Skip to main content

Thioredoxin Attenuates Post-ischemic Damage in Ventricular and Mitochondrial Function

  • Chapter
  • First Online:
Book cover Biochemistry of Oxidative Stress

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 16))

  • 1531 Accesses

Abstract

Thioredoxin (Trx) is an important antioxidant cellular system that plays an important role in cardioprotection against ischemia/reperfusion injury. The cardioprotective effects include a reduction of infarct size and an amelioration of ventricular and mitochondrial dysfunction that occurs in myocardial stunning. Particularly, Trx1 plays a protective role against the oxidative stress caused by an increase of reactive oxygen species concentration, as occurs during the reperfusion after an ischemic episode, and also could activate proteins related to pro-survival pathways such as MAP-kinases, Akt and GSK3-β. It has been also shown that, at least partially, Trx1 takes part of cardioprotective mechanisms such as ischemic preconditioning (PC) and postconditioning (PostC). However, comorbidities such as aging can modify this powerful cellular defense, leading to decrease cardioprotection, and even ischemic PC and PostC induced in aged animal models failed to decrease infarct size. Therefore, the lack of success of antioxidants therapies to treat ischemic heart disease could be solved avoiding the damage of Trx system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ago T, Sadoshima J (2006) Thioredoxin and ventricular remodeling. J Mol Cell Cardiol 41:762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakamura H, Hoshino Y, Okuyama Y, Yodoi J (2009) Thioredoxin 1 as a new therapeutics. Adv Drug Rev 61:303–309

    Article  CAS  Google Scholar 

  3. Shioji K, Nakamura H, Yodoi J (2003) Redox regulation by thioredoxin in cardiovascular disease. Antioxid Redox Signal 5:795–802

    Article  CAS  PubMed  Google Scholar 

  4. Rassaf T, Luedike P (2010) Between nitros(yl)ation and nitration: regulation of thioredoxin-1 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 49:343–346

    Article  CAS  PubMed  Google Scholar 

  5. Wang K, Zhang J, Wang X et al (2013) Thioredoxin reductase was nitrated in the aging heart after myocardial ischemia/reperfusion. Rejuvenation Res 16:377–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Qu Y, Wang R et al (2012) The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am J Physiol Endocrinol Metab 303:E841–E852

    Article  CAS  PubMed  Google Scholar 

  7. Mitsui A, Hamuro J, Nakamura H et al (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal 4:693–696

    Article  CAS  PubMed  Google Scholar 

  8. Heyndrickx GR, Millard RW, McRitchie RJ (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Przyklenk K, Patel B, Kloner RA (1987) Diastolic abnormalities of postischemic “stunned” myocardium. Am J Cardiol 60:1211–1213

    Article  CAS  PubMed  Google Scholar 

  10. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  CAS  PubMed  Google Scholar 

  11. Mosca SM, Gelpi RJ, Cingolani HE (1993) Dissociation between myocardial relaxation and diastolic stiffness in the stunned heart: its prevention by preconditioning. J Mol Cell Biochem 129:171–178

    Article  CAS  Google Scholar 

  12. González GE, Rodríguez M, Donato M et al (2006) Effects of low-calcium reperfusion and adenosine on diastolic behavior during the transitory systolic overshoot of the stunned myocardium in the rabbit. Can J Physiol Pharmacol 84:265–272

    Article  PubMed  Google Scholar 

  13. Hess ML, Kukreja RC (1995) Free radicals, calcium homeostasis, heat shock proteins, and myocardial stunning. Ann Thorac Surg 60:760–766

    Article  CAS  PubMed  Google Scholar 

  14. Bolli R, Jeroudi MO, Patel BS et al (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622

    Article  CAS  PubMed  Google Scholar 

  15. Valdez LB, ZaobornyjT BS et al (2011) Complex I syndrome in myocardial stunning and the effect of adenosine. Free Radic Biol Med 51:1203–1212

    Article  CAS  PubMed  Google Scholar 

  16. Boveris A, Lores-Arnaiz S, Bustamante J et al (2002) Pharmacological regulation of mitochondrial nitric oxide synthase. Methods Enzymol 359:328–339

