The Immune Response to Implanted Materials and Devices

Bruna Corradetti Editor

# The Immune Response to Implanted Materials and Devices

The Impact of the Immune System on the Success of an Implant



*Editor* Bruna Corradetti Department of Life and Environmental Sciences Marche Polytechnic University Ancona, Italy

ISBN 978-3-319-45431-3 ISBN 978-3-319-45433-7 (eBook) DOI 10.1007/978-3-319-45433-7

Library of Congress Control Number: 2016948732

© Springer International Publishing Switzerland 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

#### Foreword

In the powerfully emerging world of smart, or functional materials, I cannot imagine a class with greater potential impact on healthcare and societal benefits than biomaterials with an ability to modulate inflammatory response—precisely the subject focus of this exceptionally timely monograph edited by Dr. Bruna Corradetti.

All materials for use in healthcare elicit an inflammatory response, bar none; but exactly as inflammation can be a fundamental step in a healing process, or a formidable foe, if frustrated into a chronic manifestation, this biological response to a material interface can be essentially helpful, or profoundly detrimental. Materials technology, and our understanding of the many facets of inflammation, has finally reached a point of sufficient maturity and convergence, to make it possible, for biomaterials to be designed so as to elicit a beneficial, or at least a functionally neutral response from the biology with which they contact.

The downstream vision from this exciting vantage point potentially portends transformational breakthroughs in multiple domains of healthcare, ranging from lifelong orthopedic implants, to indwelling molecular sensors, brain-machine interfaces, regenerative biomaterial-cell combinations for applications in pancreatic and hepatic medicine, central and peripheral nervous system repair, T-cell transplantation and novel therapeutic systems. They comprise both, drug-delivery implants and systemic administration constructs, with the ability to preferentially concentrate at inflammatory sites, sense their biological surrounding, and respond accordingly to optimize therapeutic benefit and minimize adverse effects.

I express my enthusiastic support for Dr. Corradetti's efforts in realizing this extraordinary collection of contribution from world-leading experts, to place the convergence of inflammatory modulation and biomaterials on a firmer footing, for decades of scientific work in this nascent era. It has been an honor to serve in an

editorial advisory capacity for this volume, and a great added privilege to be able to do so in concert with two exceptionally distinguished scientists as Dr. Anthony Atala and Ali Khademhosseini. My gratitude goes to them and to the authors for their outstanding contributions.

With all of this, I wish you all happy readings and a pathway of rewarding research, enhanced by the contents of this important monograph.

Sincerely, Dr. Mauro Ferrari

#### Preface

This textbook is intended to be a resource for biomaterial scientists and biomedical engineers, in both industry and academia, interested in the development of smart strategies able to exploit the self-healing properties of the body and achieve functional tissue restoration. Nowadays, many textbooks and journals discuss the broad spectra of material properties that can be customized for any specific applications but only few of them characterize in detail the host response, as the driving factor in determining the success of an implant.

Thanks to the perspectives offered by experts in the field of regenerative medicine, tissue engineering, surgery, immunology, nanomedicine, and transplantation, this textbook will guide the readers throughout the fascinating cascade of events activated in the body following the implant of biomaterials and devices. In Chap. 1 Dr. Badylak provides an overview of the host response to various categories of biomaterials for regenerative medicine applications, from a host-centric and a biomaterial-centric perspective. In Chap. 2 Dr. Anderson discusses the humoral and cellular events occurring at the implant site immediately following implantation. In Chap. 3, Dr. Giachelli presents the current understanding of macrophages, their functions in physiological processes and dysfunction in response to the foreign body, as well as approaches to guide them towards resolution of the foreign bodyelicited inflammatory response. Dr. Dobrovolskaia proposes in Chap. 4 regulatory challenges, translational considerations, and literature case studies pertinent to the immunological safety of nanotechnology-based devices. Dr. Sant and Dr. Goldsmith provide a discussion about the effects of natural vs. synthetic biomaterials, as well as the role of the biomechanical environment on tissue fibrosis, in Chaps. 5 and 9, respectively. Highlights about the role of the biomechanical and physicochemical properties in osteo-immunomodulation and the effect of surface topographical modification on the cellular and molecular mechanisms associated with osseointegration are reported in Chaps. 6 and 8, by Dr. Xiao and Dr. Ivanovski. In Chap. 7, Dr. Li describes challenges and opportunities in targeting key elements of the innate immune system in favor of transplant survival. In Chap. 10, Dr. Sabek reviews possible solutions for the challenges encountered in the pancreatic islet transplantation field, while in Chap. 11 Dr. Tacke discusses current strategies to target macrophages

