Skip to main content

Gamma Kernels and BSS/LSS Processes

  • Conference paper
  • First Online:
Advanced Modelling in Mathematical Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 189))

Abstract

This paper reviews the roles of gamma type kernels in the theory and modelling for Brownian and Lévy semistationary processes. Applications to financial econometrics and the physics of turbulence are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Proofs and technical details are, in most cases, not presented here. For these and related literature we refer to the papers cited.

  2. 2.

    The differentiation term \(DD^{n,\gamma }\) may be viewed as a special case of the more general definition

    $$\begin{aligned} D^{m,n,\gamma }=D^{m}D^{n,\gamma } \end{aligned}$$

    where m, like n, is a nonnegative integer and \(0<\gamma <1\). Then \( D^{m,0,\gamma }\) equals the Riemann-Liouville fractional derivative while \( D^{0,n,\gamma }\) is the Caputo fractional derivative.

  3. 3.

    The \(-5/3\) behaviour is very manifest in the socalled inertial range but, as documented by later, extensive and accurate measurements, for the largest frequencies (the dissipation range) the spectral density decreases at a much faster rate. The total behaviour of the spectral density is accurately described by a formula due to Skharofsky, see for instance Fig. 5 in [35].

  4. 4.

    The Hypothesis states that spatial and temporal increments of the main component of the velocity vector are equivalent in law up to a proportional change of time. Cf. for instance [43].

References

  1. Adda, F.B., Cresson, J.: About non-differentiable functions. J. Math. Anal. Appl. 263, 721–737 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barndorff-Nielsen, O.E., Basse-O’Connor, A.: Quasi Ornstein-Uhlenbeck processes. Bernoulli 17, 916–921 (2009)

    Google Scholar 

  3. Barndorff-Nielsen, O.E., Blæsild, P., Schmiegel, J.: A parsimonious and universal description of turbulent velocity increments. Eur. Phys. J. B 41, 345–363 (2004)

    Article  Google Scholar 

  4. Barndorff-Nielsen, O.E., Benth, F.E., Szozda, B.: Stochastic integration for \(\cal VMVL\) processes via white noise analysis. Infinite Dimensional Anal., Q. Probab. Relat. Top. 17, 1450011 (2014)

    Google Scholar 

  5. Barndorff-Nielsen, O.E., Benth, F.E., Pedersen, J., Veraart, A.: On stochastic integration theory for volatility modulated Lévy-driven Volterra processes. Stoch. Proc. Appl. 124, 812–847 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.: Ambit processes and stochastic partial differential equations. In: DiNunno, G., Øksendal, B. (eds.) Advanced Mathematical Methods for Finance, pp. 35–74. Springer, Berlin (2011)

    Chapter  Google Scholar 

  7. Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.: Modelling electricity spot prices by Lévy semistationary processes. Bernoulli 19, 803–845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.: Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency. Banach Centre Publ. 104, 25–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M.: Multipower variation for Brownian semistationary processes. Bernoulli 17, 1159–1194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M.: Limit theorems for functionals of higher order differences of Brownian semistationary processes. In: Shiryaev, A.N., Varadhan, S.R.S., Presman, E. (eds.) Prokhorov and Contemporary Probability Theory, pp. 69–96. Springer, Berlin (2013)

    Chapter  Google Scholar 

  11. Barndorff-Nielsen, O.E., Hedevang, E., Schmiegel, J., Szozda, B.: Some recent developments in Ambit Stochastics with particular reference to the Statistical Theory of Turbulence. In: Benth, F.E., Nunno, G. (eds.) Stochastics of Environmental and Financial Economics, pp. 3–25. Springer, Heidelberg (2015)

    Google Scholar 

  12. Barndorff-Nielsen, O.E., Pakkanen, M., Schmiegel, J.: Assessing relative volatility/intermittency/energy dissipation. Elec. J. Stat. 8, 1996–2021 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barndorff-Nielsen, O.E., Sauri, O., Szozda, B.: Selfdecomposable fields. J. Theor. Probab. 28, 1–35 (2015)

    Article  Google Scholar 

  14. Barndorff-Nielsen, O.E. and Schmiegel, J.: Ambit processes; with applications to turbulence and tumour growth. In Benth, F.E., Nunno, G.D., Linstrøm, T., Øksendal, B., Zhang, T. (eds.) Stochastic Analysis and Applications: The Abel Symposium 2005, pp. 93–124. Springer, Heidelberg (2007)

