Skip to main content

α2-Macroglobulins: Structure and Function

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

α2-macroglobulins are broad-spectrum endopeptidase inhibitors, which have to date been characterised from metazoans (vertebrates and invertebrates) and Gram-negative bacteria. Their structural and biochemical properties reveal two related modes of action: the “Venus flytrap” and the “snap-trap” mechanisms. In both cases, peptidases trigger a massive conformational rearrangement of α2-macroglobulin after cutting in a highly flexible bait region, which results in their entrapment. In some homologs, a second action takes place that involves a highly reactive β-cysteinyl-γ-glutamyl thioester bond, which covalently binds cleaving peptidases and thus contributes to the further stabilization of the enzyme:inhibitor complex. Trapped peptidases are still active, but have restricted access to their substrates due to steric hindrance. In this way, the human α2-macroglobulin homolog regulates proteolysis in complex biological processes, such as nutrition, signalling, and tissue remodelling, but also defends the host organism against attacks by external toxins and other virulence factors during infection and envenomation. In parallel, it participates in several other biological functions by modifying the activity of cytokines and regulating hormones, growth factors, lipid factors and other proteins, which has a great impact on physiology. Likewise, bacterial α2-macroglobulins may participate in defence by protecting cell wall components from attacking peptidases, or in host-pathogen interactions through recognition of host peptidases and/or antimicrobial peptides. α2-macroglobulins are more widespread than initially thought and exert multifunctional roles in both eukaryotes and prokaryotes, therefore, their on-going study is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Yamamoto K, Sinohara H (1989) Proteinase inhibitory spectrum of mouse murinoglobulin and alpha-macroglobulin. J Biochem 106:564–568

    Article  CAS  PubMed  Google Scholar 

  • Anai K, Sugiki M, Yoshida E, Maruyama M (1998) Inhibition of a snake venom hemorrhagic metalloproteinase by human and rat alpha-macroglobulins. Toxicon 36(8):1127–1139

    Article  CAS  PubMed  Google Scholar 

  • Andersen GR, Jacobsen L, Thirup S, Nyborg J, Sottrup-Jensen L (1991) Crystallization and preliminary X-ray analysis of methylamine-treated alpha-2-macroglobulin and 3 alpha-2-macroglobulin-proteinase complexes. FEBS Lett 292:267–270

    Article  CAS  PubMed  Google Scholar 

  • Andersen GR, Koch T, Sørensen AH, Thirup S, Nyborg J, Dolmer K, Linda J, Sottrup-Jensen L (1994) Crystallisation of proteins of the alpha-2-macroglobulin superfamily. Ann N Y Acad Sci 737:444–446

    Article  CAS  PubMed  Google Scholar 

  • Andersen GR, Koch T, Dolmer K, Sottrup-Jensen L, Nyborg J (1995) Low resolution X-ray structure of human methylamine-treated alpha-2-macroglobulin. J Biol Chem 270(42):25133–25141

    Article  CAS  PubMed  Google Scholar 

  • Andersen OM, Christensen LL, Christensen PA, Sorensen ES, Jacobsen C, Moestrup SK, Etzerodt M, Thogersen HC (2000) Identification of the minimal functional unit in the low density lipoprotein receptor-related protein for binding the receptor-associated protein (RAP). A conserved acidic residue in the complement-type repeats is important for recognition of RAP. J Biol Chem 275(28):21017–21024

    Article  CAS  PubMed  Google Scholar 

  • Anderson RB, Cianciolo GJ, Kennedy MN, Pizzo SV (2008) Alpha-2-macroglobulin binds CpG oligodeoxynucleotides and enhances their immunostimulatory properties by a receptor-dependent mechanism. J Leukoc Biol 83(2):381–392

    Article  CAS  PubMed  Google Scholar 

  • Andus T, Gross V, Tran-Thi TA, Schreiber G, Nagashima M, Heinrich PC (1983) The biosynthesis of acute-phase proteins in primary cultures of rat hepatocytes. Eur J Biochem 133:561–571

    Article  CAS  PubMed  Google Scholar 

  • Armstrong PB (2006) Proteases and protease inhibitors: a balance of activities in host-pathogen interaction. Immunobiology 211(4):263–281

    Article  CAS  PubMed  Google Scholar 

  • Armstrong PB (2010) Role of apha-2-macroglobulin in the immune responses of invertebrates. Invertebr Surviv J 7:165–180

    Google Scholar 

  • Armstrong PB, Quigley JP (1999) alpha-2-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 23:375–390

    Article  CAS  PubMed  Google Scholar 

  • Armstrong PB, Levin J, Quigley JP (1984) Role of endogenous proteinase inhibitors in the regulation of the blood clotting system of the horseshoe crab, Limulus polyphemus. Thromb Haemost 52(2):117–120

    CAS  PubMed  Google Scholar 

  • Armstrong PB, Rossner MT, Quigley JP (1985) An alpha-2-macroglobulinlike activity in the blood of chelicerate and mandibulate arthropods. J Exp Zool 236(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Armstrong PB, Mangel WF, Wall JS, Hainfield JF, Van Holde KE, Ikai A, Quigley JP (1991) Structure of alpha-2-macrolgobulin from the arthropod Limulus polyphemus. J Biol Chem 266(4):2526–2530

    CAS  PubMed  Google Scholar 

  • Arnold JN, Wallis R, Willis AC, Harvey DJ, Royle L, Dwek RA, Rudd PM, Sim RB (2006) Interaction of mannan binding lectin with alpha-2-macroglobulin via exposed oligomannose glycans: a conserved feature of the thiol ester protein family? J Biol Chem 281(11):6955–6963

    Article  CAS  PubMed  Google Scholar 

  • Arolas JL, Goulas T, Pomerantsev AP, Leppla SH, Gomis-Ruth FX (2016) Structural basis for latency and function of immune inhibitor A metallopeptidase, a modulator of the Bacillus anthracis secretome. Structure 24(1):25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banbula A, Chang LS, Beyer WF, Bohra CL, Cianciolo GJ, Pizzo SV (2005) The properties of rabbit alpha-1-macroglobulin upon activation are distinct from those of rabbit and human alpha-2-macroglobulin. J Biochem 138(5):527–537