in liver diseases and cancer. Novel concepts of T-cell immunomodulation for their clinical translation are presented by Dr. Hildebrandt in Chap. 12 to allow the transfer of the knowledge gained to implanted materials and devices.

It has been a particular privilege for me to collaborate with each of the authors participating in this project, and I feel grateful for their inspired work and for the time they devoted to make this volume possible. I wish to express my public gratitude to Dr. Anthony Atala, Dr. Ali Khademhosseini, and Dr. Mauro Ferrari for serving as Editorial Advisors for this book, for their constant support, outstanding suggestions, and visionary ideas. It has been an honor working with you.

My greatest hope is that this book will stimulate further discussions and investigations on the powerful role of the host response in regenerative processes allowing for the development of cutting-edge approaches able to exploit it and achieve functional tissue healing.

Ancona, Italy

Bruna Corradetti

## Contents

| 1 | Host Response to Implanted Materials and Devices:<br>An Overview<br>Michelle E. Scarritt, Ricardo Londono, and Stephen F. Badylak                                                             | 1   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2 | Implications of the Acute and Chronic Inflammatory<br>Response and the Foreign Body Reaction to the Immune<br>Response of Implanted Biomaterials                                              | 15  |
| 3 | Macrophages: The Bad, the Ugly, and the Good<br>in the Inflammatory Response to Biomaterials<br>Marta Scatena, Karen V. Eaton, Melissa F. Jackson,<br>Susan A. Lund, and Cecilia M. Giachelli | 37  |
| 4 | <b>Understanding Nanoparticle Immunotoxicity</b><br><b>to Develop Safe Medical Devices</b><br>Marina A. Dobrovolskaia                                                                         | 63  |
| 5 | Host Response to Synthetic Versus Natural Biomaterials<br>Kishor Sarkar, Yingfei Xue, and Shilpa Sant                                                                                         | 81  |
| 6 | <b>Convergence of Osteoimmunology and Immunomodulation</b><br><b>for the Development and Assessment of Bone Biomaterials</b><br>Zetao Chen, Chengtie Wu, and Yin Xiao                         | 107 |
| 7 | Modulation of Innate Immune Cells to Create Transplant<br>Tolerance<br>Yue Zhao, Peixiang Lan, and Xian C. Li                                                                                 | 125 |
| 8 | Inflammatory Cytokine Response to Titanium Surface<br>Chemistry and Topography<br>Stephen M. Hamlet and Saso Ivanovski                                                                        | 151 |

| 9   | <b>The Biomechanical Environment and Impact on Tissue Fibrosis</b><br>Wayne Carver, Amanda M. Esch, Vennece Fowlkes,<br>and Edie C. Goldsmith                      | 169 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10  | Advancing Islet Transplantation: From Donor to Engraftment<br>Omaima M. Sabek                                                                                      | 189 |
| 11  | <b>Targeted Modulation of Macrophage Functionality</b><br><b>by Nanotheranostics in Inflammatory Liver Disease and Cancer</b><br>Matthias Bartneck and Frank Tacke | 213 |
| 12  | <b>T-Cell Mediated Immunomodulation and Transplant</b><br><b>Optimization</b><br>Sandra Grass, Sara Khalid Al-Ageel, and Martin Hildebrandt                        | 223 |
| Ind | ex                                                                                                                                                                 | 237 |

### Contributors

**Sara Khalid Al-Ageel** Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia

TUMCells Interdisciplinary Center for Cellular Therapies, TUM School of Medicine, Technische Universität München, München, Germany

**James M. Anderson** Departments of Pathology, Macromolecular Science And Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA

**Stephen F. Badylak** McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Matthias Bartneck Department of Medicine III, RWTH University Hospital Aachen, Aachen, Germany

**Wayne Carver** Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC, USA

Zetao Chen Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai, China

Marina A. Dobrovolskaia Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA

Karen V. Eaton Department of Bioengineering, University of Washington, Seattle, WA, USA

**Amanda M. Esch** Department of Molecular and Medical Genetics, Oregon Health & Science University, School of Medicine, Portland, OR, USA

Mauro Ferrari Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA

Weill Cornell Medical College, New York, NY, USA

**Vennece Fowlkes** Department of Mathematics and Science, Hagerstown Community College, Hagerstown, MD, USA

Cecilia M. Giachelli Department of Bioengineering, University of Washington, Seattle, WA, USA

**Edie C. Goldsmith** Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC, USA

Sandra Grass Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, München, Germany

Stephen M. Hamlet Menzies Health Institute Queensland, Griffith University, Nathan, QLD, Australia

**Martin Hildebrandt** TUMCells Interdisciplinary Center for Cellular Therapies, TUM School of Medicine, Technische Universität München, München, Germany

Saso Ivanovski Menzies Health Institute Queensland, Griffith University, Nathan, QLD, Australia

School of Dentistry and Oral Health, Griffith University, Southport, QLD, Australia

Melissa F. Jackson Department of Bioengineering, University of Washington, Seattle, WA, USA

**Sirui Jiang** Departments of Pathology, Macromolecular Science And Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA

**Peixiang Lan** Immunobiology and Transplant Science Center, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, TX, USA

Xian C. Li Immunobiology and Transplant Science Center, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, TX, USA

**Ricardo Londono** McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Susan A. Lund Department of Bioengineering, University of Washington, Seattle, WA, USA

**Omaima M. Sabek** Department Cell and Molecular Biology, Weill Cornell Medical College, New York, NY, USA

Department of Surgery, Houston Methodist Hospital, Houston, TX, USA

Shilpa Sant Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA

Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA

McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Kishor Sarkar Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA

**Michelle E. Scarritt** McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Marta Scatena Department of Bioengineering, University of Washington, Seattle, WA, USA

Frank Tacke Department of Medicine III, RWTH University Hospital Aachen, Aachen, Germany

**Chengtie Wu** State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia

**Yin Xiao** Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Academy of Sciences, Shanghai, China

**Yingfei Xue** Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA

**Yue Zhao** Immunobiology and Transplant Science Center, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, TX, USA

## Abbreviations

| ADA   | Adenosine deaminase                         |  |
|-------|---------------------------------------------|--|
| aGvHD | Acute graft vs. host disease                |  |
| ALP   | Alkaline phosphatase                        |  |
| AMR   | Antibody-mediated rejection                 |  |
| APC   | Antigen-presenting cells                    |  |
| AST   | Arginine stimulation test                   |  |
| ATMP  | Advanced therapy medicinal product          |  |
| BMI   | Body mass index                             |  |
| BMP   | Bone morphogenetic protein                  |  |
| CaP   | Calcium phosphate direct deposition         |  |
| CARPA | Complement activation related pseudoallergy |  |
| CaSR  | Calcium sensing receptor                    |  |
| CCL   | CC chemokine ligand                         |  |
| CDP   | Common DC progenitor                        |  |
| cGvHD | Chronic graft vs. host disease              |  |
| CID   | Chemical inducer of dimerization            |  |
| cMoP  | Common myeloid progenitor                   |  |
| CSF   | Colony-stimulating factor                   |  |
| CSFR  | Colony-stimulating factor receptor          |  |
| CXCL  | Chemokine (C-X-C motif) ligand              |  |
| CXCR  | Chemokine receptor                          |  |
| DAF   | Decay accelerating factor                   |  |
| DAMP  | Damage-associated molecular pattern         |  |
| DC    | Dendritic cell                              |  |
| DDA   | Degree of deacetylation                     |  |
| DKK-1 | Dickkopf-1                                  |  |
| DPP   | Dipeptidyl peptidase                        |  |
| ECad  | Epithelial cadherin                         |  |
| ECM   | Extracellular matrix                        |  |
| EDRF  | Endothelial-derived relaxing factor         |  |
| EGF   | Epidermal growth factor                     |  |
|       |                                             |  |