    Google Scholar 

  15. Barndorff-Nielsen, O.E., Schmiegel, J.: A stochastic differential equation framework for the timewise dynamics of turbulent velocities. Theory Prob. Appl. 52, 372–388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Barndorff-Nielsen, O.E. Schmiegel, J.: Brownian semistationary processes and volatility/intermittency. In Albrecher, H., Rungaldier, W., Schachermeyer, W.: (eds.) Advanced Financial Modelling. Radon Series Comp. Appl. Math. 8. pp. 1–26. W. de Gruyter, Berlin (2009)

    Google Scholar 

  17. Barndorff-Nielsen, O.E., Shiryaev, A.N.: Change of Time and Change of Measure, 2nd edn. World Scientific, Singapore (2015)

    Google Scholar 

  18. Basse-O’Connor, A., Graversen, S.-E., Pedersen, J.: Stochastic integration on the real line. Theory Probab. Appl. 58, 193–215 (2014)

    Google Scholar 

  19. Basse-O’Connor, A., Pedersen, J.: Lévy driven moving averages and semimartingales. Stoc. Process. Their Appl. 119(9), 2970–2991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bennedsen, M., Lunde, A., Pakkanen, M.: Hybrid scheme for Brownian semistationary processes. CREATES Research Paper 2015–43. (Submitted.)

    Google Scholar 

  21. Benth, F.E., Eyjolffson, H., Veraart, A.E.D.: Approximating Lévy semistationary processes via Fourier methods in the context of power markets. SIAM J. Finan. Math. 5, 71–98 (2014)

    Article  MATH  Google Scholar 

  22. Benth, F.E., Ortiz-Latorre, S.: A change of measure preserving the affine structure in the Barndorff-Nielsen and Shephard model for commodity markets. Int. J. Theor. Appl. Financ. 18, 1550038 40pp (2015)

    Google Scholar 

  23. Birnir, B.: The Kolmogorov-Obukhov statistical theory of turbulence. J. Nonlinear Sci. 0938–8974, 1–32 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Birnir, B.: The Kolmogorov-Obukhov Theory of Turbulence. Springer, Heidelberg (2013)

    Google Scholar 

  25. Birnir, B.: The Kolmogorov Obukhov-She-Leveque scaling in Turbulence. Com. Pure Appl. Anal. 13, 1737–1757 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brockwell, P.J., Ferrazzano, V., Klüppelberg, C.: High-frequency sampling and kernel estimation for continuous-time moving average processes. J. Time Ser. Anal. 33, 152–160 (2012)

    Google Scholar 

  27. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. II.Geophys. J. Roy. Astronom. Soc. 13, 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  28. Chong, C., Klüppelberg, C.: Integrability conditions for space-time stochastic integrals: Theory and applications. Bernoulli 21, 2190–2216

    Google Scholar 

  29. Corcuera, J.M., Hedevang, E., Pakkanen, M.S., Podolskij, M.: Asymptotic theory for Brownian semi-stationary processes with application to turbulence. Stoch. Proc. Their Appl. 123, 2552–2574 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eberlein, E., Hammerstein, E.A.V.: Generalized Hyperbolic and Inverse Gaussian distributions. Birkhäuser, In Seminar on Stochastic Analysis, Random Fields and Applications IV Basel (2004)

    Google Scholar 

  31. Eberlein, E.: Generalised hyperbolic models. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance. Wiley, London (2010)

    Google Scholar 

  32. Frisch, U.: Turbulence. Cambridge University Press, The Legacy of A.N. Kolmogorov (1995)

    MATH  Google Scholar 

  33. Halgreen, C.: Self-decomposability of the generalised inverse Gaussian and hyperbolic distributions. Z. Wahrsch. Verw. Gebiete. 47, 13–17 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hedevang, E., Schmiegel, J.: A causal continuous time stochastic model for the turbulent energy dissipation in a helium jet flow. J. Turb. 14, 1–26 (2013)

    Article  MathSciNet  Google Scholar 

  35. Hedevang, E., Schmiegel, J.: A Lé vy based approach to random vector fields: With a view towards turbulence. J. Nonlinear Sci. Numer. Simul. 15, 411–436 (2014)

    MathSciNet  Google Scholar 

  36. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. (Fifth Ed.). Academic Press, London (1996)

    Google Scholar 

  37. Guttorp, P., Gneiting, T.: On the Whittle-Matérn correlation family. NrCSE Technical report Series NrCSE-TS No. 080 (2005)

