Skip to main content

Biochemistry of Nitric Oxide and Peroxynitrite: Sources, Targets and Biological Implications

  • Chapter
  • First Online:
Biochemistry of Oxidative Stress

Abstract

Nitric oxide (NO) is a relatively stable free radical generated biologically that participates in a series of signal transducing and physiological processes in human biology. Enzymatic as well as non-enzymatic sources of NO have been reported in vivo. In circumstances where NO is overproduced and/or in the context of a pro-oxidant environment, it can turn into a toxic molecule and converts into a pathogenic mediator in human diseases. In particular, the diffusion-controlled reaction of NO with superoxide radical anion (O2 •−) leads to the formation of peroxynitrite (ONOO), a strong oxidant and nucleophile that mediates much of the toxicity associated to NO. Peroxynitrite promotes one- and two-electron oxidations and nitration reactions via a series of mechanisms several of which involve free radical intermediates. In this chapter we summarize key biochemical aspects concerning the mechanisms of formation of NO, peroxynitrite and other reactive nitrogen species (RNS), their reaction with biomolecular targets and participation in the development of pathologies. In addition, we critically analyze current redox-based therapeutic strategies including the direct action of compounds on NO-and peroxynitrite-derived reactive species as well as the induction or endogenous antioxidant mechanisms, with the overall goal to cope against nitroxidative stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  3. Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder. Am J Physiol Heart Circ Physiol 291:H985–H1002

    Article  CAS  PubMed  Google Scholar 

  4. Martasek P, Miller RT, Liu Q et al (1998) The C331A mutant of neuronal nitric-oxide synthase is defective in arginine binding. J Biol Chem 273:34799–34805

    Article  CAS  PubMed  Google Scholar 

  5. Lacza Z, Pankotai E, Busija DW (2009) Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci 14:4436–4443

    Article  CAS  Google Scholar 

  6. Boveris A, Valdez LB, Zaobornyj T, Bustamante J (2006) Mitochondrial metabolic states and membrane potential regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta 1757:535–542

    Article  CAS  PubMed  Google Scholar 

  7. Cho HJ, Xie QW, Calaycay J et al (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 176:599–604

    Article  CAS  PubMed  Google Scholar 

  8. Qian J, Fulton D (2013) Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 4:347–360

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rocha BS, Gago B, Pereira C et al (2011) Dietary nitrite in nitric oxide biology: a redox interplay with implications for pathophysiology and therapeutics. Curr Drug Targets 12:1351–1364

    Article  CAS  PubMed  Google Scholar 

  10. Maia LB, Pereira V, Mira L, Moura JJ (2015) Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry 54:685–710

    Article  CAS  PubMed  Google Scholar 

  11. Nottingham WC, Sutter JR (1986) Kinetics of the oxidation of nitric oxide by chlorine and oxygen in nonaqueous media. Int J Chem Kinetics 18:1289–1302

    Article  CAS  Google Scholar 

  12. Eiserich JP, Butler J, van der Vliet A et al (1995) Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem J 310:745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Padmaja S, Huie RE (1993) The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun 195:539–544

    Article  CAS  PubMed  Google Scholar 

  14. Madej E, Folkes LK, Wardman P et al (2008) Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit. Free Radic Biol Med 44:2013–2018

    Article  CAS  PubMed  Google Scholar 

  15. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  16. Bartesaghi S, Romero N, Radi R (2012) Nitric oxide and derived oxidants. In: Pantopoulos K, Schipper HM (eds) Principles of free radical biomedicine. Nova, New York, pp 43–74

    Google Scholar 

  17. Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romero N, Radi R, Linares E et al (2003) Reaction of human hemoglobin with peroxynitrite. Isomerization to nitrate and secondary formation of protein radicals. J Biol Chem 278:44049–44057

    Article  CAS  PubMed  Google Scholar 

  19. Denicola A, Freeman BA, Trujillo M, Radi R (1996) Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333:49–58

    Article  CAS  PubMed  Google Scholar 

  20. Trujillo M, Alvarez B, Radi R (2016) One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic Res 50:150–171

    Article  CAS  PubMed  Google Scholar 

  21. Campolo N, Bartesaghi S, Radi R (2014) Metal-catalyzed protein tyrosine nitration in biological systems. Redox Rep 19:221–231