    Article  CAS  PubMed  Google Scholar 

  • Barcelona PF, Saragovi HU (2015) A pro-nerve growth factor (proNGF) and NGF binding protein, alpha-2-macroglobulin, differentially regulates p75 and TrkA receptors and is relevant to neurodegeneration ex vivo and in vivo. Mol Cell Biol 35(19):3396–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett AJ, Starkey PM (1973) The interaction of alpha-2-macrolgobulin with proteinases. Biochem J 133:709–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett AJ, Brown MA, Sayers CA (1979) The electrophoretically ‘slow’ and ‘fast’ forms of the alpha-2-macroglobulin molecule. Biochem J 181:401–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter RHG, Chang C-I, Chelliah Y, Blandin S, Levashina EA, Deisenhofer J (2007) Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc Natl Acad Sci U S A 104(28):11615–11620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender RC, Bayne CJ (1996) Purification and characterisation of the tetrameric alpha-macroglobulin proteinase inhibitor from the gastropod mollusc Biomphalaria glabrata. Biochem J 316:893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee G, Aspilin IR, Wu SM, Gawdi G, Pizzo SV (2000) The conformational-dependent interaction of alpha-2-macroglobulin with vascular endothelial growth factor: a novel mechanism of alpha-2-macroglobulin/growth factor binding. J Biol Chem 275(35):26806–26811

    CAS  PubMed  Google Scholar 

  • Birkenmeier G, Kämpfer I, Kratzsch J, Schellenberger W (1998) Human leptin forms complexes with alpha-2-macroglobulin which are recognized by the alpha-2-macroglobulin receptor/low density lipoprotein receptor-related protein. Eur J Endocrinol 139:224–230

    Article  CAS  PubMed  Google Scholar 

  • Bloth B, Chesebro B, Svehag SE (1968) Ultrastructural studies of human and rabbit alpha-M-globulins. J Exp Med 127:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisset N, Taveau J-C, Pochon F, Lamy J (1996) Similar architectures of native and transformed human alpha-2-macroglobulin suggest the transformation mechanism. J Biol Chem 271(42):25762–25769

    Article  CAS  PubMed  Google Scholar 

  • Bonner JC, Goodell AL, Lasky JA, Hoffman (1991) Reversible binding of platelet-derived growth factor-AA, AB, and BB isoforms to a similar site on the “slow” and “fast” conformations of alpha-2-macroglobulin. J Biol Chem 267(18):12837–12844

    Google Scholar 

  • Borth W (1992) alpha-2-Macroglobulin, a multifunctional bidning protein with targeting characteristics. FASEB J 6:3345–3353

    CAS  PubMed  Google Scholar 

  • Borth W, Scheer B, Urbansky A, Luger TA, Sottrup-Jensen L (1990) Binding of IL-1beta to alpha-2-macroglobulin and release by thioredoxin. J Immunol 145(11):3747–3754

    CAS  PubMed  Google Scholar 

  • Bowen ME, Gettins PG (1998) Bait region involvment in the dimer-dimer interface of human alpha-2-macroglobulin and in mediating gross conformational change. J Biol Chem 273(3):1825–1831

    Article  CAS  PubMed  Google Scholar 

  • Brehme CS, Roman S, Shaffer J, Wolfert R (1999) Tartrate-resistant acid phosphatase forms complexes with alpha-2-macrolgobulin in serum. J Bone Miner Res 14:311–318

    Article  CAS  PubMed  Google Scholar 

  • Brokx SJ, Ellison M, Locke T, Bottorff D, Frost L, Weiner JH (2004) Genome-wide analysis of lipoprotein expression in Escherichia coli MG1655. J Bacteriol 186(10):3254–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budd A, Blandin S, Levashina E, Gibson JT (2004) Bacterial alpha-2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? Genome Biol 5:R38

    Article  PubMed  PubMed Central  Google Scholar 

  • Buresova V, Hajdusek O, Franta Z, Sojka D, Kopacek P (2009) IrAM-An alpha-2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev Comp Immunol 33(4):489–498

    Article  CAS  PubMed  Google Scholar 

  • Bystrom J, Amin K, Bishop-Bailey D (2011) Analysing the eosinophil cationic protein-a clue to the function of the eosinophil granulocyte. Respir Res 12:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu CT, Rubenstein DS, Enghild JJ, Pizzo SV (1991) Mechanism of insulin incorporation into alpha 2-macroglobulin: implications for the study of peptide and growth factor binding. Biochemistry 30(6):1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Cohn E, Strong L, Hughes W, Mulford D, Ashworth J, Melin M, Taylor H (1946) Preparation and properties of serum and plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J Am Chem Soc 68(3):459–475

    Article  CAS  PubMed  Google Scholar 

  • Cray C, Zaias J, Altman NH (2009) Acute phase response in animals: a review. Comp Med 59(6):517–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daly NL, Scanlon MJ, Djordjevic JT, Kroon PA, Smith R (1995) Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor. Proc Natl Acad Sci U S A 92:6334–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Wit CA, Weström BR (1987) Purification and characterisation of alpha-2-, alpha-2-beta-, and beta-macroglobulin inhibitors in the hedghog, Erinaceus europaeus: beta-Macroglobulin identified as the plasma antihemorrhagic factor. Toxicon 25(11):1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Dennis PA, Saksela O, Harpel P, Rifkin DB (1989) alpha-2-macroglobulin is a bidning protein for basic fibroblast growth factor. J Biol Chem 264(13):7210–7216

    CAS  PubMed  Google Scholar 

  • Doan N, Gettins PG (2007) Human alpha-2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3. Biochem J 407(1):23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doan N, Gettins PG (2008) alpha-Macroglobulins are present in some gram-negative bacteria: characterization of the alpha-2-macroglobulin from Escherichia coli. J Biol Chem 283(42):28747–28756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds AW, Ren XD, Willis AC, ASK L (1996) The reaction mechanism of the internal thioester in the human complement component C4. Nature 379:177–179