    Article  CAS  PubMed  Google Scholar 

  17. Boveris A, Valdez LB, Zaobornyj T, Bustamante J (2006) Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys 1757:535–542

    Article  CAS  Google Scholar 

  18. Yoshioka J, Chutkow WA, Lee S (2012) Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. J Clin Invest 122:267–279

    Article  CAS  PubMed  Google Scholar 

  19. Yoshioka J, Imahashi K, Gabel SA et al (2007) Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. Circ Res 101:1328–1338

    Article  CAS  PubMed  Google Scholar 

  20. Yoshioka J, Lee RT (2014) Thioredoxin-interacting protein and myocardial mitochondrial function in ischemia-reperfusion injury. Trends Cardiovasc Med 24:75–80

    Article  CAS  PubMed  Google Scholar 

  21. Xiang G, Seki T, Schuster MD et al (2005) Catalytic degradation of vitamin D up-regulated protein 1 mRNA enhances cardiomyocyte survival and prevents left ventricular remodeling after myocardial ischemia. J Biol Chem 280:39394–39402

    Article  CAS  PubMed  Google Scholar 

  22. Meuillet EJ, Mahadevan D, Berggren M et al (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN’s tumor suppressor activity. Arch Biochem Biophys 429:123–133

    Article  CAS  PubMed  Google Scholar 

  23. Perez V, D’Annunzio V, Valdez LB et al (2016) Thioredoxin-1 attenuates ventricular and mitochondrial post-ischemic dysfunction in the stunned myocardium of transgenic mice. Antioxid Redox Signal. doi:10.1089/ars.2015.6459

    PubMed  Google Scholar 

  24. Yamamoto M, Yang G, Hong C et al (2003) Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 112:1395–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Catalucci D, Latronico MV, Ceci M et al (2009) Akt increases sarcoplasmic reticulum Ca2+ cycling by direct phosphorylation of phospholamban at Thr17. J Biol Chem 284:28180–28187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Turoczi T, Chang VW, Engelman RM et al (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 35:695–704

    Article  CAS  PubMed  Google Scholar 

  27. Matsushima S, Zablocki D, Sadoshima J (2011) Application of recombinant thioredoxin1 for treatment of heart desease. J Mol Cell Cardiol 51:570–573

    Article  CAS  PubMed  Google Scholar 

  28. Kaga S, Zhan L, Matsumoto M, Maulik N (2005) Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. J Mol Cell Cardiol 39:813–822

    Article  CAS  PubMed  Google Scholar 

  29. Altschmied J, Haendeler J (2009) Thioredoxin-1 and endothelial cell aging: role in cardiovascular diseases. Antioxid Redox Signal 11:1733–1740

    Article  CAS  PubMed  Google Scholar 

  30. Aota M, Matsuda K, Isowa N et al (1996) Protection against reperfusion-induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol 27:727–732

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura H, Vaage J, Valen G et al (1998) Measurements of plasma glutaredoxin and thioredoxin in healthy volunteers and during open-heart surgery. Free Radic Biol Med 24:1176–1186

    Article  CAS  PubMed  Google Scholar 

  32. Tao L, Gao E, Bryan NS et al (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci U S A 101:11471–11476

    Article  PubMed  PubMed Central  Google Scholar 

  33. D Annunzio V, Perez V, Mazo T et al (2016) Loss of myocardial protection against myocardial infarction in middle-aged transgenic mice overexpressing cardiac thioredoxin-1. Oncotarget. doi:10.18632/oncotarget.7726

    Google Scholar 

  34. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  CAS  PubMed  Google Scholar 

  35. Yang XM, Krieg T, Cui L et al (2004) NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol 36:411–421

    Article  CAS  PubMed  Google Scholar 

  36. Sartelet H, Rougemont AL, Fabre M (2011) Activation of the phosphatidylinositol 3′-kinase/AKT pathway in neuroblastoma and its regulation by thioredoxin-1. Hum Pathol 42:1727–1739