    Article  CAS  PubMed  Google Scholar 

  22. Bartesaghi S, Wenzel J, Trujillo M et al (2010) Lipid peroxyl radicals mediate tyrosine dimerization and nitration in membranes. Chem Res Toxicol 23:821–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Vliet A, Eiserich JP, Halliwell B, Cross CE (1997) Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 272:7617–7625

    Article  PubMed  Google Scholar 

  24. Thomas DD, Espey MG, Vitek MP et al (2002) Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2- reaction. Proc Natl Acad Sci U S A 99:12691–12696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gunther MR, Hsi LC, Curtis JF et al (1997) Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J Biol Chem 272:17086–17090

    Article  CAS  PubMed  Google Scholar 

  26. Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46:550–559

    Article  CAS  PubMed  Google Scholar 

  27. MacMillan-Crow LA, Crow JP, Kerby JD et al (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A 93:11853–11858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pehar M, Vargas MR, Robinson KM et al (2006) Peroxynitrite transforms nerve growth factor into an apoptotic factor for motor neurons. Free Radic Biol Med 41:1632–1644

    Article  CAS  PubMed  Google Scholar 

  29. Rocha BS, Gago B, Barbosa RM et al (2013) Pepsin is nitrated in the rat stomach, acquiring antiulcerogenic activity: a novel interaction between dietary nitrate and gut proteins. Free Radic Biol Med 58:26–34

    Article  CAS  PubMed  Google Scholar 

  30. O′Donnell VB, Chumley PH, Hogg N et al (1997) Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol. Biochemistry 36:15216–15223

    Article  PubMed  Google Scholar 

  31. Baker PR, Schopfer FJ, Sweeney S, Freeman BA (2004) Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc Natl Acad Sci U S A 101:11577–11582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baker PR, Schopfer FJ, O′Donnell VB, Freeman BA (2009) Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic Biol Med 46:989–1003

    Article  CAS  PubMed  Google Scholar 

  33. Trostchansky A, Souza JM, Ferreira A et al (2007) Synthesis, isomer characterization, and anti-inflammatory properties of nitroarachidonate. Biochemistry 46:4645–4653

    Article  CAS  PubMed  Google Scholar 

  34. Trostchansky A, Bonilla L, Thomas CP et al (2011) Nitroarachidonic acid, a novel peroxidase inhibitor of prostaglandin endoperoxide H synthases 1 and 2. J Biol Chem 286:12891–12900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Villacorta L, Chang L et al (2010) Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ Res 107:540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Villacorta L, Chang L, Salvatore SR et al (2013) Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts. Cardiovasc Res 98:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koenitzer JR, Bonacci G, Woodcock SR et al (2016) Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II. Redox Biol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  38. Rudolph TK, Rudolph V, Edreira MM et al (2010) Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 30:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75:291–302

    Article  CAS  PubMed  Google Scholar 

  40. Tahara EB, Navarete FD, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297

    Article  CAS  PubMed  Google Scholar 

  41. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    Article  CAS  PubMed  Google Scholar 

  42. Abriata LA, Cassina A, Tortora V et al (2009) Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies. J Biol Chem 284:17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tortora V, Quijano C, Freeman B et al (2007) Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radic Biol Med 42:1075–1088

    Article  CAS  PubMed  Google Scholar 

  44. Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    Article  CAS  PubMed  Google Scholar 

  45. Trujillo M, Clippe A, Manta B et al (2007) Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch Biochem Biophys 467:95–106

    Article  CAS  PubMed  Google Scholar 

  46. Koh DW, Dawson TM, Dawson VL (2005) Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 52:5–14

    Article  CAS  PubMed  Google Scholar 

  47. Pacher P, Szabo C (2008) Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol 173:2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang D, Yang CZ, Yao L et al (2008) Activation and overexpression of PARP-1 in circulating mononuclear cells promote TNF-alpha and IL-6 expression in patients with unstable angina. Arch Med Res 39:775–784