    Article  CAS  PubMed  Google Scholar 

  • Dolmer K, Gettins PG (2006) Three complement-like repeats compose the complete alpha-2-macroglobulin binding site in the second ligand binding cluster of the low density lipoprotein receptor-related protein. J Biol Chem 281(45):34189–34196

    Article  CAS  PubMed  Google Scholar 

  • Dolmer K, Jenner LB, Jacobsen L, Andersen GR, Koch TJ, Thirup S, Sottrup-Jensen L, Nyborg J (1995) Crystallisation and preliminary X-ray analysis of the receptor-binding domain of human and bovine alpha-2-macroglobulin. FEBS Lett 372:93–95

    Article  CAS  PubMed  Google Scholar 

  • Dolmer K, Husted LB, Armstrong PB, Sottrup-Jensen L (1996) Localisation of the major reactive lysine residue involved in the self-crosslinking of proteinase-activated Limulus alpha-2-macroglobulin. FEBS Lett 393:37–40

    Article  CAS  PubMed  Google Scholar 

  • Dolovich J, Wicher V (1971) The binding of Bacillus subtilis alkaline proteinases to alpha-2-macroglobulin. J Lab Clin Med 77:951–957

    CAS  PubMed  Google Scholar 

  • Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Y, Ni B, Glinn M, Dodel RC, Bales KR, Zhang Z, Hyslop PA, Paul SM (1997) alpha-2-Macroglobulin as a beta-amyloid peptide-binding plasma protein. J Neurochem 69:299–305

    Article  CAS  PubMed  Google Scholar 

  • Dunn JT, Spiro RG (1967a) The alpha-2 macroglobulin of human plasma. Isolation and composition. J Biol Chem 242(23):5549–5555

    CAS  PubMed  Google Scholar 

  • Dunn JT, Spiro RG (1967b) The alpha-2-macroglobulin of human plasma. Studies on the carbohydrate units. J Biol Chem 242(23):5556–5563

    CAS  PubMed  Google Scholar 

  • Enghild JJ, Salvesen G, Thøgersen IB, Pizzo SV (1989) Proteinase binding and inhibition by the monomeric alpha-macroglobulin rat alpha-1-inhibitor-3. J Biol Chem 264(19):11428–11435

    CAS  PubMed  Google Scholar 

  • Enghild JJ, Thøgersen IB, Salvesen G, Fey GH, Figler NL, Gonias SL, Pizzo S (1990) Alpha-macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates. Biochemistry 29(43):10070–10080

    Article  CAS  PubMed  Google Scholar 

  • Eubanks LM, Stowe GN, De Lamo MS, Mayorov AV, Hixon MS, Janda KD (2011) Identification of alpha-2-macroglobulin as a major serum ghrelin esterase. Angew Chem Int Ed 50(45):10699–10702

    Article  CAS  Google Scholar 

  • Feige JJ, Negoescu A, Keramidas M, Souchelnitskiy S, Chambaz EM (1996) alpha-2-Macroglobulin: a binding protein for transforming growth factor-beta and various cytokines. Horm Res 43(3–5):227–232

    Article  Google Scholar 

  • Fredslund F, Jenner L, Husted LB, Nyborg J, Andersen GR, Sottrup-Jensen L (2006) The structure of bovine complement component 3 reveals the basis for thioester function. J Mol Biol 361(1):115–127

    Article  CAS  PubMed  Google Scholar 

  • Fujito NT, Sugimoto S, Nonaka M (2010) Evolution of thioester-containing proteins revealed by cloning and characterization of their genes from a cnidarian sea anemone, Haliplanella lineate. Dev Comp Immunol 34(7):775–784

    Article  CAS  PubMed  Google Scholar 

  • Fyfe CD, Grinter R, Josts I, Mosbahi K, Roszak AW, Cogdell RJ, Wall DM, Burchmore RJ, Byron O, Walker D (2015) Structure of protease-cleaved Escherichia coli alpha-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment. Acta Crystallogr D Biol Crystallogr 71(Pt 7):1478–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galliano MF, Toulza E, Gallinaro H, Jonca N, Ishida-Yamamoto A, Serre G, Guerrin M (2006) A novel protease inhibitor of the alpha-2-macroglobulin family expressed in the human epidermis. J Biol Chem 281(9):5780–5789

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ferrer I, Arede P, Gomez-Blanco J, Luque D, Duquerroy S, Caston JR, Goulas T, Gomis-Ruth FX (2015) Structural and functional insights into Escherichia coli alpha-2-macroglobulin endopeptidase snap-trap inhibition. Proc Natl Acad Sci U S A 112(27):8290–8295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavish H, Bab I, Tartakovsky A, Chorev M, Mansur N, Greenberg Z, Namdar-Attar M, Muhlrad A (1997) Human alpha-2-macroglobulin is an osteogenic growth peptide-binding protein. Biochemistry 36(48):14883–14888

    Article  CAS  PubMed  Google Scholar 

  • Gettins PG, Crews BC (1993) Epidermal growth factor binding to human alpha-2-macroglobulin. Implications for alpha-2-macroglobulin-growth factor interactions. Biochemistry 32(31):7916–7921

    Article  CAS  PubMed  Google Scholar 

  • Gettins PG, K-h H, Crews BC (1995) alpha-2-Macroglobulin bait region variants. J Biol Chem 270(23):14160–14167

    Article  CAS  PubMed  Google Scholar 

  • Ghetie MA, Uhr JW, Vitetta ES (1991) Covalent binding of human alpha-2-macroglobulin to deglycosylated ricin A chain and its immunotoxins. Cancer Res 51:1482–1487

    CAS  PubMed  Google Scholar 

  • Giroux E, Vargaftig BB (1978) Clostridio peptidase B inhibition by plasma macroglobulins and microbial antiproteases. Biochim et Biophys Acta – Enzymol 525(2):429–437

    Article  CAS  Google Scholar 

  • Gollas-Galvan T, Sotelo-Mundo RR, Yepiz-Plascencia G, Vargas-Requena C, Vargas-Albores F (2003) Purification and characterisation of alpha-2-macroglobulin from the white shrimp (Penaeus vannamei). Comp Biochem Physiol C Toxicol Pharmacol 134(4):431–438

