Skip to main content

Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy

  • Chapter
  • First Online:
Biobanking and Cryopreservation of Stem Cells

Abstract

Adipose-Derived Stromal/Stem Cells (ASC) have considerable potential for regenerative medicine due to their abilities to proliferate, differentiate into multiple cell lineages, high cell yield, relative ease of acquisition, and almost no ethical concerns since they are derived from adult tissue. Storage of ASC by cryopreservation has been well described that maintains high cell yield and viability, stable immunophenotype, and robust differentiation potential post-thaw. This ability is crucial for banking research and for clinical therapeutic purposes that avoid the morbidity related to repetitive liposuction tissue harvests. ASC secrete various biomolecules such as cytokines which are reported to have immunomodulatory properties and therapeutic potential to reverse symptoms of multiple degenerative diseases/disorders. Nevertheless, safety regarding the use of these cells clinically is still under investigation. This chapter focuses on the different aspects of cryopreserved ASC and the methods to evaluate their functionality for future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASC:

Adipose-derived stromal/stem cells

ANGPT1:

Angiopoietin 1

CAL:

Cell Assisted Lipotranfer

CPA:

Cryoprotectant agents

cGMP:

Current Good Manufacturing Practice

DS:

Dextran sulfate

DMSO:

Dimethyl sulfoxide

EG:

Ethylene glycol

EAE:

Experimental autoimmune encephalitis

FDA:

U.S. Food and Drug Administration

GLUT4:

Glucose transporter

HGF:

Hepatocyte growth factor

HES:

Hydroxyethylstarch

INSR:

Insulin receptor

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin 6

IL-12:

Interleukin 12

IFN-γ:

Interferon gamma

MSC:

Mesenchymal stem cell

SVF:

Stromal vascular fraction

MC:

Methylcellulose

PD:

Parkinson’s disease

PVP:

Polyvinylpyrollidone

TNF-α:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

References

  1. Jenkins DD, Yang GP, Lorenz HP et al (2003) Tissue engineering and regenerative medicine. Clin Plast Surg 30:581

    Article  PubMed  Google Scholar 

  2. Horwitz EM, Le Blanc K, Dominici M et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  PubMed  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  4. McIntosh KR, Frazier T, Rowan BG et al (2013) Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics. Expert Rev Clin Immunol 9:175–184

    Article  CAS  PubMed  Google Scholar 

  5. Davis TA, Anam K, Lazdun Y et al (2014) Adipose-derived stromal cells promote allograft tolerance induction. Stem Cells Transl Med 3:1444–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gimble JM, Bunnell BA, Frazier T et al (2013) Adipose-derived stromal/stem cells: a primer. Organogenesis 9:3–10, United States

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cawthorn WP, Scheller EL, MacDougald OA (2012) Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res 53:227–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McIntosh K, Zvonic S, Garrett S et al (2006) The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24:1246–1253

    Article  CAS  PubMed  Google Scholar 

  9. Mendicino M, Bailey AM, Wonnacott K et al (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14:141–145

    Article  CAS  PubMed  Google Scholar 

  10. Halme DG, Kessler DA (2006) FDA regulation of stem-cell-based therapies. N Engl J Med 355:1730–1735

    Article  CAS  PubMed  Google Scholar 

  11. Gimble JM, Guilak F, Bunnell BA (2010) Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther 1:19

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38:107–123

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pegg DE (2015) Principles of cryopreservation. Methods Mol Biol 1257:3–19

    Article  CAS  PubMed  Google Scholar 

  14. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C125–C142

    CAS  PubMed  Google Scholar 

  15. Saragusty J (2015) Directional freezing for large volume cryopreservation. Methods Mol Biol 1257:381–397

    Article  PubMed  Google Scholar 

  16. Gorin NC (1986) Collection, manipulation and freezing of haemopoietic stem cells. Clin Haematol 15:19–48

    Article  CAS  PubMed  Google Scholar 

  17. Thirumala S, Gimble JM, Devireddy RV (2010) Cryopreservation of stromal vascular fraction of adipose tissue in a serum-free freezing medium. J Tissue Eng Regen Med 4:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Balci D, Can A (2013) The assessment of cryopreservation conditions for human umbilical cord stroma-derived mesenchymal stem cells towards a potential use for stem cell banking. Curr Stem Cell Res Ther 8:60–72

