Skip to main content

Natural Course of Disease of Spinal Cord Injury

  • Chapter
  • First Online:
Neurological Aspects of Spinal Cord Injury

Abstract

The natural course of disease in spinal cord injury is well known for traumatic etiologies. In the following chapter, this will be illustrated with respect to anatomical and physiological adaptations in the central and peripheral nervous system. Disease course is described for functional recovery in the domains relevant for spinal cord injury (SCI). Underlying mechanisms of adaptation are addressed in the context of neurological and functional recovery. The role and disease course of etiologies, other than traumatic, are discussed together with the effects of treatment, where treatment is available.

In a final outlook, recovery mechanisms are discussed in the context of incipient clinical trials to cure traumatic SCI. A key issue in this context is to distinguish treatment effects from natural recovery, in order to deal with the difficulty of determining potential efficacy of an intervention. In this context, understanding of the disease course may require additional knowledge of underlying neurophysiological and pathophysiological adaptations that are not clinically evident but require technical examinations. This may help in the process of trial design and therapy development. Stratification and prediction strategies are crucial in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes JT (1988) The Edwin Smith Surgical Papyrus: an analysis of the first case reports of spinal cord injuries. Paraplegia 26(2):71–82

    Article  CAS  PubMed  Google Scholar 

  2. Breasted JH (1930) Edwin smith surgical papyrus in facsimile and hieroglyphic transliteration with translation and commentary. University of Chicago Oriental Institute Publications, Chicago

    Google Scholar 

  3. Guttmann L (1976) Spinal cord injuries. Comprehensive management and research, 2nd edn. Blackwell Science Ltd, London/England, p 768

    Google Scholar 

  4. Silver JR (2005) History of the treatment of spinal injuries. Postgrad Med J 81(952):108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McDermott W, Rogers DE (1982) Social ramifications of control of microbial disease. Johns Hopkins Med J 151(6):302–312

    CAS  PubMed  Google Scholar 

  6. Middleton JW et al (2012) Life expectancy after spinal cord injury: a 50-year study. Spinal Cord 50(11):803–811

    Article  CAS  PubMed  Google Scholar 

  7. Shavelle RM et al (2015) Improvements in long-term survival after spinal cord injury? Arch Phys Med Rehabil 96(4):645–651

    Article  PubMed  Google Scholar 

  8. Strauss DJ et al (2006) Trends in life expectancy after spinal cord injury. Arch Phys Med Rehabil 87(8):1079–1085

    Article  PubMed  Google Scholar 

  9. Ghosh A et al (2009) Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J Neurosci 29(39):12210–12219

    Article  CAS  PubMed  Google Scholar 

  10. Raineteau O et al (2002) Reorganization of descending motor tracts in the rat spinal cord. Eur J Neurosci 16(9):1761–1771

    Article  PubMed  Google Scholar 

  11. Bracken MB et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411

    Article  CAS  PubMed  Google Scholar 

  12. Curt A et al (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25(6):677–685

    Article  PubMed  Google Scholar 

  13. Geisler FH et al (2001) Measurements and recovery patterns in a multicenter study of acute spinal cord injury. Spine (Phila Pa 1976) 26(24 Suppl):S68–S86

    Article  CAS  Google Scholar 

  14. Marino RJ et al (1999) Neurologic recovery after traumatic spinal cord injury: data from the model spinal cord injury systems. Arch Phys Med Rehabil 80(11):1391–1396

    Article  CAS  PubMed  Google Scholar 

  15. Kirshblum SC, O’Connor KC (2000) Levels of spinal cord injury and predictors of neurologic recovery. Phys Med Rehabil Clin N Am 11(1):1–27, vii

    CAS  PubMed  Google Scholar 

  16. Kirshblum S, Waring W 3rd (2014) Updates for the international standards for neurological classification of spinal cord injury. Phys Med Rehabil Clin N Am 25(3):505–517, vii

    Article  PubMed  Google Scholar 

  17. Marino RJ et al (2003) International standards for neurological classification of spinal cord injury. J Spinal Cord Med 26(Suppl 1):S50–S56

    Article  Google Scholar 

  18. Frankel HL et al (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia 7(3):179–192

    Article  CAS  PubMed  Google Scholar 

  19. Kirshblum S et al (2011) The impact of sacral sensory sparing in motor complete spinal cord injury. Arch Phys Med Rehabil 92(3):376–383