    Article  PubMed  CAS  Google Scholar 

  • Gonias SL, Pizzo SV (1983) Characterisation of functional human alpha-2-macroglobulin half-molecules isolated by limited reduction with dithiothreitol. Biochemistry 22:536–546

    Article  CAS  PubMed  Google Scholar 

  • Gouin-Charnet A, Laune D, Granier C, Mani JC, Pau B, Mourad G, Argiles A (2000) alpha-2-Macroglobulin, the main serum antiprotease binds beta-2-microglobulin, the light chain of the class I major histocompatibility complex, which is involved in human disease. Clin Sci 98:427–433

    Article  CAS  PubMed  Google Scholar 

  • Goulas T, Garcia-Ferrer I, Garcia-Pique S, Sottrup-Jensen L, Gomis-Ruth FX (2014) Crystallization and preliminary X-ray diffraction analysis of eukaryotic alpha-2-macroglobulin family members modified by methylamine, proteases and glycosidases. Mol Oral Microbiol 29(6):354–364

    Article  CAS  PubMed  Google Scholar 

  • Gron H, Oike R, Potempa J, Travis J, Thogersen B, Enghild JJ, Pizzo SV (1997) The potential role of alpha-2-macroglobulin in the control of cysteine proteinases (gingipains) from Porphyromonas gingivalis. J Periodontal Res 32:61–68

    Article  CAS  PubMed  Google Scholar 

  • Gunnarsson M, Jensen PE (1998) Binding of soluble myelin basic protein to various conformational forms of alpha-2-macrolgobulin. Arch Biochem Biophys 359:192–198

    Article  CAS  PubMed  Google Scholar 

  • Hall M, Söderhall K (1994) Crayfish alpha-macroglobulin as a substrate for transglutaminases. Comp Biochem Physiol 108(1):65–72

    Article  Google Scholar 

  • Harpel PC (1970) Human plasma alpha-2-macroglobulin. An inhibitor of plasma kallikrein. J Exp Med 132(2):329–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hergenhahn H-G, Hall M, Söderhall K (1988) Purification and characterisation of an alpha-2-macroglobulin-like proteinase inhibitor from plasma of the crayfish Pacifastacus leniusculus. Biochem J 255:801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibbetts K, Hines B, Williams D (1999) An overview of proteinase inhibitors. J Vet Intern Med 13:302–308

    Article  CAS  PubMed  Google Scholar 

  • Horvat RT, Clabaugh M, Duval-Jobe C, Parmely MJ (1989) Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the prsence of alpha-2-macroglobulin. Infect Immun 57(6):1668–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Dolmer K, Liao X, Gettins PG (2000) NMR solution structure of the receptor binding domain of human alpha-2-macroglobulin. J Biol Chem 275(2):1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Husted LB, Sorensen ES, Armstrong PB, Quigley JP, Kristensen L, Sottrup-Jensen L (2002) Localization of carbohydrate attachment sites and disulfide bridges in Limulus alpha-2-macroglobulin. Evidence for two forms differing primarily in their bait region sequences. J Biol Chem 277(46):43698–43706

    Article  CAS  PubMed  Google Scholar 

  • Ikai A, Osada T, Nishigai M (1988) Conformational changes of alpha-macroglobulin and ovomacroglobulin from the green turtle (Chelonia mydas japonica). J Biochem 103:218–224

    Article  CAS  PubMed  Google Scholar 

  • Ikai A, Ookata K, Shimizu M, Nakamichi N, Ito M, Matsumura T (1999) A recombinant bait region mutant of human alpha-2-macroglobulin exhibiting an altered proteinase-inhibiting spectrum. Cytotechnology 31:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaki D, Kawabata S, Miura Y, Kato A, Armstrong PB, Quigley JP, Nielsen KL, Dolmer K, Sottrup-Jensen L, Iwanaga S (1996) Molecular cloning of Limulus alpha-2-macrolgobulin. Eur J Biochem 242:822–831

    Article  CAS  PubMed  Google Scholar 

  • Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437(7058):505–511

    Article  CAS  PubMed  Google Scholar 

  • Jenner LB, Husted L, Thirup S, Sottrup-Jensen L, Nyborg J (1998) Crystal structure of the receptor-binding domain of alpha-2-macroglobulin. Structure 6(5):595–604

    Article  CAS  PubMed  Google Scholar 

  • Jensen PE, Sottrup-Jensen L (1986) Primary structure of human alpha-2-macroglobulin. J Biol Chem 261(34):15863–15869

    CAS  PubMed  Google Scholar 

  • Jensen GA, Andersen OM, Bonvin AM, Bjerrum-Bohr I, Etzerodt M, Thogersen HC, O'Shea C, Poulsen FM, Kragelund BB (2006) Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif. J Mol Biol 362(4):700–716

    Article  CAS  PubMed  Google Scholar 

  • Kantyka T, Rawlings ND, Potempa J (2010) Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function. Biochimie 92(11):1644–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MH, Shibuya Y, Kambara T, Yamamoto T (1995) Role of alpha-2-macroglobulin and bacterial elastase in guinea-pig pseudomonal septic shock. Int J Exp Pathol 76:21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziej SJ, Schroeter JP, Strickland DK, Stoops JK (1996) The novel three-dimensional structure of native humna alpha-2-macroglobulin and comparisons with the structure of the methylamine derivative. J Struct Biol 116:366–376

    Article  CAS  PubMed  Google Scholar 

  • Kolodziej SJ, Klueppelberg HU, Nolasco N, Ehses W, Strickland DK, Stoops JK (1998) Three-dimensional structure of the human plasmin alpha-2-macroglobulin complex. J Struct Biol 123(2):124–133

    Article  CAS  PubMed  Google Scholar 

  • Kolodziej SJ, Wagenknecht T, Strickland DK, Stoops JK (2002) The three-dimensional structure of the human alpha-2-macroglobulin dimer reveals its structural organization in the tetrameric native and chymotrypsin alpha-2-macroglobulin complexes. J Biol Chem 277(31):28031–28037