    Article  CAS  PubMed  Google Scholar 

  49. Love S, Barber R, Wilcock GK (1999) Neuronal accumulation of poly(ADP-ribose) after brain ischaemia. Neuropathol Appl Neurobiol 25:98–103

    Article  CAS  PubMed  Google Scholar 

  50. Love S, Barber R, Wilcock GK (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer′s disease. Brain 122:247–253

    Article  PubMed  Google Scholar 

  51. Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    Article  CAS  PubMed  Google Scholar 

  52. Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10

    Article  CAS  PubMed  Google Scholar 

  53. Shacka JJ, Sahawneh MA, Gonzalez JD et al (2006) Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ 13:1506–1514.

    Google Scholar 

  54. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Google Scholar 

  55. Alvarez MN, Peluffo G, Piacenza L, Radi R (2011) Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity. J Biol Chem 286:6627–6640

    Article  CAS  PubMed  Google Scholar 

  56. Thomson L, Christie J, Vadseth C et al (2007) Identification of immunoglobulins that recognize 3-nitrotyrosine in patients with acute lung injury after major trauma. Am J Respir Cell Mol Biol 36:152–157

    Article  CAS  PubMed  Google Scholar 

  57. Hsu HC, Zhou T, Kim H et al (2006) Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis. Arthritis Rheum 54:343–355

    Article  CAS  PubMed  Google Scholar 

  58. Mapp PI, Klocke R, Walsh DA et al (2001) Localization of 3-nitrotyrosine to rheumatoid and normal synovium. Arthritis Rheum 44:1534–1539

    Article  CAS  PubMed  Google Scholar 

  59. Sandhu JK, Robertson S, Birnboim HC, Goldstein R (2003) Distribution of protein nitrotyrosine in synovial tissues of patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 30:1173–1181

    CAS  PubMed  Google Scholar 

  60. Lundberg JO, Hellstrom PM, Lundberg JM, Alving K (1994) Greatly increased luminal nitric oxide in ulcerative colitis. Lancet 344:1673–1674

    Article  CAS  PubMed  Google Scholar 

  61. Amrouche-Mekkioui I, Djerdjouri B (2012) N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice. Eur J Pharmacol 691:209–217

    Article  CAS  PubMed  Google Scholar 

  62. Beckmann JS, Ye YZ, Anderson PG et al (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler 375:81–88

    Article  CAS  PubMed  Google Scholar 

  63. Depre C, Havaux X, Renkin J et al (1999) Expression of inducible nitric oxide synthase in human coronary atherosclerotic plaque. Cardiovasc Res 41:465–472

    Article  CAS  PubMed  Google Scholar 

  64. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138:532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bianchi C, Wakiyama H, Faro R et al (2002) A novel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemia-reperfusion in pigs. Ann Thorac Surg 74:1201–1207

    Article  PubMed  Google Scholar 

  66. Hayashi Y, Sawa Y, Ohtake S et al (2001) Peroxynitrite formation from human myocardium after ischemia-reperfusion during open heart operation. Ann Thorac Surg 72:571–576

    Article  CAS  PubMed  Google Scholar 

  67. Ye Y, Quijano C, Robinson KM et al (2007) Prevention of peroxynitrite-induced apoptosis of motor neurons and PC12 cells by tyrosine-containing peptides. J Biol Chem 282:6324–6337

    Article  CAS  PubMed  Google Scholar 

  68. Giasson BI, Duda JE, Murray IV et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  CAS  PubMed  Google Scholar 

  69. Hodara R, Norris EH, Giasson BI et al (2004) Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279:47746–47753

    Article  CAS  PubMed  Google Scholar 

  70. Casoni F, Basso M, Massignan T et al (2005) Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem 280:16295–16304

    Article  CAS  PubMed  Google Scholar 

  71. Fukuyama N, Takebayashi Y, Hida M et al (1997) Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Radic Biol Med 22:771–774