    Article  CAS  PubMed  Google Scholar 

  37. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75

    Article  CAS  PubMed  Google Scholar 

  38. Verrastro I, Tveen-Jensen K, Woscholski R et al (2015) Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins. Free Radic Biol Med 90:24–34

    Article  PubMed  Google Scholar 

  39. Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18:556–569

    Article  CAS  PubMed  Google Scholar 

  40. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741

    Article  CAS  PubMed  Google Scholar 

  41. Ge H, Zhao M, Lee S, Xu Z (2015) Mitochondrial Src tyrosine kinase plays a role in the cardioprotective effect of ischemic preconditioning by modulating complex I activity and mitochondrial ROS generation. Free Radic Res 49:1210–1217

    Article  CAS  PubMed  Google Scholar 

  42. Yu P, Zhang J, Yu S et al (2015) Protective effect of sevoflurane in postconditioning against cardiac ischemia/reperfusion injury via ameliorating mitochondrial impairment, oxidative stress and rescuing autophagic clearance. PLoS One 10:e0134666

    Article  PubMed  PubMed Central  Google Scholar 

  43. Murry CE, Jennings R, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  44. Cave A, Horowitz G, Apstein C (1994) Can ischemic preconditioning protect against hypoxia-induced damage? Studies of contractile function in isolated rat hearts. J Mol Cell Cardiol 26:1471–1486

    Article  CAS  PubMed  Google Scholar 

  45. Ytrehus K, Liu Y, Downey J (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266:H1145–H1152

    CAS  PubMed  Google Scholar 

  46. Liu GS, Thornton J, Van Winkle DM et al (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    Article  CAS  PubMed  Google Scholar 

  47. Banerjee A, Locke-Winter C, Rogers KB et al (1993) Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism. Circ Res 73:656–670

    Article  CAS  PubMed  Google Scholar 

  48. Oldenburg O, Qin Q, Sharma AR et al (2002) Acetylcholine leads to free radical production dependent on K(ATP) channels, G(i) proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovasc Res 55:544–552

    Article  CAS  PubMed  Google Scholar 

  49. Krieg T, Cui L, Qin Q et al (2004) Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. J Mol Cell Cardiol 36:435–443

    Article  CAS  PubMed  Google Scholar 

  50. Maulik N, Watanabe M, Zu YL et al (1996) Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase-2 in rat hearts. FEBS Lett 396:233–237

    Article  CAS  PubMed  Google Scholar 

  51. Maulik N, Sato M, Price BD, Das DK (1998) An essential role of NFkappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett 429:365–369

    Article  CAS  PubMed  Google Scholar 

  52. Yao Z, Tong J, Tan X et al (1999) Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am J Physiol 277:H2504–H2509

    CAS  PubMed  Google Scholar 

  53. Oldenburg O, Critz SD, Cohen MV, Downey JM (2003) Acetylcholine-induced production of reactive oxygen species in adult rabbit ventricular myocytes is dependent on phosphatidylinositol 3- and Src-kinase activation and mitochondrial K (ATP) channel opening. J Mol Cell Cardiol 35:653–660

    Article  CAS  PubMed  Google Scholar 

  54. Chiueh CC, Andoh T, Chock PB (2005) Induction of thioredoxin and mitochondrial survival proteins mediates preconditioning-induced cardioprotection and neuroprotection. Ann N Y Acad Sci 1042:403–418

    Article  CAS  PubMed  Google Scholar 

  55. Ago T, Yeh I, Yamamoto M et al (2006) Thioredoxin-1 upregulates mitochondrial proteins related to oxidative phosphorylation and TCA cycle in the heart. Antioxid Redox Signal 8:1635–1650

    Article  CAS  PubMed  Google Scholar 

  56. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232

    Article  CAS  PubMed  Google Scholar 

  57. Yang XM, Proctor JB, Cui L et al (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110

    Article  PubMed  Google Scholar 

  58. Donato M, D’Annunzio V, Buchholz B et al (2010) Role of matrix metalloproteinase-2 in the cardioprotective effect of ischaemic postconditioning. Exp Physiol 95:274–281

