681(1-3):80–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lee K, Klein-Szanto AJ, Kruh GD. Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells. J Natl Cancer Inst. 2000;92(23):1934–40.

    Article  CAS  PubMed  Google Scholar 

  178. Prasad VG, et al. Effect of multi drug resistance protein 4 (MRP4) inhibition on the pharmacokinetics and pharmacodynamics of ciprofloxacin in normal and rats with LPS-induced inflammation. Eur J Drug Metab Pharmacokinet. 2015.

    Google Scholar 

  179. Cheung L, et al. High-throughput screening identifies Ceeforin-1 and Ceeforin-2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4). Biochem Pharmacol. 2014;91(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  180. Leggas M, et al. Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res. 2006;66(9):4802–7.

    Article  CAS  PubMed  Google Scholar 

  181. Wilson MW, et al. Immunohistochemical detection of multidrug-resistant protein expression in retinoblastoma treated by primary enucleation. Invest Ophthalmol Vis Sci. 2006;47(4):1269–73.

    Article  PubMed  Google Scholar 

  182. Huynh T, et al. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma. Front Oncol. 2012;2:178.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Rama AR, et al. ABC transporters as differentiation markers in glioblastoma cells. Mol Biol Rep. 2014;41(8):4847–51.

    Article  CAS  PubMed  Google Scholar 

  184. Warrier S, et al. Study of chemoresistant CD133+ cancer stem cells from human glioblastoma cell line U138MG using multiple assays. Cell Biol Int. 2012;36(12):1137–43.

    Article  CAS  PubMed  Google Scholar 

  185. Alexiou GA, et al. Prognostic significance of MRP5 immunohistochemical expression in glioblastoma. Cancer Chemother Pharmacol. 2012;69(5):1387–91.

    Article  CAS  PubMed  Google Scholar 

  186. Hopper E, et al. Analysis of the structure and expression pattern of MRP7 (ABCC10), a new member of the MRP subfamily. Cancer Lett. 2001;162(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  187. Beck K, et al. Analysis of ABCC6 (MRP6) in normal human tissues. Histochem Cell Biol. 2005;123(4-5):517–28.

    Article  CAS  PubMed  Google Scholar 

  188. Cai J, et al. Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6). Biochemistry. 2002;41(25):8058–67.

    Article  CAS  PubMed  Google Scholar 

  189. Kool M, et al. Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res. 1999;59(1):175–82.

    CAS  PubMed  Google Scholar 

  190. Scheffer GL, et al. MRP6 (ABCC6) detection in normal human tissues and tumors. Lab Invest. 2002;82(4):515–8.

    Article  CAS  PubMed  Google Scholar 

  191. Anreddy N, et al. PD173074, a selective FGFR inhibitor, reverses MRP7 (ABCC10)-mediated MDR. Acta Pharm Sin B. 2014;4(3):202–7.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bessho Y, et al. ABCC10/MRP7 is associated with vinorelbine resistance in non-small cell lung cancer. Oncol Rep. 2009;21(1):263–8.

    CAS  PubMed  Google Scholar 

  193. Kuang YH, et al. Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochem Pharmacol. 2010;79(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  194. Oguri T, et al. MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer. Mol Cancer Ther. 2008;7(5):1150–5.

    Article  CAS  PubMed  Google Scholar 

  195. Sun YL, et al. Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar. PLoS One. 2013;8(2), e55576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sun YL, et al. Ponatinib enhances anticancer drug sensitivity in MRP7-overexpressing cells. Oncol Rep. 2014;31(4):1605–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Teijaro CN, et al. Synthesis and biological evaluation of pentacyclic strychnos alkaloids as selective modulators of the ABCC10 (MRP7) efflux pump. J Med Chem. 2014;57(24):10383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ilias A, et al. Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem. 2002;277(19):16860–7.

    Article  CAS  PubMed  Google Scholar 

  199. Pushpakom SP, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen H, et al. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3. Am J Hum Genet. 1996;59(1):66–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ni Z, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab. 2010;11(7):603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Matsuo H, et al. ABCG2 dysfunction increases the risk of renal overload hyperuricemia. Nucleosides Nucleotides Nucleic Acids. 2014;33(4-6):266–74.

    Article  CAS  PubMed  Google Scholar 

  203. Mizuno N, et al. Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. Drug Metab Dispos. 2004;32(9):898–901.

    CAS  PubMed  Google Scholar 

  204. Ando T, et al. Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos. 2007;35(10):1873–9.

    Article  CAS  PubMed  Google Scholar 

  205. Enokizono J, Kusuhara H, Sugiyama Y. Involvement of breast cancer resistance protein (BCRP/ABCG2) in the biliary excretion and intestinal efflux of troglitazone sulfate, the major metabolite of troglitazone with a cholestatic effect. Drug Metab Dispos. 2007;35(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  206. Hirano M, et al. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol. 2005;68(3):800–7.