    Article  CAS  PubMed  Google Scholar 

  72. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6:521–534

    Article  CAS  PubMed  Google Scholar 

  73. Suzuki N, Yasui M, Geacintov NE et al (2005) Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine. Biochemistry 44:9238–9245

    Article  CAS  PubMed  Google Scholar 

  74. Molon B, Ugel S, Del Pozzo F et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shishehbor MH, Brennan ML, Aviles RJ et al (2003) Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation 108:426–431

    Article  CAS  PubMed  Google Scholar 

  76. Schewe T, Sies H (2005) Myeloperoxidase-induced lipid peroxidation of LDL in the presence of nitrite. Protection by cocoa flavanols. Biofactors 24:49–58

    Article  CAS  PubMed  Google Scholar 

  77. Stephens NG, Parsons A, Schofield PM et al (1996) Randomised controlled trial of vitamin E in patients with coronary disease. Lancet 347:781–786

    Article  CAS  PubMed  Google Scholar 

  78. Kleinschnitz C, Grund H, Wingler K et al (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8:9

    Article  CAS  Google Scholar 

  79. Mackensen GB, Patel M, Sheng H et al (2001) Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J Neurosci 21:4582–4592

    CAS  PubMed  Google Scholar 

  80. Eid HM, Lyberg T, Larsen J et al (2002) Reactive oxygen species generation by leukocytes in populations at risk for atherosclerotic disease. Scand J Clin Lab Invest 62:431–439

    Article  CAS  PubMed  Google Scholar 

  81. Martin-Gallan P, Carrascosa A, Gussinye M, Dominguez C (2003) Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34:1563–1574

    Article  CAS  PubMed  Google Scholar 

  82. Mabley JG, Southan GJ, Salzman AL, Szabo C (2004) The combined inducible nitric oxide synthase inhibitor and free radical scavenger guanidinoethyldisulfide prevents multiple low-dose streptozotocin-induced diabetes in vivo and interleukin-1beta-induced suppression of islet insulin secretion in vitro. Pancreas 28:E39–E44

    Article  PubMed  Google Scholar 

  83. Szabo C, Mabley JG, Moeller SM et al (2002) Pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8:571–580

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lai ZW, Hanczko R, Bonilla E et al (2012) N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 64:2937–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang G, Pierangeli SS, Papalardo E et al (2010) Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 62:2064–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frostegard J, Svenungsson E, Wu R et al (2005) Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum 52:192–200

    Article  CAS  PubMed  Google Scholar 

  87. Nin N, Cassina A, Boggia J et al (2004) Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition. Intensive Care Med 30:2271–2278

    Article  PubMed  Google Scholar 

  88. Paterson RL, Galley HF, Webster NR (2003) The effect of N-acetylcysteine on nuclear factor-kappa B activation, interleukin-6, interleukin-8, and intercellular adhesion molecule-1 expression in patients with sepsis. Crit Care Med 31:2574–2578

    Article  CAS  PubMed  Google Scholar 

  89. Good PF, Hsu A, Werner P et al (1998) Protein nitration in Parkinson′s disease. J Neuropathol Exp Neurol 57:338–342

    Article  CAS  PubMed  Google Scholar 

  90. Baillet A, Chanteperdrix V, Trocme C et al (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson′s disease. Neurochem Res 35:1530–1537

    Article  CAS  PubMed  Google Scholar 

  91. Crow JP, Calingasan NY, Chen J et al (2005) Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann Neuro 58:258–265

    Article  CAS  Google Scholar 

  92. Aldieri E, Riganti C, Polimeni M et al (2008) Classical inhibitors of NOX NAD(P)H oxidases are not specific. Curr Drug Metab 9:686–696

    Article  CAS  PubMed  Google Scholar 

  93. Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    Article  CAS  PubMed  Google Scholar 

  94. Paige JS, Jaffrey SR (2007) Pharmacologic manipulation of nitric oxide signaling: targeting NOS dimerization and protein-protein interactions. Curr Top Med Chem 7:97–114

    Article  CAS  PubMed  Google Scholar 

  95. Blasko E, Glaser CB, Devlin JJ et al (2002) Mechanistic studies with potent and selective inducible nitric-oxide synthase dimerization inhibitors. J Biol Chem 277:295–302