    Article  CAS  PubMed  Google Scholar 

  • Kopacek P, Weise C, Saravanan T, Vitova K, Grubhoffer L (2000) Characterization of an—alpha-macroglobulin-like glycoprotein isolated from the plasma of the soft tick Ornithodoros moubata. Eur J Biochem 267:465–467

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz B, Horwitz MS, Jenne DE, Gauthier F (2010) Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 62(4):726–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratzsch J, Selisko T, Birkenmeier G (1995) Identification of transformed alpha-2-macroglobulin as a growth hormone-binding protein in human blood. J Clin Endocrinol Metab 80(2):585–590

    CAS  PubMed  Google Scholar 

  • Kremers R, Bloemen S, Al Dieri R, Hemker CH, Karlaftis V, Attard C, de Laat B, Monagle P, Ignjatovic V (2013) alpha-2-Macroglobulin is a major determinant of a lower thrombin generation in infants and children compared to adults. Blood 122(21):2344–2344

    Google Scholar 

  • Krimbou L, Tremblay M, Davignon J, Cohn JS (1998) Association of apolipoprotein E with alpha-2-macroglobulin in human plasma. J Lipid Res 39:2372–2386

    Google Scholar 

  • Kurdowska A, Carr FK, Stevens MD, Baughman RP, Martin TR (1997) Studies on the interaction of IL-8 with human plasma alpha-2-macroglobulin. J Immunol 158(4):1930–1939

    CAS  PubMed  Google Scholar 

  • LaMarre J, Hayes AM, Wollenberg GK, Hussaini I, Hall SW, Gonias SL (1991a) An apha-2-macrolgobulin receptor-dependent mechanism for the plasma clearance of transforming growth factor-beta-1 in mice. J Clin Investig 87:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaMarre J, Wollenberg G, Gonias SL, Hayes AM (1991b) Cytokine binding and clearance properties of proteinase-activated alpha 2-macroglobulins. Lab Investig 65(1):3–14

    CAS  PubMed  Google Scholar 

  • Larquet E, Boisset N, Pochon F, Lamy J (1994) Architecture of native human alpha-2-macroglobulin studied by cryoelectron microscopy and three-dimensional reconstruction. J Struct Biol 113:87–98

    Article  CAS  PubMed  Google Scholar 

  • Law ASK, Dodds AW (1997) The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci 6:263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le BV, Williams M, Logarajah S, Baxter RH (2012) Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles. PLoS Pathog 8(10):e1002958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZF, Wu XH, Engvall E (2004) Identification and characterization of CPAMD8, a novel member of the complement 3/alpha-2-macroglobulin family with a C-terminal Kazal domain. Genomics 83(6):1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Liebl DJ, Koo PH (1993) Comparative binding of neurotrophins (NT-3, CNTF, and NGF) and various cytokines to alpha-2-macroglobulin. Biochem Biophys Res Commun 193(3):1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK (2008) LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 88(3):887–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, Wu XF, Schuh AC (2002) Cell surface antigen CD109 is a novel member of the alpha-2-macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood 99(5):1683–1691

    Article  CAS  PubMed  Google Scholar 

  • Lindroos PM, Coin PG, Osornio-Vargas AR, Bonner JC (1995) Interleukin 1 beta (IL-1 beta) and the IL-1 beta-alpha 2-macroglobulin complex upregulate the platelet-derived growth factor alpha-receptor on rat pulmonary fibroblasts. Am J Respir Cell Mol Biol 13(4):455–465

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Ling TY, Shieh HS, Johnson FE, Huang JS, Huang SS (2001) Identification of the high affinity binding site in transforming growth factor-beta involved in complex formation with alpha 2-macroglobulin. Implications regarding the molecular mechanisms of complex formation between alpha 2-macroglobulin and growth factors, cytokines, and hormones. J Biol Chem 276(49):46212–46218

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan Y, Kong L, Howell DR, Ilalov K, Fajardo M, Bai XH, Di Cesare PE, Goldring MB, Abramson SB, Liu CJ (2008) Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthr Cartil 16(11):1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrero A, Duquerroy S, Trapani S, Goulas T, Guevara T, Andersen GR, Navaza J, Sottrup-Jensen L, Gomis-Rüth XF (2012) The crystal structure of human alpha-2-macroglobulin reveals a unique molecular cage. Angew Chem Int Ed 51:3340–3344

    Article  CAS  Google Scholar 

  • Matsuda T, Hirano T, Nagasawa S, Kishimoto T (1989) Identification of alpha-2-macroglobulin as a carrier protein for IL6. J Immunol 142(1):148–152

    CAS  PubMed  Google Scholar 

  • McCaffrey TA, Falcone DJ, Brayton CF, Agarwal LA, Welt FGP, Weksler BB (1989) Transforming growth factor-beta activity is potentiated by heparin via dissociation of the transforming growth factor-beta/alpha-2-macroglobulin inactive complex. J Cell Biol 109:441–448

    Article  CAS  PubMed  Google Scholar 

  • Merritt GC, Egerton JR, Loi JS (1971) Inhibition of Fusiformis nodosus protease and bovine trypsin by serum alpha-macroglobulin. J Comp Pathol 81(3):353

    Article  CAS  PubMed  Google Scholar 

  • Mettenburg JM, Webb DJ, Gonias SL (2002) Distinct binding sites in the structure of alpha-2-macroglobulin mediate the interaction with beta-amyloid peptide and growth factors. J Biol Chem 277(15):13338–13345

    Article  CAS  PubMed  Google Scholar 

  • Molla A, Matsumura Y, Yamamoto T, Okamura R, Maeda H (1987) Pathogenic capacity of proteases from Serratia marcescens and Pseudomonas aerginosa and their suppression by chicken egg white ovomacroglobulin. Infect Immun 55(10):2509–2517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moncrief JS, Obiso R, Barroso L, Kling JJ, Wright RL, van Tassell RL, Lyerly DM, Wilkins TD (1995) The enterotoxin of Bacteroides fragilis is a metelloprotease. Infect Immun 63(1):175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrot A, Strickland DK, Higuchi M, Reis M, Pedrosa R, Scharfstein J (1997) Human T cell responses against the major cysteine proteinase (cruzipain) of Trypanosoma cruzi: role of the mutlifucntional alpha-2-macroglobulin receptor in antigen presentation by monocytes. Int Immunol 9(6):825–834