    Google Scholar 

  38. Jurek, Z.J., Vervaat, W.: An integral representation for self-decomposable Banach space valued random variables. Z. Wahrsch. Verw. Gebiete. 62, 247–262 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kanaya, S., Lunde, A., Sauri, O.: Nonparametric estimation of kernel functions of Brownian semi-stationary processes. (To appear.) (2015)

    Google Scholar 

  40. von Karman, T.: Progress in the statistical theory of turbulence. J. Marine Res. 7, 252–264 (1948)

    MathSciNet  MATH  Google Scholar 

  41. von Karman, T., Howarth, L.: On the statistical theory of isotropic turbulence. Proc. Roy. Soc. Lond. A 164, 192–215 (1938)

    Article  MATH  Google Scholar 

  42. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland, Amsterdam (2006)

    MATH  Google Scholar 

  43. Márquez, J.U., Schmiegel, J.: Modelling turbulent time series by BSS-processes. In: Podolskij M., Stelzer R., Thorbj ørnsen, S., Veraart, A. (eds.) The Fascination of Probability, Statistics and their Applications; in Honour of Ole E. Barndorff-Nielsen. Springer, Heidelberg (To appear) (2015)

    Google Scholar 

  44. Li, C., Qian, D., Chen, Y.: On Riemann-Liouville and Caputo derivatives. Discrete Dyn. Nat. Soc. 2011, Article ID 562494 (2011)

    Google Scholar 

  45. Mainardi, F.: Fractional Calculus and Wawes in Linear Visocelasticity. Imperial College Press, London (2010)

    Book  Google Scholar 

  46. Mainardi, F, Pagnini, G., Gorenflo, R.: Probability distributions as solutions to fractional diffusion equations. Mini-proceedings: 2nd MaPhySto Conference on Lévy Processes: Theory and Applications, pp. 197–205 (2002)

    Google Scholar 

  47. Sauri, O.: Brownian semistationary processes and related processes. In Lévy semistationary models with applications in energy markets. PhD thesis. Department of economics and business economics, Aarhus University, pp. 2–27 (2015)

    Google Scholar 

  48. Pedersen, J., Sauri, O.: On Lévy semistationary processes with a gamma kernel. In Ramses, H., Mena, R.H., Pardo, J.C., Rivero, V., Bravo, G. (eds.) XI Symposium of Probability and Stochastic Processes CIMAT, Mexico, November 18–22, 2013. Springer, Heidelberg. Progress in Probability 69, 217–239 (2015)

    Google Scholar 

  49. Podolskij, M.: Ambit Fields: survey and new challenges. In Ramses, H., Mena, R.H., Pardo, J.C., Rivero, V., Bravo, G.: XI Symposium of Probability and Stochastic Processes CIMAT, Mexico, November 18–22, 2013. Springer, Heidelberg. Progress in Probability 69, 241–279 (2014)

    Google Scholar 

  50. Sauri, O.: Invertibility of infinitely divisible continuous-time moving average processes (2015). arXiv:1505.00196

  51. Sauri, O., Veraart, A.E.D.: On the class of distributions of subordinated Lévy processes and bases. (Submitted.) (2015)

    Google Scholar 

  52. Schmiegel, J., Barndorff-Nielsen, O.E., Eggers, H.C.: A class of spatio-temporal and causal stochastic processes with application to multiscaling and multifractality. S. Afr. J. Sci. 101, 513–519 (2005)

    Google Scholar 

  53. Tatarski, V.I.: Wave Propagation in a Turbulent Medium. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

  54. Veraart, A.E., Veraart, L.A.: Modelling electricity day-ahead prices by multivariate Lévy semistationary processes. In: Benth, F.E., Kholodnyi, V.A., Laurence, P. (eds.) Quantitative Energy Finance, pp. 157–188. Springer, New York (2014)

    Google Scholar 

  55. Wolpert, R.L., Taqqu, M.S.: Fractional Ornstein-Uhlenbeck Lévy processes and the Telekom process: Upstairs and downstairs. Sig. Process. 85, 1523–1545 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the reviewers of the paper and to the editors for their helpful comments and suggestions regarding the original version of my manuscript and to Orimar Sauri for a careful checking of the revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole E. Barndorff-Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Barndorff-Nielsen, O.E. (2016). Gamma Kernels and BSS/LSS Processes. In: Kallsen, J., Papapantoleon, A. (eds) Advanced Modelling in Mathematical Finance. Springer Proceedings in Mathematics & Statistics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-45875-5_2

Download citation

Publish with us

Policies and ethics