    Article  PubMed  PubMed Central  Google Scholar 

  20. Waters RL, Adkins RH, Yakura JS (1991) Definition of complete spinal cord injury. Paraplegia 29(9):573–581

    Article  CAS  PubMed  Google Scholar 

  21. Kirshblum S et al (2004) Late neurologic recovery after traumatic spinal cord injury. Arch Phys Med Rehabil 85(11):1811–1817

    Article  PubMed  Google Scholar 

  22. Dietz V, Curt A (2006) Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol 5(8):688–694

    Article  PubMed  Google Scholar 

  23. McKinley W et al (2007) Incidence and outcomes of spinal cord injury clinical syndromes. J Spinal Cord Med 30(3):215–224

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumral E et al (2011) Spinal ischaemic stroke: clinical and radiological findings and short-term outcome. Eur J Neurol 18(2):232–239

    Article  CAS  PubMed  Google Scholar 

  25. Bosch A, Stauffer ES, Nickel VL (1971) Incomplete traumatic quadriplegia. A ten-year review. JAMA 216(3):473–478

    Article  CAS  PubMed  Google Scholar 

  26. Nathan PW (1994) Effects on movement of surgical incisions into the human spinal cord. Brain 117(Pt 2):337–346

    Article  PubMed  Google Scholar 

  27. Schneider RC (1955) The syndrome of acute anterior spinal cord injury. J Neurosurg 12(2):95–122

    Article  CAS  PubMed  Google Scholar 

  28. Molliqaj G et al (2014) Acute traumatic central cord syndrome: a comprehensive review. Neurochirurgie 60(1–2):5–11

    Article  CAS  PubMed  Google Scholar 

  29. Schneider RC, Cherry G, Pantek H (1954) The syndrome of acute central cervical spinal cord injury; with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J Neurosurg 11(6):546–577

    Article  CAS  PubMed  Google Scholar 

  30. Lemon RN et al (2004) Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. Prog Brain Res 143:263–279

    Article  PubMed  Google Scholar 

  31. Bernhard CG, Bohm E (1954) Monosynaptic corticospinal activation of fore limb motoneurones in monkeys (Macaca mulatta). Acta Physiol Scand 31(2–3):104–112

    Article  CAS  PubMed  Google Scholar 

  32. Kuypers HG (1978) The motor system and the capacity to execute highly fractionated distal extremity movements. Electroencephalogr Clin Neurophysiol Suppl 34:429–431

    Google Scholar 

  33. Wolpert DM, Ghahramani Z, Flanagan JR (2001) Perspectives and problems in motor learning. Trends Cogn Sci 5(11):487–494

    Article  PubMed  Google Scholar 

  34. Brown-Sequard CE (1868) Lectures on the physiology and pathology of the central nervous system and the treatment of organic nervous affections. Lancet 2:593–595, 659–662,755–757,821–823

    Article  Google Scholar 

  35. Little JW, Halar E (1985) Temporal course of motor recovery after Brown-Sequard spinal cord injuries. Paraplegia 23(1):39–46

    Article  CAS  PubMed  Google Scholar 

  36. Rosenzweig ES et al (2009) Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J Comp Neurol 513(2):151–163

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rosenzweig ES et al (2010) Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13(12):1505–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3(10):781–790

    Article  CAS  PubMed  Google Scholar 

  39. Verma P, Fawcett J (2005) Spinal cord regeneration. Adv Biochem Eng Biotechnol 94:43–66

    PubMed  Google Scholar 

  40. Bareyre FM et al (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3):269–277

    Article  CAS  PubMed  Google Scholar 

  41. Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2(4):263–273

    Article  CAS  PubMed  Google Scholar 

  42. Kuhn F et al (2012) One-year evolution of ulnar somatosensory potentials after trauma in 365 tetraplegic patients: early prediction of potential upper limb function. J Neurotrauma 29(10):1829–1837

    Article  PubMed  Google Scholar 

  43. Petersen JA et al (2012) Spinal cord injury: one-year evolution of motor-evoked potentials and recovery of leg motor function in 255 patients. Neurorehabil Neural Repair 26(8):939–948