    Article  CAS  PubMed  Google Scholar 

  19. Pegg DE (2002) The history and principles of cryopreservation. Semin Reprod Med 20:5–13

    Article  CAS  PubMed  Google Scholar 

  20. Lopez M, Bollag RJ, Yu JC et al (2016) Chemically defined and xeno-free cryopreservation of human adipose-derived stem cells. PLoS One 11:e0152161

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brockbank KG, Heacox AE, Schenke-Layland K (2011) Guidance for removal of fetal bovine serum from cryopreserved heart valve processing. Cells Tissues Organs 193:264–273

    Article  CAS  PubMed  Google Scholar 

  22. Carvalho PP, Wu X, Yu G et al (2011) Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy 13:594–597

    Article  CAS  PubMed  Google Scholar 

  23. Dos Santos F, Campbell A, Fernandes-Platzgummer A et al (2014) A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 111:1116–1127

    Article  PubMed  Google Scholar 

  24. Gimble JM, Bunnell BA, Chiu ES et al (2011) Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells 29:749–754

    Article  PubMed  Google Scholar 

  25. Thirumala S, Wu X, Gimble JM et al (2010) Evaluation of polyvinylpyrollidone as a cryoprotectant for adipose tissue-derived adult stem cells. Tissue Eng Part C Methods 16:783–792

    Article  CAS  PubMed  Google Scholar 

  26. Thirumala S, Gimble JM, Devireddy RV (2010) Evaluation of methylcellulose and dimethyl sulfoxide as the cryoprotectants in a serum-free freezing media for cryopreservation of adipose-derived adult stem cells. Stem Cells Dev 19:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pu LL, Cui X, Fink BF et al (2005) Cryopreservation of adipose tissues: the role of trehalose. Aesthet Surg J 25:126–131

    Article  CAS  PubMed  Google Scholar 

  28. Devireddy RV, Thirumala S, Gimble JM (2005) Cellular response of adipose derived passage-4 adult stem cells to freezing stress. J Biomech Eng 127:1081–1086

    Article  PubMed  Google Scholar 

  29. Goh BC, Thirumala S, Kilroy G et al (2007) Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J Tissue Eng Regen Med 1:322–324

    Article  CAS  PubMed  Google Scholar 

  30. Thirumala S, Gimble JM, Devireddy RV (2005) Transport phenomena during freezing of adipose tissue derived adult stem cells. Biotechnol Bioeng 92:372–383

    Article  CAS  PubMed  Google Scholar 

  31. Thirumala S, Zvonic S, Floyd E et al (2005) Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol Prog 21:1511–1524

    Article  CAS  PubMed  Google Scholar 

  32. Hoogduijn MJ, de Witte SF, Luk F et al (2016) Effects of freeze-thawing and intravenous infusion on mesenchymal stromal cell gene expression. Stem Cells Dev 25:586–597

    Article  CAS  PubMed  Google Scholar 

  33. De Rosa A, De Francesco F, Tirino V et al (2009) A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology. Tissue Eng Part C Methods 15:659–667

    Article  PubMed  Google Scholar 

  34. Gonda K, Shigeura T, Sato T et al (2008) Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 121:401–410

    Article  CAS  PubMed  Google Scholar 

  35. Choudhery MS, Badowski M, Muise A et al (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kornicka K, Marycz K, Tomaszewski KA et al (2015) The effect of age on osteogenic and adipogenic differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress factors in the course of the differentiation process. Oxid Med Cell Longev 2015:309169

    Article  PubMed  PubMed Central  Google Scholar 

  37. Efimenko A, Dzhoyashvili N, Kalinina N et al (2014) Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential. Stem Cells Transl Med 3:32–41

    Article  CAS  PubMed  Google Scholar 

  38. Duscher D, Rennert RC, Januszyk M et al (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 4:7144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strong AL, Bowles AC, Wise RM et al (2016) Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 34:614–626

    Article  CAS  PubMed  Google Scholar 

  40. Gauglitz GG, Jeschke MG (2011) Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm 8:1471–1479

    Article  CAS  PubMed  Google Scholar 

  41. Gimble JM, Grayson W, Guilak F et al (2011) Adipose tissue as a stem cell source for musculoskeletal regeneration. Front Biosci (Schol Ed) 3:69–81

    Article  Google Scholar 

  42. Grayson WL, Bunnell BA, Martin E et al (2015) Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 11:140–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sultan SM, Stern CS, Allen RJ Jr et al (2011) Human fat grafting alleviates radiation skin damage in a murine model. Plast Reconstr Surg 128:363–372