    Article  CAS  PubMed  Google Scholar 

  • Müller H-P, Rantamäki LK (1995) Binding of native alpha-2-macroglobulin to human group G Streptococci. Infect Immun 63(8):2833–2839

    PubMed  PubMed Central  Google Scholar 

  • Mutsuro J, Nakao M, Fujiki K, Yano T (2000) Multiple forms of alpha-2-macroglobulin from a bony fish, the common carp (Cyprinus carpio): striking sequence diversity in functional sites. Immunogenetics 51(10):847–855

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Harris ED (1983) Ovostatin: a novel proteinase inhibitor from chicken egg white. J Exp Med 258(12):7481–7489

    CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  PubMed  Google Scholar 

  • Neves D, Estrozi LF, Job V, Gabel F, Schoehn G, Dessen A (2012) Conformational states of a bacterial alpha-2-macroglobulin resemble those of human complement C3. PLoS One 7(4):e35384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen KL, Sottrup-Jensen L, Nagase H, Thøgersen HC, Etzerodt M (1994) Amino acid sequence of hen ovomacroglobulin (ovostatin) deduced from cloned cDNA. DNA Seq 5(2):111–119

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, Holtet TL, Etzerodt M, Moestrup SK, Gliemann J, Sottrup-Jensen L, Thogersen HC (1996) Identification of residues in alpha-macroglobulin important for binding to the alpha-2-macrolgobulin receptor/low density lipoprotein receptor relatef protein. J Biol Chem 271(22):12909–12912

    Article  CAS  PubMed  Google Scholar 

  • Niemuller CA, Randall KJ, Webb DJ, Gonias SL, LaMarre J (1995) Alpha-2-macroglobulin conformation determines binding affinity for activin A and plasma clearance of activin A/alpha-2-macroglobulin complex. Endocrinology 136(12):5343–5349

    Article  CAS  PubMed  Google Scholar 

  • Nonaka M (2011) The complement C3 protein family in invertebrates. Invertebr Surviv J 8:21–32

    Google Scholar 

  • Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8(11):765–778

    Article  CAS  PubMed  Google Scholar 

  • Paiva MM, Soeiro MN, Barbosa HS, Meirelles MN, Delain E, Araujo-Jorge TC (2010) Glycosylation patterns of human alpha-2-macroglobulin: analysis of lectin binding by electron microscopy. Micron 41(6):666–673

    Article  CAS  PubMed  Google Scholar 

  • Panyutich A, Ganz T (1991) Activated alpha-2-macroglobulin is a principal defensin-binding protein. Am J Respir Cell Mol Biol 5:101–106

    Article  CAS  PubMed  Google Scholar 

  • Perazzolo LM, Bachere E, Rosa RD, Goncalves P, Andreatta ER, Daffre S, Barracco MA (2011) alpha-2-Macroglobulin from an Atlantic shrimp: biochemical characterization, sub-cellular localization and gene expression upon fungal challenge. Fish Shellfish Immunol 31(6):938–943

    Article  CAS  PubMed  Google Scholar 

  • Peslova G, Petrak J, Kuzelova K, Hrdy I, Halada P, Kuchel PW, Soe-Lin S, Ponka P, Sutak R, Becker E, Huang ML, Suryo Rahmanto Y, Richardson DR, Vyoral D (2009) Hepcidin, the hormone of iron metabolism, is bound specifically to alpha-2-macroglobulin in blood. Blood 113(24):6225–6236

    Article  CAS  PubMed  Google Scholar 

  • Petersen CG, Venge P (1987) Interaction and complex-formation between the eosinophil cationic protein and alpha-2-macroglobulin. Biochem J 245:781–787

    Article  Google Scholar 

  • Petersen LC, Elm T, Ezban M, Krogh TN, Karpf DM, Steino A, Olsen EH, Sorensen BB (2009) Plasma elimination kinetics for factor VII are independent of its activation to factor VIIa and complex formation with plasma inhibitors. Thromb Haemost 101(5):795–990

    Google Scholar 

  • Phillips DJ, McFarlane JR, Hearn MTW, Krester DM (1997) Inhibin, activin and follistatin bind preferentially to the transformed species of alpha-2-macroglobulin. J Endocrinol 155:65–71

    Article  CAS  PubMed  Google Scholar 

  • Pochon F, Barrey M, Delain E (1989) Dissociation of alpha-2-macroglobulin into functional half-molecules by mild acid treatment. Biochim Biophys Acta 996:132–138

    Article  CAS  PubMed  Google Scholar 

  • Pugsley A (1993) The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57(1):50–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qazi U, Gettins PG, Strickland DK, Stoops JK (1999) Structural details of proteinase entrapment by human alpha-2-macroglobulin emerge from three-dimensional reconstructions of Fab labeled native, half-transformed, and transformed molecules. J Biol Chem 274(12):8137–8142

    Article  CAS  PubMed  Google Scholar 

  • Qazi U, Kolodziej SJ, Gettins PG, Stoops JK (2000) The structure of the C949S mutant human alpha-2-macroglobulin demonstrates the critical role of the internal thiol esters in its proteinase-entrapping structural transformation. J Struct Biol 131(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Quigley JP, Ikai A, Arakawa H, Osada T, Armstrong PB (1991) Reaction of proteinases with alpha-2-macroglobulin from the american horseshoe crab, Limulus. J Biol Chem 266(26):19426–19431

    CAS  PubMed  Google Scholar 

  • Rasmussen M, Müller H-P, Björck L (1999) Protein GRAB of Streptococcus pyogenes regulates proteolysis at the bacterial surface by bnding alpha-2-macroglobulin. J Biol Chem 274(22):15336–15344