    Article  PubMed  Google Scholar 

  44. Spiess M et al (2008) Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials. Clin Neurophysiol 119(5):1051–1061

    Article  PubMed  Google Scholar 

  45. Hall M, (1840) Second Memoir on some principles of the pathology of the nervous system. Med Chir Trans 23:121–167.

    Google Scholar 

  46. Ditunno JF et al (2004) Spinal shock revisited: a four-phase model. Spinal Cord 42(7):383–395

    Article  CAS  PubMed  Google Scholar 

  47. Sherrington C (1906) The integrative action of the nervous system. Constable & Company LTD., London

    Google Scholar 

  48. Atkinson PP, Atkinson JL (1996) Spinal shock. Mayo Clin Proc 71(4):384–389

    Article  CAS  PubMed  Google Scholar 

  49. White RJ, Likavec MJ (1999) Spinal shock – spinal man. J Trauma 46(5):979–980

    Article  CAS  PubMed  Google Scholar 

  50. Calancie B, Molano MR, Broton JG (2004) Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans. Clin Neurophysiol 115(10):2350–2363

    Article  PubMed  Google Scholar 

  51. Ko HY et al (1999) The pattern of reflex recovery during spinal shock. Spinal Cord 37(6):402–409

    Article  CAS  PubMed  Google Scholar 

  52. Dietz V, Sinkjaer T (2012) Spasticity. Handb Clin Neurol 109:197–211

    Article  PubMed  Google Scholar 

  53. Bennett DJ et al (2004) Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. J Neurophysiol 91(5):2247–2258

    Article  CAS  PubMed  Google Scholar 

  54. Gorassini MA et al (2004) Role of motoneurons in the generation of muscle spasms after spinal cord injury. Brain 127(Pt 10):2247–2258

    Article  PubMed  Google Scholar 

  55. Petersen JA, Schubert M, Dietz V (2010) The occurrence of the Babinski sign in complete spinal cord injury. J Neurol 257(1):38–43

    Article  PubMed  Google Scholar 

  56. Calancie B, Molano MR, Broton JG (2002) Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury. Brain 125(Pt 5):1150–1161

    Article  PubMed  Google Scholar 

  57. Weidner N et al (2001) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci U S A 98(6):3513–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Little JW et al (1999) Incomplete spinal cord injury: neuronal mechanisms of motor recovery and hyperreflexia. Arch Phys Med Rehabil 80(5):587–599

    Article  CAS  PubMed  Google Scholar 

  59. Tator CH, Rowed DW (1979) Current concepts in the immediate management of acute spinal cord injuries. Can Med Assoc J 121(11):1453–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hiersemenzel LP, Curt A, Dietz V (2000) From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology 54(8):1574–1582

    Article  CAS  PubMed  Google Scholar 

  61. Boland RA et al (2011) Adaptation of motor function after spinal cord injury: novel insights into spinal shock. Brain 134(Pt 2):495–505

    Article  PubMed  Google Scholar 

  62. Van De Meent H et al (2010) Severe degeneration of peripheral motor axons after spinal cord injury: a European multicenter study in 345 patients. Neurorehabil Neural Repair 24(7):657–665

    Article  Google Scholar 

  63. Dietz V (2010) Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol 6(3):167–174

    Article  PubMed  Google Scholar 

  64. Harrop JS et al (2010) Cervical myelopathy: a clinical and radiographic evaluation and correlation to cervical spondylotic myelopathy. Spine (Phila Pa 1976) 35(6):620–624

    Article  Google Scholar 

  65. Cole JS, Patchell RA (2008) Metastatic epidural spinal cord compression. Lancet Neurol 7(5):459–466

    Article  PubMed  Google Scholar 

  66. Huisman TA (2009) Pediatric tumors of the spine. Cancer Imaging 9 Spec No A: S45–8

    Google Scholar 

  67. Wilson JR et al (2013) Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 38(22 Suppl 1):S37–S54

    Article  Google Scholar 

  68. Fehlings MG et al (2013) Symptomatic progression of cervical myelopathy and the role of nonsurgical management: a consensus statement. Spine (Phila Pa 1976) 38(22 Suppl 1):S19–S20

    Article  Google Scholar 

  69. Ulrich A et al (2013) Improved diagnosis of spinal cord disorders with contact heat evoked potentials. Neurology 80(15):1393–1399