    Article  CAS  PubMed  Google Scholar 

  44. Cowan CM, Shi YY, Aalami OO et al (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567

    Article  CAS  PubMed  Google Scholar 

  45. Galipeau J, Krampera M, Barrett J et al (2016) International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18:151–159

    Article  CAS  PubMed  Google Scholar 

  46. Fischer UM, Harting MT, Jimenez F et al (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692

    Article  CAS  PubMed  Google Scholar 

  47. Yoshimura K, Sato K, Aoi N et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32:48–55, discussion 56–47

    Article  PubMed  Google Scholar 

  48. Tissiani LA, Alonso N (2016) A prospective and controlled clinical trial on stromal vascular fraction enriched fat grafts in secondary breast reconstruction. Stem Cells Int 2016:2636454

    Article  CAS  PubMed  Google Scholar 

  49. Yoshimura K, Sato K, Aoi N et al (2008) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 34:1178–1185

    CAS  PubMed  Google Scholar 

  50. Tanikawa DY, Aguena M, Bueno DF et al (2013) Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia. Plast Reconstr Surg 132:141–152

    Article  CAS  PubMed  Google Scholar 

  51. Sandor GK, Tuovinen VJ, Wolff J et al (2013) Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg 71:938–950

    Article  PubMed  Google Scholar 

  52. Lendeckel S, Jodicke A, Christophis P et al (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32:370–373

    Article  PubMed  Google Scholar 

  53. Semon JA, Maness C, Zhang X et al (2014) Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Res Ther 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Constantin G, Marconi S, Rossi B et al (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27:2624–2635

    Article  CAS  PubMed  Google Scholar 

  55. Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    Article  CAS  PubMed  Google Scholar 

  56. Jo CH, Lee YG, Shin WH et al (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32:1254–1266

    Article  CAS  PubMed  Google Scholar 

  57. Koh YG, Choi YJ, Kwon SK et al (2015) Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 23:1308–1316

    Article  PubMed  Google Scholar 

  58. Cho YB, Lee WY, Park KJ et al (2013) Autologous adipose tissue-derived stem cells for the treatment of Crohn’s fistula: a phase I clinical study. Cell Transplant 22:279–285

    Article  PubMed  Google Scholar 

  59. Lee WY, Park KJ, Cho YB et al (2013) Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells 31:2575–2581

    Article  CAS  PubMed  Google Scholar 

  60. Cho YB, Park KJ, Yoon SN et al (2015) Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med 4:532–537

    Article  PubMed  PubMed Central  Google Scholar 

  61. Garcia-Olmo D, Garcia-Arranz M, Herreros D et al (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48:1416–1423

    Article  PubMed  Google Scholar 

  62. Garcia-Olmo D, Herreros D, Pascual I et al (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52:79–86

    Article  PubMed  Google Scholar 

  63. Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  64. Ubeda-Banon I, Saiz-Sanchez D, de la Rosa-Prieto C et al (2010) alpha-synucleinopathy in the human olfactory system in Parkinson’s disease: involvement of calcium-binding protein- and substance P-positive cells. Acta Neuropathol 119:723–735

    Article  CAS  PubMed  Google Scholar 

  65. Schwerk A, Altschuler J, Roch M et al (2015) Human adipose-derived mesenchymal stromal cells increase endogenous neurogenesis in the rat subventricular zone acutely after 6-hydroxydopamine lesioning. Cytotherapy 17:199–214

    Article  CAS  PubMed  Google Scholar 

  66. Berg J, Roch M, Altschuler J et al (2015) Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson’s disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids. Stem Cell Rev 11:133–149

    Article  CAS  PubMed  Google Scholar 

  67. Hu J, Fu Z, Chen Y et al (2015) Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocr J 62:339–352

    Article  CAS  PubMed  Google Scholar 

  68. Fang Y, Tian X, Bai S et al (2012) Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med 30:85–92

    CAS  PubMed  Google Scholar 

  69. Zografou A, Papadopoulos O, Tsigris C et al (2013) Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Ann Plast Surg 71:225–232

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

Fabiana Zanata received financial support from CAPES, Brazil (Process BEX 1524/15-1). Jeffrey Gimble and Xiying Wu are co-owners and employees of LaCell LLC, a biotechnology company focusing on research and clinical translation involving ASC and SVF cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Gimble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zanata, F., Shaik, S., Devireddy, R.V., Wu, X., Ferreira, L.M., Gimble, J.M. (2016). Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy. In: Karimi-Busheri, F., Weinfeld, M. (eds) Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-319-45457-3_11

Download citation

Publish with us

Policies and ethics