| off a         | Tumor necrosis factor                            |
|---------------|--------------------------------------------------|
| egf-α<br>EPCs |                                                  |
|               | Endothelial progenitor cells                     |
| ER            | Endoplasmic reticulum                            |
| ETS           | E26 transformation-specific                      |
| FACS          | Fluorescence-activated cell sorting              |
| FBC           | Foreign body capsule                             |
| FBGCs         | Foreign body giant cells                         |
| FBR           | Foreign body reaction                            |
| FDA           | Food and Drug Administration                     |
| FG            | Fasting glucose                                  |
| FGF           | Fibroblast growth factor                         |
| FXIIA         | Activated Hageman factor                         |
| GDSC          | Glutaraldehyde cross-linked collagen             |
| GlcN          | D-Glucuronic and D-glucosamine                   |
| GM-CSF        | Granulocyte-macrophage colony-stimulating factor |
| GvHD          | Graft vs. host disease                           |
| H1/H2         | Histamine receptor                               |
| НА            | Hyaluronic acid                                  |
| HDSC          | Hexamethylenediisocyanate                        |
| HETE          | Hydroxyeicosatetranoic acid                      |
| HIF           | Hypoxia-inducible factors                        |
| HLA           | Human leukocyte antigen                          |
| HMGB          | High-mobility group box chromosomal protein      |
| HRG           | Histidine-rich glycoprotein                      |
| HSA           | Human serum albumin                              |
| HSC           | Hepatic stellate cells                           |
| HSCT          | Hematopoietic stem cell transplantation          |
| HUVECs        | Human umbilical vein endothelial cells           |
| IAT           |                                                  |
|               | Islet auto-transplantation                       |
| IBMIR         | Instant blood mediated immune reaction           |
| ICOS          | Inducible costimulatory                          |
| IDE           | Investigational device exemption                 |
| IFG           | Impaired fasting glucose tolerance               |
| IFN           | Interferon                                       |
| IGF           | Insulin growth factor                            |
| IgG           | Immunoglobulin G                                 |
| IL            | Interleukin                                      |
| IL-R          | Interleukin receptor                             |
| ILC           | Innate lymphoid cells                            |
| IND           | Investigational new drug                         |
| iNOS          | Inducible nitric oxide synthase                  |
| IVGTT         | Intravenous injection of glucose tolerance test  |
| KC            | Kupffer cells                                    |
| KIR           | Killer cell immunoglobulin-like receptors        |
| KLF           | Kruppel-like factor                              |
|               |                                                  |