    Article  PubMed  Google Scholar 

  70. Hacein-Bey L, Konstas AA, Pile-Spellman J (2014) Natural history, current concepts, classification, factors impacting endovascular therapy, and pathophysiology of cerebral and spinal dural arteriovenous fistulas. Clin Neurol Neurosurg 121:64–75

    Article  PubMed  Google Scholar 

  71. Jeng Y et al (2015) Spinal dural arteriovenous fistula: imaging features and its mimics. Korean J Radiol 16(5):1119–1131

    Article  PubMed  PubMed Central  Google Scholar 

  72. Krings T, Geibprasert S (2009) Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 30(4):639–648

    Article  CAS  PubMed  Google Scholar 

  73. Foix C, Alajouanine T (1926) The subacute necrotic myelitis. Rev Neurol 46:1–42

    Google Scholar 

  74. Jellema K et al (2003) Spinal dural arteriovenous fistulas: clinical features in 80 patients. J Neurol Neurosurg Psychiatry 74(10):1438–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Dijk JM et al (2002) Multidisciplinary management of spinal dural arteriovenous fistulas: clinical presentation and long-term follow-up in 49 patients. Stroke 33(6):1578–1583

    Article  PubMed  Google Scholar 

  76. Moss JG, Sellar RJ, Hadley DM (1989) Intracerebral and spinal vascular malformation in a patient without hereditary haemorrhagic telangiectasia. Neuroradiology 31(3):280–281

    Article  CAS  PubMed  Google Scholar 

  77. Tadie M et al (1985) Morphological and functional anatomy of spinal cord veins. J Neuroradiol 12(1):3–20

    CAS  PubMed  Google Scholar 

  78. Rosenblum B et al (1987) Spinal arteriovenous malformations: a comparison of dural arteriovenous fistulas and intradural AVM’s in 81 patients. J Neurosurg 67(6):795–802

    Article  CAS  PubMed  Google Scholar 

  79. Symon L, Kuyama H, Kendall B (1984) Dural arteriovenous malformations of the spine. Clinical features and surgical results in 55 cases. J Neurosurg 60(2):238–247

    Article  CAS  PubMed  Google Scholar 

  80. Fehlings MG et al (2013) Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: results of the AOSpine North America prospective multi-center study. J Bone Joint Surg Am 95(18):1651–1658

    Article  PubMed  Google Scholar 

  81. Sundaresan N, Rosen G, Boriani S (2009) Primary malignant tumors of the spine. Orthop Clin North Am 40(1):21–36, v

    Article  PubMed  Google Scholar 

  82. Kaiser R et al (1997) Follow-up and prognosis of early summer meningoencephalitis. Nervenarzt 68(4):324–330

    Article  CAS  PubMed  Google Scholar 

  83. Basaran R et al (2015) Spinal arachnoid cyst associated with arachnoiditis following subarachnoid haemorrhage in adult patients: a case report and literature review. Br J Neurosurg 29(2):285–289

    Article  PubMed  Google Scholar 

  84. Ishizaka S et al (2012) Syringomyelia and arachnoid cysts associated with spinal arachnoiditis following subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 52(9):686–690

    Article  Google Scholar 

  85. Ewelt C et al (2010) Impact of cordectomy as a treatment option for posttraumatic and non-posttraumatic syringomyelia with tethered cord syndrome and myelopathy. J Neurosurg Spine 13(2):193–199

    Article  PubMed  Google Scholar 

  86. Nathan PW, Smith M, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119(Pt 6):1809–1833

    Article  PubMed  Google Scholar 

  87. Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113(Pt 2):303–324

    Article  PubMed  Google Scholar 

  88. Freund P et al (2013) Tracking changes following spinal cord injury: insights from neuroimaging. Neuroscientist 19(2):116–128

    Article  PubMed  PubMed Central  Google Scholar 

  89. Freund P et al (2011) Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. Eur J Neurosci 34(11):1839–1846

    Article  PubMed  Google Scholar 

  90. Freund P et al (2012) Degeneration of the injured cervical cord is associated with remote changes in corticospinal tract integrity and upper limb impairment. PLoS One 7(12):e51729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Freund P et al (2013) MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol 12(9):873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186