    Article  CAS  PubMed  Google Scholar 

  59. D’Annunzio V, Donato M, Erni L et al (2009) Rosuvastatin given during reperfusion decreases infarct size and inhibits matrix metalloproteinase-2 activity in normocholesterolemic and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 53:137–144

    Article  PubMed  Google Scholar 

  60. D’Annunzio V, Donato M, Buchholz B et al (2012) High cholesterol diet effects on ischemia-reperfusion injury of the heart. Can J Physiol Pharmacol 90:1185–1196

    Article  PubMed  Google Scholar 

  61. Buchholz B, D’Annunzio V, Giani JF et al (2014) Ischemic postconditioning reduces infarct size through the α1-adrenergic receptor pathway. J Cardiovasc Pharmacol 63:504–511

    Article  CAS  PubMed  Google Scholar 

  62. Donato M, D’Annunzio V, Berg G et al (2007) Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+(ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 49:287–292

    Article  CAS  PubMed  Google Scholar 

  63. Buchholz B, Perez V, Siachoque N et al (2014) Dystrophin proteolysis: a potential target for MMP-2 and its prevention by ischemic preconditioning. Am J Physiol Heart Circ Physiol 307:H88–H96

    Article  CAS  PubMed  Google Scholar 

  64. Skyschally A, Schulz R, Heusch G (2008) Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz 33:88–100

    Article  PubMed  Google Scholar 

  65. Perez V, D’Annunzio V, Mazo T et al (2016) Ischemic postconditioning confers cardioprotection and prevents reduction of Trx1 in young mice, but not in middle-aged and old mice. Mol Cell Biochem 415:67–76

    Article  CAS  PubMed  Google Scholar 

  66. Frolkis VV, Frolkis RA, Mkhitarian LS, Fraifeld VE (1991) Age-dependent effects of ischemia and reperfusion on cardiac function and Ca2+ transport in myocardium. Gerontology 37:233–239

    Article  CAS  PubMed  Google Scholar 

  67. Das DK, Maulik N (2003) Preconditioning potentiates redox signaling and converts death signal into survival signal. Arch Biochem Biophys 420:305–311

    Article  CAS  PubMed  Google Scholar 

  68. Cusack BJ, Mushlin PS, Andrejuk T et al (1991) Aging alters the force-frequency relationship and toxicity of oxidative stress in rabbit heart. Life Sci 48:1769–1777

    Article  CAS  PubMed  Google Scholar 

  69. Lesnefsky EJ, Gallo DS, Ye J et al (1994) Lust aging increases ischemia-reperfusion injury in the isolated, buffer perfused heart. J Lab Clin Med 124:843–851

    CAS  PubMed  Google Scholar 

  70. Lesnefsky EJ, Lundergan CF, Hodgson JM et al (1996) Increased left ventricular dysfunction in elderly patients despite successful thrombolysis: the GUSTO-I angiographic experience. J Am Coll Cardiol 28:331–337

    Article  CAS  PubMed  Google Scholar 

  71. Flitter WD (1993) Free radicals and myocardial reperfusion injury. Br Med Bull 49:545–555

    CAS  PubMed  Google Scholar 

  72. Atake K, Chen D, Levitsky S (1992) Effect of aging on intracellular Ca2+, pHi, and contractility during ischemia and reperfusion. Circulation 86:371–376

    Google Scholar 

  73. Van der Loo B, Labugger R, Skepper JN (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–1744

    Article  PubMed  PubMed Central  Google Scholar 

  74. Asai K, Kudej RK, Shen YT et al (2000) Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler Thromb Vasc Biol 20:1493–1499

    Article  CAS  PubMed  Google Scholar 

  75. Hoffmann J, Haendeler J, Aicher A et al (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715

    Article  CAS  PubMed  Google Scholar 

  76. Liu P, Xu B, Cavalieri TA, Hock CE (2002) Age-related difference in myocardial function and inflammation in a rat model of myocardial ischemia-reperfusion. Cardiovasc Res 56:443–453