    CAS  PubMed  Google Scholar 

  207. Zamek-Gliszczynski MJ, et al. The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol Pharmacol. 2006;70(6):2127–33.

    Article  CAS  PubMed  Google Scholar 

  208. Bleau AM, Huse JT, Holland EC. The ABCG2 resistance network of glioblastoma. Cell Cycle. 2009;8(18):2936–44.

    Article  PubMed  Google Scholar 

  209. Bohn BA, et al. Altered PTEN function caused by deletion or gene disruption is associated with poor prognosis in rectal but not in colon cancer. Hum Pathol. 2013;44(8):1524–33.

    Article  CAS  PubMed  Google Scholar 

  210. Lebok P, et al. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer. 2015;15:963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liu JC, et al. Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K. EMBO Mol Med. 2014;6(12):1542–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Mina S, et al. PTEN deletion is rare but often homogeneous in gastric cancer. J Clin Pathol. 2012;65(8):693–8.

    Article  PubMed  Google Scholar 

  213. Verhagen PC, et al. The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi-allelic gene deletion. J Pathol. 2006;208(5):699–707.

    Article  CAS  PubMed  Google Scholar 

  214. Bhatia P, et al. Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells. Xenobiotica. 2012;42(8):748–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. de Vries NA, et al. Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs. 2012;30(2):443–9.

    Article  CAS  PubMed  Google Scholar 

  216. Eisenblatter T, Huwel S, Galla HJ. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res. 2003;971(2):221–31.

    Article  CAS  PubMed  Google Scholar 

  217. Jin Y, et al. ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma. J Cancer Res Clin Oncol. 2009;135(10):1369–76.

    Article  CAS  PubMed  Google Scholar 

  218. Parrish KE, et al. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 2015;355(2):264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Oberoi RK, Mittapalli RK, Elmquist WF. Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther. 2013;347(3):755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Breedveld P, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 2005;65(7):2577–82.

    Article  CAS  PubMed  Google Scholar 

  221. Bihorel S, et al. Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res. 2007;24(9):1720–8.

    Article  CAS  PubMed  Google Scholar 

  222. Decleves X, et al. ABC transporters and the accumulation of imatinib and its active metabolite CGP74588 in rat C6 glioma cells. Pharmacol Res. 2008;57(3):214–22.

    Article  CAS  PubMed  Google Scholar 

  223. Sadanand V, et al. Effect of PSC 833, a potent inhibitor of P-glycoprotein, on the growth of astrocytoma cells in vitro. Cancer Lett. 2003;198(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  224. Zhao P, et al. Reversal of multidrug resistance by magnetic chitosan-Fe(3)O(4) nanoparticle-encapsulated MDR(1) siRNA in glioblastoma cell line. Neurol Res. 2013;35(8):821–8.

    Article  CAS  PubMed  Google Scholar 

  225. Zhao P, et al. Reversion of multidrug resistance in human glioma by RNA interference. Neurol Res. 2008;30(6):562–6.

    Article  CAS  PubMed  Google Scholar 

  226. Zhao P, Zhang YZ, Sun MZ. Regulatory effect of small interfering RNA targeting multidrug resistant protein 1 on chemosensitivity of human multiforme glioblastoma cell line BT325. Ai Zheng. 2005;24(12):1436–41.

    CAS  PubMed  Google Scholar 

  227. Tivnan A, McDonald KL. Current progress for the use of miRNAs in glioblastoma treatment. Mol Neurobiol. 2013;48(3):757–68.

    Article  CAS  PubMed  Google Scholar 

  228. Tivnan A, et al. The tumor suppressor microRNA, miR-124a, is regulated by epigenetic silencing and by the transcriptional factor. REST in glioblastoma Tumour Biol. 2013;35(2):1459–65.

    Article  PubMed  CAS  Google Scholar 

  229. Boado RJ. RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx. 2005;2(1):139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Gilmore IR, et al. Delivery strategies for siRNA-mediated gene silencing. Curr Drug Deliv. 2006;3(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  231. Jensen SA, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med. 2013;5(209), 209ra152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Lei C, et al. Development of a gene/drug dual delivery system for brain tumor therapy: potent inhibition via RNA interference and synergistic effects. Biomaterials. 2013;34(30):7483–94.