    Article  CAS  PubMed  Google Scholar 

  93. Merzenich MM et al (1983) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10(3):639–665

    Article  CAS  PubMed  Google Scholar 

  94. Endo T et al (2007) Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain 130(Pt 11):2951–2961

    Article  PubMed  Google Scholar 

  95. Curt A et al (2002) Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain 125(Pt 11):2567–2578

    Article  PubMed  Google Scholar 

  96. Ghosh A et al (2010) Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci 13(1):97–104

    Article  CAS  PubMed  Google Scholar 

  97. Aguilar J et al (2010) Spinal cord injury immediately changes the state of the brain. J Neurosci 30(22):7528–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jain N, Florence SL, Kaas JH (1998) Reorganization of somatosensory cortex after nerve and spinal cord injury. News Physiol Sci 13:143–149

    PubMed  Google Scholar 

  99. Kaas JH et al (2008) Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Exp Neurol 209(2):407–416

    Article  PubMed  Google Scholar 

  100. Bruehlmeier M et al (1998) How does the human brain deal with a spinal cord injury? Eur J Neurosci 10(12):3918–3922

    Article  CAS  PubMed  Google Scholar 

  101. Wrigley PJ et al (2009) Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb Cortex 19(1):224–232

    Article  CAS  PubMed  Google Scholar 

  102. Wrigley PJ et al (2009) Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 141(1–2):52–59

    Article  CAS  PubMed  Google Scholar 

  103. Boord P et al (2008) Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 46(2):118–123

    Article  CAS  PubMed  Google Scholar 

  104. Hirata A, Castro-Alamancos MA (2010) Neocortex network activation and deactivation states controlled by the thalamus. J Neurophysiol 103(3):1147–1157

    Article  PubMed  PubMed Central  Google Scholar 

  105. Llinas RR et al (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96(26):15222–15227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hari AR et al (2009) Enhanced recovery of human spinothalamic function is associated with central neuropathic pain after SCI. Exp Neurol 216(2):428–430

    Article  PubMed  Google Scholar 

  107. Wydenkeller S et al (2009) Neuropathic pain in spinal cord injury: significance of clinical and electrophysiological measures. Eur J Neurosci 30(1):91–99

    Article  PubMed  Google Scholar 

  108. Jurkiewicz MT et al (2006) Somatosensory cortical atrophy after spinal cord injury: a voxel-based morphometry study. Neurology 66(5):762–764

    Article  CAS  PubMed  Google Scholar 

  109. Green JB et al (1998) Cortical sensorimotor reorganization after spinal cord injury: an electroencephalographic study. Neurology 50(4):1115–1121

    Article  CAS  PubMed  Google Scholar 

  110. Green JB et al (1999) Cortical motor reorganization after paraplegia: an EEG study. Neurology 53(4):736–743

    Article  CAS  PubMed  Google Scholar 

  111. Logothetis NK et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  112. Petersen CC et al (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100(23):13638–13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nishimura Y et al (2007) Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 318(5853):1150–1155

    Article  CAS  PubMed  Google Scholar 

  114. Schmidlin E et al (2004) Progressive plastic changes in the hand representation of the primary motor cortex parallel incomplete recovery from a unilateral section of the corticospinal tract at cervical level in monkeys. Brain Res 1017(1–2):172–183

    Article  CAS  PubMed  Google Scholar 

  115. Freund P et al (2011) Disability, atrophy and cortical reorganization following spinal cord injury. Brain 134(Pt 6):1610–1622

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nardone R et al (2013) Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 1504:58–73

    Article  CAS  PubMed  Google Scholar 

  117. Freund PA et al (2010) Method for simultaneous voxel-based morphometry of the brain and cervical spinal cord area measurements using 3D-MDEFT. J Magn Reson Imaging 32(5):1242–1247

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638–644

    Article  CAS  PubMed  Google Scholar 

  119. Smith MC (1957) The anatomy of the spinocerebellar fibers in man. I. The course of the fibers in the spinal cord and brain stem. J Comp Neurol 108(2):285–352

    Article  CAS  PubMed  Google Scholar 

  120. Courtine G et al (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14(1):69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zorner B et al (2014) Chasing central nervous system plasticity: the brainstem’s contribution to locomotor recovery in rats with spinal cord injury. Brain 137(Pt 6):1716–1732