    Article  CAS  PubMed  Google Scholar 

  77. Liu P, Xu B, Cavalieri TA, Hock CE (2004) Attenuation of antioxidative capacity enhances reperfusion injury in aged rat myocardium after MI/R. Am J Physiol Heart Circ Physiol 287:2719–2727

    Article  Google Scholar 

  78. Ferdinandy P, Hausenloy DJ, Heusch G (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66:1142–1174

    Article  CAS  PubMed  Google Scholar 

  79. Przyklenk K (2011) Efficacy of cardioprotective ‘conditioning’ strategies in aging and diabetic cohorts: theco-morbidity conundrum. Drugs Aging 28:331–343

    Article  PubMed  Google Scholar 

  80. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261

    Article  CAS  PubMed  Google Scholar 

  81. Abete P, Napoli C, Santoro G et al (1999) Age-related decrease in cardiac tolerance to oxidative stress. J Mol Cell Cardiol 31:227–236

    Article  CAS  PubMed  Google Scholar 

  82. Fenton RA, Dickson EW, Meyer TE, Dobson JG (2000) Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J Mol Cell Cardiol 32:1371–1375

    Article  CAS  PubMed  Google Scholar 

  83. Sumeray MS, Yellon DM (1998) Characterisation and validation of a murine model of global ischaemia reperfusion injury. Mol Cell Biochem 186:61–68

    Article  CAS  PubMed  Google Scholar 

  84. Willems L, Zatta A, Holgren K et al (2005) Age-related changes in ischemic tolerance in male and female mouse hearts. J Mol Cell Cardiol 38:245–256

    Article  CAS  PubMed  Google Scholar 

  85. Zhang H, Tao L, Jiao X et al (2007) Nitrative thioredoxin inactivation as a cause of enhanced myocardial ischemia/reperfusion injury in the aging heart. Free Radic Biol Med 43:39–47

    Article  PubMed  PubMed Central  Google Scholar 

  86. Azhar G, Gao W, Liu L, Wei JY (1999) Ischemia-reperfusion in the adult mouse heart: influence of age. Exp Gerontol 34:699–714

    Article  CAS  PubMed  Google Scholar 

  87. Boengler K, Konietzka I, Buechert A et al (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin-43. Am J Physiol Heart Circ Physiol 292:H1764–H1769

    Article  CAS  PubMed  Google Scholar 

  88. Fan Q, Chen M, Fang X et al (2013) Aging might augment reactive oxygen species (ROS) formation and affect reactive nitrogen species (RNS) level after myocardial ischemia/reperfusion in both humans and rats. Age (Dordr) 35:1017–1026

    Article  CAS  Google Scholar 

  89. Uhl GS, Farrell PW (1983) Myocardial infarction in young adults: risk factors and natural history. Am Heart J 105:548–553

    Article  CAS  PubMed  Google Scholar 

  90. Cohen D, Manuel DG, Tugwell P et al (2013) Inequity in primary and secondary preventive care for acute myocardial infarction? Use by socioeconomic status across middle-aged and older patients. Can J Cardiol 29:1579–1585

    Article  PubMed  Google Scholar 

  91. Babušíková E, Lehotský J, Dobrota D et al (2012) Age-associated changes in Ca(2+)-ATPase and oxidative damage in sarcoplasmic reticulum of rat heart. Physiol Res 61:453–460

    PubMed  Google Scholar 

  92. Choksi KB, Nuss JE, DeFord JH (2011) Mitochondrial electron transport chain functions in long lived Ames dwarf mice. Aging (Milano) 3:754–767

    Article  Google Scholar 

  93. Kim JY, Kim OY, Paik JK et al (2013) Association of age-related changes in circulating intermediary lipid metabolites, inflammatory and oxidative stress markers, and arterial stiffness in middle-aged men. Age (Dordr) 35:1507–1519

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Jorge Gelpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Annunzio, V., Perez, V., Mazo, T., Gelpi, R.J. (2016). Thioredoxin Attenuates Post-ischemic Damage in Ventricular and Mitochondrial Function. In: Gelpi, R., Boveris, A., Poderoso, J. (eds) Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and Disease, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-45865-6_12

Download citation

Publish with us

Policies and ethics