    Article  CAS  PubMed  Google Scholar 

  233. Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther. 2004;4(7):1103–13.

    Article  CAS  PubMed  Google Scholar 

  234. Pardridge WM. shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev. 2007;59(2-3):141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Pardridge WM. Preparation of Trojan horse liposomes (THLs) for gene transfer across the blood-brain barrier. Cold Spring Harb Protoc. 2010;2010(4):pdb.prot5407.

    Google Scholar 

  236. Zhang Y, Boado RJ, Pardridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J Gene Med. 2003;5(12):1039–45.

    Article  CAS  PubMed  Google Scholar 

  237. Zhang Y, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10(11):3667–77.

    Article  CAS  PubMed  Google Scholar 

  238. Sweeney KJ, et al. Validation of an imageable surgical resection animal model of Glioblastoma (GBM). J Neurosci Methods. 2014;233:99–104.

    Article  PubMed  Google Scholar 

  239. Bruun J, et al. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int J Nanomedicine. 2015;10:5995–6008.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Cohen ZR, et al. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano. 2015;9(2):1581–91.

    Article  CAS  PubMed  Google Scholar 

  241. Jin J, et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 2011;22(12):2568–72.

    Article  CAS  PubMed  Google Scholar 

  242. Lee TJ, et al. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget. 2015;6(17):14766–76.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Matokanovic M, et al. Hsp70 silencing with siRNA in nanocarriers enhances cancer cell death induced by the inhibitor of Hsp90. Eur J Pharm Sci. 2013;50(1):149–58.

    Article  CAS  PubMed  Google Scholar 

  244. Messaoudi K, et al. Anti-epidermal growth factor receptor siRNA carried by chitosan-transacylated lipid nanocapsules increases sensitivity of glioblastoma cells to temozolomide. Int J Nanomedicine. 2014;9:1479–90.

    PubMed  PubMed Central  Google Scholar 

  245. Ofek P, et al. In vivo delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB J. 2010;24(9):3122–34.

    Article  CAS  PubMed  Google Scholar 

  246. Perez AP, et al. Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages. Int J Nanomedicine. 2011;6:2715–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Wan Y, et al. Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine (Lond). 2014;9(15):2309–21.

    Article  CAS  Google Scholar 

  248. Wang L, et al. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target. 2015;23(9):832–46.

    Article  CAS  PubMed  Google Scholar 

  249. Van Woensel M, et al. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release. 2016;227:71–81.

    Article  PubMed  CAS  Google Scholar 

  250. Cho DY, et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg. 2012;77(5-6):736–44.

    Article  PubMed  Google Scholar 

  251. Chow KH, Gottschalk S. Cellular immunotherapy for high-grade glioma. Immunotherapy. 2011;3(3):423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Dana-Farber. New immunotherapy vaccines show promise in treating brain tumors. http://blog.dana-farber.org/insight/2015/01/new-immunotherapy-vaccines-show-promise-in-treating-brain-tumors/ (2015).

  253. Jackson C, et al. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol. 2014;2011, 732413.

    Google Scholar 

  254. Paff M, et al. The evolution of the EGFRvIII (rindopepimut) immunotherapy for glioblastoma multiforme patients. Hum Vaccin Immunother. 2014;10(11):3322–31.

    Article  PubMed  Google Scholar 

  255. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.

    Article  CAS  PubMed  Google Scholar 

  256. Vlahovic G, et al. Programmed death ligand 1 (PD-L1) as an immunotherapy target in patients with glioblastoma. Neuro Oncol. 2015;17(8):1043–5.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Yang L, et al. Dendritic cell-based immunotherapy treatment for glioblastoma multiforme. Biomed Res Int. 2015;2015:717530.

    PubMed  PubMed Central  Google Scholar 

  258. Binyamin L, et al. Targeting an extracellular epitope of the human multidrug resistance protein 1 (MRP1) in malignant cells with a novel recombinant single chain Fv antibody. Int J Cancer. 2004;110(6):882–90.

    Article  CAS  PubMed  Google Scholar 

  259. Connolly L, et al. A new monoclonal antibody, P2A8(6), that specifically recognizes a novel epitope on the multidrug resistance-associated protein 1 (MRP1), but not on MRP2 nor MRP3. Hybrid Hybridomics. 2001;20(5-6):333–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Tivnan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Tivnan, A. (2016). Targeting Chemotherapy Resistance in Glioblastoma Through Modulation of ABC Transporters. In: Tivnan, A. (eds) Resistance to Targeted Therapies Against Adult Brain Cancers. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-46505-0_2

Download citation

Publish with us

Policies and ethics