Skip to main content

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 1114 Accesses

Abstract

The presence of biofilms and their associated antimicrobial resistance provides a challenge to various industries where new and affective device coating strategies are required. Bacteriophages have the natural capacity to act as antibacterials and have been used extensively for this purpose, including in device coatings, since the beginning of the 20th century. This Chapter explores the emerging industry of phage-coated medical devices. An extensive review on the biology and challenges behind biofilm formations, including the contributors to biofilm resistance and current antimicrobial strategies will be covered. Alternative medical device coating strategies will also be explored, including the benefits, challenges, and promise of phage-based device coatings as bioactive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allison, D. G., & Matthews, M. J. (1992). Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. The Journal of Applied Bacteriology, 73(6), 484–488.

    Article  CAS  Google Scholar 

  • Azeredo, J., & Sutherland, I. W. (2008). The use of phages for the removal of infectious biofilms. Current Pharmaceutical Biotechnology, 9, 261–266.

    Article  CAS  Google Scholar 

  • Barr, J. J., Auro, R., Furlan, M., Whiteson, K. L., Erb, M. L., Pogliano, J., et al. (2013). Bacteriophage adhering to mucus provide a non-host-derived immunity. Proceedings of the National Academy of Sciences, 110(26), 10771–10776.

    Article  CAS  Google Scholar 

  • Bridgett, M. J., Davies, M. C., & Denyer, S. P. (1992). Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials, 13(7), 411–416.

    Article  CAS  Google Scholar 

  • Burmølle, M., Webb, J. S., Rao, D., Hansen, L. H., Sørensen, S. J., & Kjelleberg, S. (2006). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Applied and Environmental Microbiology, 72(6), 3916–3923.

    Article  Google Scholar 

  • Carson, L, Gorman, S. P., & Gilmore, B. F. (2010). The use of lytic bacteriophages in the prevention and eradication of biofilms of proteus mirabilis and Escherichia coli. FEMS Immunology & Medical Microbiology, 59(3), 447–455.

    Google Scholar 

  • Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I., & Penadés, J. R. (2001). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 183(9), 2888–2896.

    Article  CAS  Google Scholar 

  • Curtin, J. J., & Donlan, R. M. (2006). Using bacteriophages to reduce formation of catheter-associated biofilms by staphylococcus Epidermidis using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 50(4), 1268–1275.

    Article  CAS  Google Scholar 

  • Desai, N. P., Hossainy, S. F., & Hubbell, J. A. (1992). Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials, 13(7), 417–420.

    Article  CAS  Google Scholar 

  • Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7(2), 277–281.

    Article  CAS  Google Scholar 

  • Donlan, R. M. (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in Microbiology, 17(2), 66–72. http://www.ncbi.nlm.nih.gov/pubmed/19162482

    Google Scholar 

  • Espersen, F., Frimodt-Møller, N., Corneliussen, L., Riber, U., Rosdahl, V. T., & Skinhøj, P. (1994). Effect of treatment with methicillin and gentamicin in a new experimental mouse model of foreign body infection. Antimicrobial Agents and Chemotherapy, 38(9), 2047–2053.

    Article  CAS  Google Scholar 

  • Hanlon, G. W., Denyer, S. P., Olliff, C. J., & Ibrahim, L. J. (2001). Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 67(6), 2746–2753.

    Article  CAS  Google Scholar 

  • Heilmann, C., Hussain, M., Peters, G., & Götz, F. (1997). Evidence for autolysin-mediated primary attachment of staphylococcus Epidermidis to a polystyrene surface. Molecular Microbiology, 24(5), 1013–1024.

    Article  CAS  Google Scholar 

  • Hibma, A. M., Jassim, S. A. A., & Griffiths, M. W. (1997). Infection and removal of L-forms of listeria monocytogenes with bred bacteriophage. International Journal of Food Microbiology, 34(3), 197–207.

    Article  CAS  Google Scholar 

  • Hugonnet, S., Sax, H., Eggimann, P., Chevrolet, J. C., & Pittet, D. (2004). Nosocomial bloodstream infection and clinical sepsis. Emerging Infectious Diseases, 10(1), 76–81.

    Article  Google Scholar 

  • Hussain, M., Heilmann, C., Peters, G., & Herrmann, M. (2001). Teichoic acid enhances adhesion of staphylococcus Epidermidis to immobilized fibronectin. Microbial Pathogenesis, 31(6), 261–270.

    Article  CAS  Google Scholar 

  • Leriche, V., Briandet, R., & Carpentier, B. (2003). Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environmental Microbiology, 5(1), 64–71.

    Article  CAS  Google Scholar 

  • Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11197–11202. doi:10.1073/pnas.0704624104.

    Article  CAS  Google Scholar 

  • Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H., et al. (1996). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. Journal of Bacteriology, 178(1), 175–183.

    CAS  Google Scholar 

  • Mermel, L. A. (2000). Prevention of intravascular catheter-related infections. Annals of Internal Medicine, 132(5), 391–402.

    Article  CAS  Google Scholar 

  • Muller, E., Hübner, J., Gutierrez, N., Takeda, S., Goldmann, D. A., & Pier, G. B. (1993). Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesin and slime. Infection and Immunity, 61(2), 551–558.

    CAS  Google Scholar 

  • Rao, D., Webb, J. S., & Kjelleberg, S. (2005). Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 71(4), 1729–1736.

    Article  CAS  Google Scholar 

  • Safdar, N., Kluger, D. M., & Maki, D. G. (2002). A review of risk factors for catheter-related bloodstream infection caused by percutaneously inserted, noncuffed central venous catheters: Implications for preventive strategies. Medicine, 81(6), 466–479.

    Article  Google Scholar 

  • Sherertz, R. J., Carruth, W. A., Hampton, A. A., Byron, M. P., & Solomon, D. D. (1993). Efficacy of antibiotic-coated catheters in preventing subcutaneous staphylococcus aureus infection in rabbits. Journal of Infectious Diseases, 167(1), 98–106.

    Article  CAS  Google Scholar 

  • Solovskij, M. V., Ulbrich, K., & Kopecek, J. (1983). Synthesis of N-(2-hydroxypropyl) methacrylamide copolymers with antimicrobial activity. Biomaterials, 4(1), 44–48.

    Article  CAS  Google Scholar 

  • Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276), 9135–9138.

    Article  Google Scholar 

  • Sutherland, I. W., Hughes, K. A., Skillman, L. C., & Tait, K. (2004). The interaction of phage and biofilms. FEMS Microbiology Letters, 232(1), 1–6.

    Article  CAS  Google Scholar 

  • Sutherland, Ian W. (2001). Biofilm exopolysaccharides: A strong and sticky framework. Microbiology, 147(1), 3–9.

    Article  CAS  Google Scholar 

  • Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A., & Hirata, A. (2003). Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters, 223(2), 287–292.

    Article  CAS  Google Scholar 

  • Veenstra, G. J., Cremers, F. F., van Dijk, H., & Fleer, A. (1996). Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. Journal of Bacteriology, 178(2), 537–541.

    CAS  Google Scholar 

  • von Eiff, C., Jansen, B., Kohnen, W., & Becker, K. (2005). Infections associated with medical devices: Pathogenesis, management and prophylaxis. Drugs, 65(2), 179–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Nicastro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Nicastro, J., Lam, P., Blay, J. (2016). Phage Device Coatings. In: Bacteriophage Applications - Historical Perspective and Future Potential. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-45791-8_3

Download citation

Publish with us

Policies and ethics