    Article  CAS  PubMed  Google Scholar 

  96. Amaro S, Canovas D, Castellanos M et al (2010) The URICO-ICTUS study, a phase 3 study of combined treatment with uric acid and rtPA administered intravenously in acute ischaemic stroke patients within the first 4.5 h of onset of symptoms. Int J Stroke 5:325–328

    Article  PubMed  Google Scholar 

  97. Rubbo H, Radi R, Anselmi D et al (2000) Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate. J Biol Chem 275:10812–10818

    Article  CAS  PubMed  Google Scholar 

  98. Peluffo G, Calcerrada P, Piacenza L et al (2009) Superoxide-mediated inactivation of nitric oxide and peroxynitrite formation by tobacco smoke in vascular endothelium: studies in cultured cells and smokers. Am J Physiol Heart Circ Physiol 296:H1781–H1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bjelakovic G, Nikolova D, Gluud LL et al (2008) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2008(2):CD007176

    Google Scholar 

  100. Villamena FA, Das A, Nash KM (2012) Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 4:1171–1207

    Article  CAS  PubMed  Google Scholar 

  101. Shuaib A, Lees KR, Lyden P et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357:562–571

    Article  CAS  PubMed  Google Scholar 

  102. Cannizzo B, Quesada I, Militello R et al (2014) Tempol attenuates atherosclerosis associated with metabolic syndrome via decreased vascular inflammation and NADPH-2 oxidase expression. Free Radic Res 48:526–533

    Article  CAS  PubMed  Google Scholar 

  103. Metz JM, Smith D, Mick R et al (2004) A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 10:6411–6417

    Article  CAS  PubMed  Google Scholar 

  104. Picot L, Ravallec R, Fouchereau-Peron M et al (2010) Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J Sci Food Agric 90:1819–1826

    CAS  PubMed  Google Scholar 

  105. Rival SG, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrolysates. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49:295–302

    Article  CAS  PubMed  Google Scholar 

  106. Jensen MP, Riley DP (2002) Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg Chem 41:4788–4797

    Article  CAS  PubMed  Google Scholar 

  107. Orrell RW (1996) AEOL-10150 (Aeolus). Curr Opin Investig Drugs 7:70–80

    Google Scholar 

  108. Masumoto H, Sies H (1996) The reaction of ebselen with peroxynitrite. Chem Res Toxicol 9:262–267

    Article  CAS  PubMed  Google Scholar 

  109. Briviba K, Roussyn I, Sharov VS, Sies H (1996) Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocystine and ebselen. Biochem J 319:13–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Parnham M, Sies H (2000) Ebselen: prospective therapy for cerebral ischaemia. Expert Opin Investig Drugs 9:607–619

    Article  CAS  PubMed  Google Scholar 

  111. de Bem AF, Fiuza B, Calcerrada P et al (2013) Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: a comparison with ebselen. Nitric Oxide 31:20–30

    Article  PubMed  CAS  Google Scholar 

  112. Sies H, Schewe T, Heiss C, Kelm M (2005) Cocoa polyphenols and inflammatory mediators. Am J Clin Nutr 81S:304S–312S

    Google Scholar 

  113. Moldeus P, Cotgreave IA (1994) N-acetylcysteine. Meth Enzymol 234:482–492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Universidad de la República (CSIC and Espacio Interdisciplinario). Additional funding was obtained from PEDECIBA. A. Aicardo, D. M. Martinez and N. Campolo have been supported by fellowships of Agencia Nacional de Investigación e Innovación (ANII, Uruguay), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Universidad de la República (CAP), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Radi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aicardo, A., Martinez, D.M., Campolo, N., Bartesaghi, S., Radi, R. (2016). Biochemistry of Nitric Oxide and Peroxynitrite: Sources, Targets and Biological Implications. In: Gelpi, R., Boveris, A., Poderoso, J. (eds) Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and Disease, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-45865-6_5

Download citation

Publish with us

Policies and ethics