    Article  PubMed  Google Scholar 

  122. Grillner S (1996) Neural networks for vertebrate locomotion. Sci Am 274(1):64–69

    Article  CAS  PubMed  Google Scholar 

  123. Garcia-Rill E et al (1986) Projections of the mesencephalic locomotor region in the rat. Brain Res Bull 17(1):33–40

    Article  CAS  PubMed  Google Scholar 

  124. Matsuyama K et al (2004) Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res 143:239–249

    Article  PubMed  Google Scholar 

  125. Ryczko D, Dubuc R (2013) The multifunctional mesencephalic locomotor region. Curr Pharm Des 19(24):4448–4470

    Article  CAS  PubMed  Google Scholar 

  126. Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  CAS  PubMed  Google Scholar 

  127. Grillner S et al (2008) Neural bases of goal-directed locomotion in vertebrates – an overview. Brain Res Rev 57(1):2–12

    Article  PubMed  Google Scholar 

  128. McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57(1):134–146

    Article  PubMed  Google Scholar 

  129. Deliagina TG et al (2014) Contribution of supraspinal systems to generation of automatic postural responses. Front Integr Neurosci 8:76

    Article  PubMed  PubMed Central  Google Scholar 

  130. Whishaw IQ, Gorny B, Sarna J (1998) Paw and limb use in skilled and spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the rat: behavioral and anatomical dissociations. Behav Brain Res 93(1–2):167–183

    Article  CAS  PubMed  Google Scholar 

  131. Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105(Pt 2):223–269

    Article  CAS  PubMed  Google Scholar 

  132. Armstrong DM (1988) The supraspinal control of mammalian locomotion. J Physiol 405:1–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Markham CH (1987) Vestibular control of muscular tone and posture. Can J Neurol Sci 14(3 Suppl):493–496

    Article  CAS  PubMed  Google Scholar 

  134. Kumru H, Kofler M (2012) Effect of spinal cord injury and of intrathecal baclofen on brainstem reflexes. Clin Neurophysiol 123(1):45–53

    Article  CAS  PubMed  Google Scholar 

  135. Kumru H et al (2009) Brainstem reflexes are enhanced following severe spinal cord injury and reduced by continuous intrathecal baclofen. Neurorehabil Neural Repair 23(9):921–927

    Article  PubMed  Google Scholar 

  136. Kumru H et al (2010) Alterations in excitatory and inhibitory brainstem interneuronal circuits after severe spinal cord injury. J Neurotrauma 27(4):721–728

    Article  PubMed  Google Scholar 

  137. Berardelli A et al (1999) The orbicularis oculi reflexes. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:249–253

    CAS  PubMed  Google Scholar 

  138. Kimura J (1973) Disorder of interneurons in Parkinsonism. The orbicularis oculi reflex to paired stimuli. Brain 96(1):87–96

    Article  CAS  PubMed  Google Scholar 

  139. Kimura J, Powers JM, Van Allen MW (1969) Reflex response of orbicularis oculi muscle to supraorbital nerve stimulation. Study in normal subjects and in peripheral facial paresis. Arch Neurol 21(2):193–199

    Article  CAS  PubMed  Google Scholar 

  140. Molloy FM, Dalakas MC, Floeter MK (2002) Increased brainstem excitability in stiff-person syndrome. Neurology 59(3):449–451

    Article  CAS  PubMed  Google Scholar 

  141. Davis M et al (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2(6):791–805

    CAS  PubMed  Google Scholar 

  142. Koch M (1999) The neurobiology of startle. Prog Neurobiol 59(2):107–128

    Article  CAS  PubMed  Google Scholar 

  143. Cruccu G et al (1991) Masseter inhibitory reflex in movement disorders. Huntington’s chorea, Parkinson’s disease, dystonia, and unilateral masticatory spasm. Electroencephalogr Clin Neurophysiol 81(1):24–30

    Article  CAS  PubMed  Google Scholar 

  144. Ongerboer de Visser BW et al (1990) Effects of brainstem lesions on the masseter inhibitory reflex. Functional mechanisms of reflex pathways. Brain 113(Pt 3):781–792

    Article  PubMed  Google Scholar 

  145. Britton TC et al (1993) Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res 94(1):143–151

    Article  CAS  PubMed  Google Scholar 

  146. Wydenkeller S et al (2006) Impaired scaling of responses to vestibular stimulation in incomplete SCI. Exp Brain Res 175(1):191–195

    Article  CAS  PubMed  Google Scholar 

  147. Curt A, Dietz V (1996) Neurographic assessment of intramedullary motoneurone lesions in cervical spinal cord injury: consequences for hand function. Spinal Cord 34(6):326–332