    Article  CAS  PubMed  Google Scholar 

  • Raymond WW, Su S, Makarova A, Wilson TM, Carter MC, Metcalfe DD, Caughey GH (2009) alpha-2-Macroglobulin capture allows detection of mast cell chymase in serum and creates a reservoir of angiotensin II-generating activity. J Immunol 182(9):5770–5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Genthon M, Casabona MG, Neves D, Coute Y, Ciceron F, Elsen S, Dessen A, Attree I (2013) Unique features of a Pseudomonas aeruginosa alpha-2-macroglobulin homolog. MBio 4(4):e00309–e00313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronne H, Anundi H, Rask L, Peterson PA (1979) Nerve growth factor binds to serum alpha-2-macroglobulin. Biochem Biophys Res Commun 87(1):330–336

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein DS, Thogersen IB, Pizzo SV, Enghild JJ (1993) Identification of monomeric alpha-macroglobulin proteinase inhibitors in birds, reptiles, amphibians and mammals, and purification and characterisation of a monomeric alpha-macroglobulin proteinase inhibitor from the American bullfrog Rana catesbiana. Biochem J 290:85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudenko G, Henderson K, Ichtchenko K, Brown MS, Goldstein JL, Deisenhofer J (2002) Structure of the LDL receptor extreacellualar doamin at endosomal pH. Science 298:2353–2358

    Article  CAS  PubMed  Google Scholar 

  • Rudloe A (1979) Limulus polyphemus: a review of the ecologically significant literature. In: Cohen E (ed) Biomedical applications of the horse shoe crab. Alan R. Liss, New York, pp 27–35

    Google Scholar 

  • Sahu A, Lambris JD (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev 180:35–48

    Article  CAS  PubMed  Google Scholar 

  • Sand O, Folkersen J, Westergaard JG, Sottrup-Jensen L (1985) Characterisation in human pregnancy zone protein. Comparison with human alpha-2-macrolgobulin. J Biol Chem 260(29):15723–15735

    CAS  PubMed  Google Scholar 

  • Schaller J, Gerber SS (2011) The plasmin-antiplasmin system: structural and functional aspects. Cell Mol Life Sci 68(5):785–801

    Article  CAS  PubMed  Google Scholar 

  • Scharfstein J (2006) Parasite cysteine proteinase interactions with alpha-2-macroglobulin or kininogens: differential pathways modulating inflammation and innate immunity in infection by pathogenic trypanosomatids. Immunobiology 211(1–2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Schroeter JP, Kolodziej SJ, Wagenknecht T, Bretaudiere J-P, Tapon-Bretaudiere J, Strickland DK, Stoops JK (1992) Three-dimensional structures of the human alpha-2-macroglobulin-methylamine and chymotrypsin complexes. J Struct Biol 109:235–247

    Article  CAS  PubMed  Google Scholar 

  • Seydel A, Gounon P, Pugsley A (1999) Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34(4):810–821

    Article  CAS  PubMed  Google Scholar 

  • Shanbhag VP, Stigbrand T, Jensen PE (1996) The conformational state of human alpha-2-macroglobulin influences its dissociation into half-molecules by sodium thiocyanate. Arch Biochem Biophys 333(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Soker S, Svahn CM, Neufeld G (1993) Vascular endothelial growth factor is inactivated by binding to alpha-2-macroglobulin and the binding is inhibited by heparin. J Biol Chem 268(11):7685–7691

    CAS  PubMed  Google Scholar 

  • Sottrup-Jensen L (1989) alpha-Macroglobulin: structure, shape, and mechanism of proteinase complex formation. J Biol Chem 264(20):11539–11542

    CAS  PubMed  Google Scholar 

  • Sottrup-Jensen L (1994) Role of internal thiol esters in the alpha-macroglobulin-proteinase binding mechanism. Ann N Y Acad Sci 737:172–187

    Article  CAS  PubMed  Google Scholar 

  • Sottrup-Jensen L, Folkersen J, Kristensen L, Tack BF (1984a) Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha-2-macroglobulin. Proc Natl Acad Sci U S A 81:7353–7357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sottrup-Jensen L, Stepanik TM, Kristensen T, Wierzbicki DM, Jones CM, Lonbland PB, Magnusson S, Petersen TE (1984b) Primary structure of human alpha-2-macroglobulin. V. The complete structure. J Biol Chem 259(13):8318–8327

    CAS  PubMed  Google Scholar 

  • Sottrup-Jensen L, Stepanik TM, Kristensen T, Lonbland PB, Jones CM, Wierzbicki DM, Magnusson S, Domdey H, Wetsel RA, Lundwall A, Tack BF, Fey GH (1985) Common evolutionary origin of alpha-2-macroglobulin and complement components C3 and C4. Proc Natl Acad Sci U S A 82:9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sottrup-Jensen L, Sand O, Kristensen T, Fey GH (1989) The alpha-macroglobulin bait region. Sequence diversity and localisation of cleavage sites for proteinases in five mammalian alpha-macroglobulins. J Biol Chem 264(27):15781–15789

    CAS  PubMed  Google Scholar 

  • Spycher SE, Arya S, Isenman DE, Painter RH (1987) A functional, thioester-containing alpha-2-macroglobulin homologue isolated from the hemolymph of the american lobster (Homarus americanus). J Biol Chem 262:14606–14611

    CAS  PubMed  Google Scholar 

  • Starkey PM, Barrett AJ (1982) Evolution of alpha-2-macroglobulin. The demonstration in a variety of vertebrate species of a protein resembling human alpha-2-macroglobulin. Biochem J 205:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöcker W, Breit S, Sottrup-Jensen L, Zwilling R (1991) alpha-2-Macroglobulin from the haemolymph of the freshwater crayfish Astacus astacus. Comp Biochem Physiol 98B(4):501–509

    Google Scholar 

  • Suda SA, Dolmer K, Gettins PG (1997) Critical role of asparagine 1065 of human alpha-2-macroglobulin in formation and reactivity of the thiol ester. J Biol Chem 272(49):31107–31112

    Article  CAS  PubMed  Google Scholar 

  • Sunderic M, Malenkovic V, Nedic O (2015) Complexes between insulin-like growth factor binding proteins and alpha-2-macroglobulin in patients with tumor. Exp Mol Pathol 98(2):173–177

    Article  CAS  PubMed  Google Scholar 

  • Swarnakar S, Asokan R, Quigley JP, Armstrong PB (2000) Binding of alpha-2-macrolgobulin and limulin: regulation of the plasma haemolytic system of the American horseshoe crab, Limulus. Biochem J 347:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thøgersen HC, Salvesen G, Brucato FH, Pizzo SV, Enghild JJ (1992) Purification and characterisation of an alpha-macroglobulin proteinase inhibitor from the mollusc Octopus vulgaris. Biochem J 285:521–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Tortorella MD, Arner EC, Hills R, Easton A, Korte-Sarfaty J, Fok K, Wittwer AJ, Liu RQ, Malfait AM (2004) alpha-2-Macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. J Biol Chem 279(17):17554–17561

    Article  CAS  PubMed  Google Scholar 

  • Tunstall AM, Merriman JML, Milne I, James K (1975) Normal and pathological serum levels of alpha-2-macroglobulins in men and mice. J Clin Pathol 28:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valnickova Z, Thøgersen IB, Christensen S, Chu CT, Pizzo SV, Enghild JJ (1996) Activate human plasma carboxypeptidase B is retained in the blood by binding to alpha-2-macroglobulin and pregnancy zone protein. J Biol Chem 271(22):12937–12943

    Article  CAS  PubMed  Google Scholar 

  • Van Jaarsveld F, Naudé RJ, Oelofsen RJ, Travis J (1994) The isolation and partial characterisation of alpha-2-macroglobulin from the serum of the ostrich (Struthio camelus). Int J Biochem 26(1):97–110

    Article  CAS  PubMed  Google Scholar 

  • Van Rompaey L, Proost P, Van den Berghe H, Marynen P (1995) Design of a new protease inhibitor by the manipulation of the bait region of alpha-2-macroglobulin: inhibition of the tobacco etch virus protease by mutant alpha-2-macroglobulin. Biochem J 312:191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhoorelbeke K, Goossens A, Gielens C, Preaux G (1993) An alpha-2-macroglobulin-like proteinase inhibitor inthe haemolymph of the Decabrachia cephalopod Sepia officinalis. Arch Int Physiol Biochim Biophys 102:B25

    Google Scholar 

  • Vilella E, Bengtsson-Olivecrona G, Stigbrand T, Jensen PE (1994) Binding of lipoprotein lipase to alpha-2-macroglobulin. Biochem J 300:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    Article  CAS  PubMed  Google Scholar 

  • Walter M, Sutton RM, Schechter NM (1999) Highly efficient inhibition of human chymase by alpha-2-macroglobulin. Arch Biochem Biophys 368(2):276–284

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wei X, Zhou J, Zhang J, Li K, Chen Q, Terek R, Fleming BC, Goldring MB, Ehrlich MG, Zhang G, Wei L (2014) Identification of alpha-2-macroglobulin as a master inhibitor of cartilage-degrading factors that attenuates the progression of posttraumatic osteoarthritis. Arthritis Rheum 66(7):1843–1853

    Article  CAS  Google Scholar 

  • Webb DJ, Wen J, Karns LR, Kurilla MG, Gonias SL (1998) Localisation of the binding site for the transforming growth factor-beta in human alpha-2-macroglobulin to a 20 kDa peptide that also contains the bait region. J Biol Chem 273(21):13339–13346

    Article  CAS  PubMed  Google Scholar 

  • Werb Z, Burleigh MC, Barrett AJ, Starkey PM (1973) The interaction of alpha-2-macroglobulin with proteinases. Binding and inhibitions of mammalian collagenases and other metal proteinases. Biochem J 139:359–368

    Article  Google Scholar 

  • Wolf BB, Gonias SL (1994) Neurotrophin binding to human alpha-2-macroglobulin under apparent equilibrium conditions. Biochemistry 33(37):11270–11277

    Article  CAS  PubMed  Google Scholar 

  • Wollenberg G, LaMarre J, Rosendal S, Gonias SL, Hayes AM (1991) Binding of tumor necrosis factor alpha to activated forms of human plasma alpha-2-macroglobulin. Am J Pathol 138(2):265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SG, Dessen A (2014) Structure of a bacterial alpha-2-macroglobulin reveals mimicry of eukaryotic innate immunity. Nat Commun 5:4917

    Article  CAS  PubMed  Google Scholar 

  • Wyatt AR, Constantinescu P, Ecroyd H, Dobson CM, Wilson MR, Kumita JR, Yerbury JJ (2013) Protease-activated alpha-2-macroglobulin can inhibit amyloid formation via two distinct mechanisms. FEBS Lett 587(5):398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt AR, Kumita JR, Mifsud RW, Gooden CA, Wilson MR, Dobson CM (2014) Hypochlorite-induced structural modifications enhance the chaperone activity of human alpha-2-macroglobulin. Proc Natl Acad Sci U S A 111(20):E2081–E2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao T, Decamp DL, Sprang SR (2000) Structure of a rat alpha-1-macroglobulin receptor-binding domain dimer. Protein Sci 9:1889–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yigzaw Y, Gielens C, Préaux G (2001) Isolation and characterisation of an alpha-macroglobulin from the gastropod mollusc Helix pomatia with tetrameric structure and preserved activity after methylamine treatment. Biochim Biophys Acta 1545:104–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded in part by grants from European, Spanish, and Catalan agencies (FP7-PEOPLE-2011-ITN-290246 “RAPID”; FP7-HEALTH-2012-306029-2 “TRIGGER”; BFU2015-64487-R; BIO2013-49320-EXP; MDM-2014-0435; 2014SGR9). TG acknowledges “Juan de la Cierva” research contracts (JCI-2012-13573) from the Spanish Ministry for Economy and Competitiveness. The Structural Biology Unit of IBMB is a “María de Maeztu” Unit of Excellence of the Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Goulas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Ferrer, I., Marrero, A., Gomis-Rüth, F.X., Goulas, T. (2017). α2-Macroglobulins: Structure and Function. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_6

Download citation

Publish with us

Policies and ethics