| LPS            | Lipopolysaccharide                                                 |
|----------------|--------------------------------------------------------------------|
| LRR            | Leucine-rich repeat motifs                                         |
| $LTB_4$        | Leukotriene $B_4$                                                  |
| LVAD           | Left ventricular assist devices                                    |
| M1             | Classically activated macrophages or pro-inflammatory macrophages  |
| M2             | Alternatively activated macrophages or anti-inflammatory/pro-wound |
|                | healing macrophages                                                |
| MCP-1          | Monocyte chemotactic protein 1                                     |
| M-CSF          | Macrophage colony-stimulating factor                               |
| MDP            | Monocyte-macrophage DC progenitor                                  |
| MDSC           | Myeloid-derived suppressor cells                                   |
| MHC            | Major histocompatibility complex                                   |
| MIP            | Macrophage inflammatory protein                                    |
| miR            | microRNA                                                           |
| MMP            | Matrix metalloprotease                                             |
| modSLA         | Sandblasted hydrophilic nano-rough surface                         |
| MoMF           | Monocyte-derived macrophage(s)                                     |
| MPS            | Mononuclear phagocyte system                                       |
| MSCs           | Mesenchymal stromal cells                                          |
| MSFM           | Memphis serum-free media                                           |
| MWCNT          | Multi-walled carbon nanotubes                                      |
| NBD-PE         | 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-    |
|                | benzoxadiazol-4-yl)                                                |
| NF-kB          | Nuclear <i>factor</i> kappa                                        |
| NGF            | Neuronal growth factor                                             |
| NK             | Natural killer                                                     |
| NLR            | NOD-like receptors                                                 |
| NO             | Nitric oxide                                                       |
| OGTT           | Oral glucose tolerance test                                        |
| OPG            | Osteoprotegerin                                                    |
| OSM            | Oncostatin M                                                       |
| PAMAM          | Polyamidoamine                                                     |
| PAMP           | Pathogen-associated molecular patterns                             |
| PBMA           | Poly(butylmethacrylate)                                            |
| PCA            | Procoagulant activity                                              |
| PCBMA          | Poly(carboxybetaine methacrylate)                                  |
| PCL            | Poly( <i>e</i> -caprolactone)                                      |
| PDGF           | Platelet-derived growth factor                                     |
| PDMS           | Polydimethylsiloxane                                               |
| PDO            | Polydioxanone                                                      |
| PEG            | Polyethylene glycol                                                |
| PGA            | Polyglycolide                                                      |
| PU/IRI         | Proinsulin to immunoreactive insulin                               |
| PIBCA          | Polyisobutyl                                                       |
| PIBCA<br>PIHCA | Polyisobatyl<br>Polyisohexylcyanoacrylate                          |
| THICA          | 1 OIYISOHUNYIC YAHOACI YIAIC                                       |

| PLA                | Polylactide                                             |
|--------------------|---------------------------------------------------------|
| PLGA               | Poly(lactic-co-glycolic acid)                           |
| PLGA-PLL           | Poly(lactic-co-glycolic acid)-poly-L-lysine             |
| PMB                | Poly(2-methacryloyloxyethyl phosphorylcholine(MPC)-     |
|                    | co-n-butylmethacrylate(BMA)s)                           |
| PMNs               | Polymorphonuclear leukocytes                            |
| POPC               | 1-Palmitoyl-2-oleoyl phosphatidylcholine                |
| PPAR               | Peroxisome proliferator-activated receptor              |
| PRR                | Pattern recognition receptor                            |
| PTFE               | Polytetrafluoroethylene                                 |
| PU                 | Polyurethane                                            |
| PVA                | Polyvinyl alcohol                                       |
| PVA-SPION          | Poly(vinyl alcohol)-coated superparamagnetic iron oxide |
|                    | nanoparticles                                           |
| QD                 | Quantum dots                                            |
| RANKL              | Receptor activator of nuclear factor kappa-B ligand     |
| RBC                | Red blood cells (erythrocytes)                          |
| RES                | Reticuloendothelial system                              |
| RGD                | Arginine-glycine-aspartic acid                          |
| RLR                | RIG-like receptors                                      |
| ROS                | Reactive oxygen species                                 |
| SIBS               | Poly(styrene–isobutylene–styrene) copolymer             |
| SLA/Sr             | Sandblasted micro-rough surface containing strontium    |
| SLA                | Sandblasted micro-rough surface                         |
| SOST               | Sclerostin                                              |
| SRBC               | Sheep red blood cells                                   |
| STZ                | Streptozotocin                                          |
| T1DM               | Type 1 diabetes mellitus                                |
| TAM                | Tumor-associated macrophages                            |
| T-cells            | Thymocytes                                              |
| TGF                | Transforming growth factor                              |
| TIMP               | Tissue inhibitor of metalloprotease                     |
| TLR                | Toll-like receptors                                     |
| TNF                | Tumor necrosis factor                                   |
| t-PA               | Tissue-type plasminogen activator                       |
| T-regs             | T-regulatory cells                                      |
| VEGF               | Vascular endothelial growth factor                      |
| VEGFR              | VEGF receptor                                           |
| VEUK<br>VFH        | Vinylidene fluoride-hexafluoropropylene copolymer       |
| Zr-SLA & Zr-modSLA | Zirconium alloy SLA and modSLA surfaces                 |
|                    | Encomann anoy OLA and modoLA surfaces                   |