    Article  CAS  PubMed  Google Scholar 

  148. Curt A, Dietz V (1996) Nerve conduction study in cervical spinal cord injury: significance for hand function. NeuroRehabilitation 7(3):165–173

    Article  CAS  PubMed  Google Scholar 

  149. Carlstedt T et al (1995) Return of function after spinal cord implantation of avulsed spinal nerve roots. Lancet 346(8986):1323–1325

    Article  CAS  PubMed  Google Scholar 

  150. Carlstedt T, Havton L (2012) The longitudinal spinal cord injury: lessons from intraspinal plexus, cauda equina and medullary conus lesions. Handb Clin Neurol 109:337–354

    Article  PubMed  Google Scholar 

  151. Carlstedt T et al (1990) Regeneration after spinal nerve root injury. Restor Neurol Neurosci 1(3):289–295

    CAS  PubMed  Google Scholar 

  152. Eggers R et al (2016) Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur J Neurosci 43(3):318–335

    Article  PubMed  Google Scholar 

  153. Eggers R et al (2010) A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol 223(1):207–220

    Article  CAS  PubMed  Google Scholar 

  154. Boland RA, Bostock H, Kiernan MC (2009) Plasticity of lower limb motor axons after cervical cord injury. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 120(1):204–209

    Article  Google Scholar 

  155. Ginsberg SD, Martin LJ (2002) Axonal transection in adult rat brain induces transsynaptic apoptosis and persistent atrophy of target neurons. J Neurotrauma 19(1):99–109

    Article  PubMed  Google Scholar 

  156. Lin CS et al (2007) Axonal changes in spinal cord injured patients distal to the site of injury. Brain J Neurol 130(Pt 4):985–994

    Google Scholar 

  157. Wirth B et al (2008) Changes in activity after a complete spinal cord injury as measured by the Spinal Cord Independence Measure II (SCIM II). Neurorehabil Neural Repair 22(2):145–153

    Article  PubMed  Google Scholar 

  158. Thomas SL, Gorassini MA (2005) Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 94(4):2844–2855

    Article  PubMed  Google Scholar 

  159. van Hedel HJ, Curt A (2006) Fighting for each segment: estimating the clinical value of cervical and thoracic segments in SCI. J Neurotrauma 23(11):1621–1631

    Article  PubMed  Google Scholar 

  160. Waters RL et al (1993) Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil 74(3):242–247

    CAS  PubMed  Google Scholar 

  161. Fawcett JW et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45(3):190–205

    Article  CAS  PubMed  Google Scholar 

  162. Steeves JD et al (2011) Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 49(2):257–265

    Article  CAS  PubMed  Google Scholar 

  163. Jakob W et al (2009) Difficulty of elderly SCI subjects to translate motor recovery – “body function” – into daily living activities. J Neurotrauma 26(11):2037–2044

    Article  PubMed  Google Scholar 

  164. Wilson JR et al (2014) Defining age-related differences in outcome after traumatic spinal cord injury: analysis of a combined, multicenter dataset. Spine J 14(7):1192–1198

    Article  PubMed  Google Scholar 

  165. Kramer JL et al (2012) Relationship between motor recovery and independence after sensorimotor-complete cervical spinal cord injury. Neurorehabil Neural Repair 26(9):1064–1071

    Article  PubMed  Google Scholar 

  166. Davey NJ, Nowicky AV, Zaman R (2001) Somatopy of perceptual threshold to cutaneous electrical stimulation in man. Exp Physiol 86(1):127–130

    Article  CAS  PubMed  Google Scholar 

  167. Savic G et al (2006) Perceptual threshold to cutaneous electrical stimulation in patients with spinal cord injury. Spinal Cord 44(9):560–566

    Article  CAS  PubMed  Google Scholar 

  168. van Hedel HJ et al (2012) Changes in electrical perception threshold within the first 6 months after traumatic spinal cord injury: a multicenter responsiveness study. Neurorehabil Neural Repair 26(5):497–506

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schubert, M. (2017). Natural Course of Disease of Spinal Cord Injury. In: Weidner, N., Rupp, R., Tansey, K. (eds) Neurological Aspects of Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-46293-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46293-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46291-2

  • Online ISBN: 978-3-319-46293-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics