Skip to main content

QCM-OCS: Optochemical Sensing of Temperature and pO2 in the Cell Surface Junction

  • Chapter
  • First Online:
Label-free and Multi-parametric Monitoring of Cell-based Assays with Substrate-embedded Sensors

Part of the book series: Springer Theses ((Springer Theses))

  • 476 Accesses

Abstract

Optical chemical sensors/sensing (OCS) have/has been successfully used in the past two to three decades for the online analysis of various chemical and physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  2. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  CAS  Google Scholar 

  3. Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283

    Article  CAS  Google Scholar 

  4. Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78:3859–3874

    Article  CAS  Google Scholar 

  5. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39:3102–3114

    Article  CAS  Google Scholar 

  6. Koo Lee Y-E, Kopelman R (2009) Optical nanoparticle sensors for quantitative intracellular imaging. Wiley Interdiscip Rev Nanomed Nanobiotech 1:98–110

    Article  Google Scholar 

  7. Koo Lee Y-E, Kopelman R, Smith R (2009) Nanoparticle PEBBLE sensors in live cells and in vivo. Annu Rev Anal Chem 2:57–76

    Article  CAS  Google Scholar 

  8. Borisov SM, Klimant I (2009) Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchim Acta 164:7–15

    Article  CAS  Google Scholar 

  9. Buck SM, Koo Lee Y-E, Park E, Xu H, Philbert MA et al (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8:540–546

    Article  CAS  Google Scholar 

  10. Clark HA, Barker SLR, Brasuel M, Miller MT, Monson E et al (1998) Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens Actuators B: Chem 51:12–16

    Article  CAS  Google Scholar 

  11. Xu Z, Rollins A, Alcala R, Marchant RE (1998) A novel fiber-optic pH sensor incorporating carboxy SNAFL-2 and fluorescent wavelength-ratiometric detection. J Biomed Mater Res 39:9–15

    Article  CAS  Google Scholar 

  12. Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of Benzo[c]xanthene dyes: dual emission pH sensors. Anal Biochem 194:330–344

    Article  CAS  Google Scholar 

  13. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    Article  CAS  Google Scholar 

  14. Weidgans BM, Krause C, Klimant I, Wolfbeis OS (2004) Fluorescent pH sensors with negligible sensitivity to ionic strength. Analyst 129:645–650

    Article  CAS  Google Scholar 

  15. Weidgans BM (2004) New fluorescent optical pH sensors with minimal effects of ionic strength. Thesis, University of Regensburg

    Google Scholar 

  16. Vasylevska AS, Karasyov AA, Borisov SM, Krause C (2007) Novel coumarin-based fluorescent pH indicators, probes and membranes covering a broad pH range. Anal Bioanal Chem 387:2131–2141

    Article  CAS  Google Scholar 

  17. Wolfbeis OS, Fürlinger E, Kroneis H, Marsoner H (1983) Fluorimetric analysis. Fresenius’ Zeitschrift für analytische Chemie 314:119–124

    Article  CAS  Google Scholar 

  18. Schreml S, Meier RJ, Wolfbeis OS, Landthaler M, Szeimies RM et al (2011) 2D luminescence imaging of pH in vivo. Proc Natl Acad Sci U S A 108:2432–2437

    Article  CAS  Google Scholar 

  19. Meier RJ (2011) luminescent single and dual sensors for in vivo imaging of pH and pO2. Thesis, University of Regensburg

    Google Scholar 

  20. Borisov SM, Seifner R, Klimant I (2011) A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature. Anal Bioanal Chem 400:2463–2474

    Article  CAS  Google Scholar 

  21. Offenbacher H, Wolfbeis OS, Fürlinger E (1986) Fluorescence optical sensors for continuous determination of near-neutral pH values. Sens Actuators 9:73–84

    Article  CAS  Google Scholar 

  22. Zhujun Z, Seitz WR (1984) A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Anal Chim Acta 160:47–55

    Article  Google Scholar 

  23. Wencel D, MacCraith BD, McDonagh C (2009) High performance optical ratiometric sol-gel-based pH sensor. Sens Actuators B Chem 139:208–213

    Article  CAS  Google Scholar 

  24. Zhujun Z, Seitz WR (1984) A carbon dioxide sensor based on fluorescence. Anal Chim Acta 160:305–309

    Article  Google Scholar 

  25. Mills A, Chang Q (1993) Fluorescence plastic thin-film sensor for carbon dioxide. Analyst 118:839–843

    Article  CAS  Google Scholar 

  26. Mills A (2009) Optical sensors for carbon dioxide and their applications. In: Baraton M-I (ed) Sensors for environment, health and security. Springer Netherlands, pp 347–370

    Google Scholar 

  27. Chu C-S, Lo Y-L (2009) Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS. Sens Actuators B Chem 143:205–210

    Article  CAS  Google Scholar 

  28. Burke CS, Markey A, Nooney RI, Byrne P, McDonagh C (2006) Development of an optical sensor probe for the detection of dissolved carbon dioxide. Sens Actuators B Chem 119:288–294

    Article  CAS  Google Scholar 

  29. Cajlaković M, Bizzarri A, Ribitsch V (2006) Luminescence lifetime-based carbon dioxide optical sensor for clinical applications. Anal Chim Acta 573-574:57–64

    Article  CAS  Google Scholar 

  30. Ali R, Saleh SM, Meier RJ, Azab HA, Abdelgawad II et al (2010) Upconverting nanoparticle based optical sensor for carbon dioxide. Sens Actuators B Chem 150:126–131

    Article  CAS  Google Scholar 

  31. Sipior J, Bambot S, Romauld M, Carter GM, Lakowicz JR et al (1995) A lifetime-based optical CO2 gas sensor with blue or red excitation and stokes or anti-stokes detection. Anal Biochem 227:309–318

    Article  CAS  Google Scholar 

  32. Neurauter G, Klimant I, Wolfbeis OS (1999) Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Anal Chim Acta 382:67–75

    Article  CAS  Google Scholar 

  33. von Bültzingslöwen C, McEvoy AK, McDonagh C, MacCraith BD (2003) Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer. Anal Chim Acta 480:275–283

    Article  CAS  Google Scholar 

  34. Wolfbeis OS, Posch HE (1986) Fibre-optic fluorescing sensor for ammonia. Anal Chim Acta 185:321–327

    Article  CAS  Google Scholar 

  35. Lobnik A, Wolfbeis OS (1998) Sol-gel based optical sensor for dissolved ammonia. Sens Actuators B Chem 51:203–207

    Article  CAS  Google Scholar 

  36. Waich K, Mayr T, Klimant I (2008) Fluorescence sensors for trace monitoring of dissolved ammonia. Talanta 77:66–72

    Article  CAS  Google Scholar 

  37. Waich K, Borisov SM, Mayr T, Klimant I (2009) Dual lifetime referenced trace ammonia sensors. Sens Actuators B Chem 139:132–138

    Article  CAS  Google Scholar 

  38. Chang Q, Sipior J, Lakowicz JR, Rao G (1995) A lifetime-based fluorescence resonance energy transfer sensor for ammonia. Anal Biochem 232:92–97

    Article  CAS  Google Scholar 

  39. Papkovsky DB (1995) New oxygen sensors and their application to biosensing. Sens Actuators B Chem 29:1–6

    Article  Google Scholar 

  40. Stich MIJ, Wolfbeis OS (2008) Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I. Springer, Berlin, pp 429–461

    Google Scholar 

  41. Fischer LH, Borisov SM, Schaeferling M, Klimant I, Wolfbeis OS (2010) Dual sensing of pO2 and temperature using a water-based and sprayable fluorescent paint. The Analyst 135:1224–1229

    Article  CAS  Google Scholar 

  42. Koo Lee Y-E, Ulbrich EE, Kim G, Hah H, Strollo C et al (2010) Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal Chem 82:8446–8455

    Article  CAS  Google Scholar 

  43. Choi NW, Verbridge SS, Williams RM, Chen J, Kim J-Y et al (2012) Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo. Biomaterials 33:2710–2722

    Article  CAS  Google Scholar 

  44. Fischer L (2012) New materials for temperature and pressure sensitive fluorescent paints. Thesis, University of Regensburg

    Google Scholar 

  45. Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanal Rev 4:115–157

    Article  Google Scholar 

  46. Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  Google Scholar 

  47. Dmitriev RI, Papkovsky DB (2012) O2-sensitive probes based on phosphorescent metalloporphyrins. In: Phosphorescent oxygen-sensitive probes. Springer Basel, Basel, pp 1–28

    Google Scholar 

  48. DeGraff BA, Demas JN (2005) Luminescence-based oxygen sensors. Rev Fluoresc 2005:125–151

    Article  Google Scholar 

  49. de Silva AP, de Silva SA (1986) Fluorescent signalling crown ethers; “switching on” of fluorescence by alkali metal ion recognition and binding in situ. Chem Commun 23:1709

    Google Scholar 

  50. Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457

    CAS  Google Scholar 

  51. He H, Mortellaro MA, Leiner MJP, Young ST, Fraatz RJ et al (2003) A fluorescent chemosensor for sodium based on photoinduced electron transfer. Anal Chem 75:549–555

    Article  CAS  Google Scholar 

  52. Ji H-F, Dabestani R, Brown GM, Ridge O (2008) A supramolecular fluorescent probe, activated by protons to detect cesium and potassium ions, mimics the function of a logic gate. J Am Chem Soc 122:9306–9307

    Article  CAS  Google Scholar 

  53. Thibon A, Pierre VC (2009) A Highly selective luminescent sensor for the time-gated detection of potassium. J Am Chem Soc 131:434–435

    Article  CAS  Google Scholar 

  54. Ueyama H, Takagi M, Takenaka S (2002) A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J Am Chem Soc 124:14286–14287

    Article  CAS  Google Scholar 

  55. Weitz EA, Pierre VC (2011) A ratiometric probe for the selective time-gated luminescence detection of potassium in water. Chem Commun 47:541–543

    Google Scholar 

  56. Cobbold PH, Rinktt TJ (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J 248:313–328

    Article  CAS  Google Scholar 

  57. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  58. Tsien RY, Grynkiewicz G (1986) Stilbene-type fluorophore, two aminodiacetic acid moieties. U.S. Patent 4,603,209

    Google Scholar 

  59. Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Article  CAS  Google Scholar 

  60. Williams DA, Fay FS (1990) Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium 11:75–83

    Article  CAS  Google Scholar 

  61. Miyawaki A, Llopis J, Heim R, Mccaffery JM, Adams JA et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  Google Scholar 

  62. Hun X, Zhang Z (2007) Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchim Acta 159:255–261

    Article  CAS  Google Scholar 

  63. Urbano E, Offenbacher H, Wolfbeis OS (1984) Optical sensor for continuous determination of halides. Anal Chem 56:427–429

    Article  CAS  Google Scholar 

  64. Geddes CD (2001) Optical halide sensing using fluorescence quenching: theory, simulations and applications—a review. Meas Sci Technol 12:R53–R88

    Article  CAS  Google Scholar 

  65. Munkonge F, Alton EWFW, Andersson C, Davidson H, Dragomir A et al (2004) Measurement of halide efflux from cultured and primary airway epithelial cells using fluorescence indicators. J Cyst Fibros 3:171–176

    Article  CAS  Google Scholar 

  66. Geddes CD, Apperson K, Karolin J, Birch DJ (2001) Chloride-sensitive fluorescent indicators. Anal Biochem 293:60–66

    Article  CAS  Google Scholar 

  67. Ng SM, Narayanaswamy R (2006) Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media. Anal Bioanal Chem 386:1235–1244

    Article  CAS  Google Scholar 

  68. Li H, Zhang Y, Wang X, Gao Z (2007) A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots. Microchim Acta 160:119–123

    Article  CAS  Google Scholar 

  69. Oter O, Ertekin K, Kirilmis C, Koca M (2007) Spectral characterization of a newly synthesized fluorescent semicarbazone derivative and its usage as a selective fiber optic sensor for copper(II). Anal Chim Acta 584:308–314

    Article  CAS  Google Scholar 

  70. Wu H, Liang J, Han H (2007) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81–86

    Article  CAS  Google Scholar 

  71. Shamsipur M, Sadeghi M, Garau A, Lippolis V (2013) An efficient and selective flourescent chemical sensor based on 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane as a new fluoroionophore for determination of iron(III) ions. a novel probe for iron speciation. Anal Chim Acta 761:169–177

    Article  CAS  Google Scholar 

  72. Yan Y, Che Z, Yu X, Zhi X, Wang J et al (2013) Fluorescence “on-off-on” chemosensor for sequential recognition of Fe3+ and Hg2+ in water based on tetraphenylethylene motif. Bioorg Med Chem 21:508–513

    Article  CAS  Google Scholar 

  73. Mayr T, Igel C, Liebsch G, Klimant I, Wolfbeis OS (2003) Cross-reactive metal ion sensor array in a micro titer plate format. Anal Chem 75:4389–4396

    Article  CAS  Google Scholar 

  74. Carofiglio T, Fregonese C, Mohr GJ, Rastrelli F, Tonellato U (2006) Optical sensor arrays: one-pot, multiparallel synthesis and cellulose immobilization of pH and metal ion sensitive azo-dyes. Tetrahedron 62:1502–1507

    Article  CAS  Google Scholar 

  75. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    Article  CAS  Google Scholar 

  76. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  Google Scholar 

  77. Wolfbeis OS, Dürkop A (2002) A europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew Chem Int Ed Engl 41:4495–4498

    Article  CAS  Google Scholar 

  78. Cavaliere-Jaricot S, Darbandi M, Kuçur E, Nann T (2007) Silica coated quantum dots: a new tool for electrochemical and optical glucose detection. Microchim Acta 160:375–383

    Article  CAS  Google Scholar 

  79. Duerkop A, Schaeferling M, Wolfbeis OS (2006) Glucose sensing and glucose determination using fluorescent probes and molecular receptors. In: Geddes CD, Lakowicz JR (eds) Glucose sensing. Springer, New York, pp 351–375

    Google Scholar 

  80. Pasic A, Koehler H, Schaupp L, Pieber TR, Klimant I (2006) Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem 386:1293–1302

    Article  CAS  Google Scholar 

  81. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565

    Article  CAS  Google Scholar 

  82. Wang X, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869

    Article  CAS  Google Scholar 

  83. Coyle LM, Gouterman M (1999) Correcting lifetime measurements for temperature. Sens Actuators B 61:92–99

    Article  CAS  Google Scholar 

  84. Hradil J, Davis C, Mongey K, Mcdonagh C, Maccraith BD (2002) Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach. Meas Sci Technol 13:1552–1557

    Article  CAS  Google Scholar 

  85. Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces. Adv Func Mater 18:1399–1406

    Article  CAS  Google Scholar 

  86. Schanze KS, Carroll BF, Korotkevitch S, Morris MJ (1997) Temperature dependence of pressure sensitive paints. AIAA J 35:306–310

    Article  CAS  Google Scholar 

  87. Woodmansee MA, Dutton JC (1998) Treating temperature-sensitivity effects of pressure-sensitive paint measurements. Exp Fluids 24:163–174

    Article  Google Scholar 

  88. Gouin S, Gouterman M (2000) Ideality of pressure-sensitive paint. II. Effect of annealing on the temperature dependence of the luminescence. J Appl Polym Sci 77:2805–2814

    Article  CAS  Google Scholar 

  89. Ji H-F, Shen Y, Hubner JP, Carroll BF, Schmehl RH et al (2000) Temperature-independent pressure-sensitive paint based on a bichromophoric luminophore. Appl Spectrosc 54:856–863

    Article  CAS  Google Scholar 

  90. Janshoff A, Galla H-J, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem Int Ed Engl 39:4004–4032

    Article  CAS  Google Scholar 

  91. Heitmann V, Reiß B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, 303–338

    Google Scholar 

  92. Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184

    Article  CAS  Google Scholar 

  93. Becker B, Cooper MA (2011) A Survey of the 2006–2009 quartz crystal microbalance biosensor literature. J Mol Recognit 24:754–787

    Article  CAS  Google Scholar 

  94. Speight RE, Cooper MA (2012) A survey of the 2010 quartz crystal microbalance literature. J Mol Recognit 25:451–473

    Article  CAS  Google Scholar 

  95. Dultsev FN, Ostanin VP, Klenerman D (2000) “Hearing” bond breakage. measurement of bond rupture forces using a quartz crystal microbalance. Langmuir 16:5036–5040

    Article  CAS  Google Scholar 

  96. Cooper MA (2003) Biosensing using rupture event scanning (REVS)TM. Meas Sci Technol 1888:1888–1893

    Article  Google Scholar 

  97. Cooper MA (2007) Resonant acoustic profiling (RAPTM) and rupture event scanning (REVSTM). In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 449–479

    Google Scholar 

  98. Hirst ER, Yuan YJ, Xu WL, Bronlund JE (2008) Bond-rupture immunosensors-a review. Biosens Bioelectron 23:1759–1768

    Article  CAS  Google Scholar 

  99. Dultsev F, Kolosovsky E, Mik I (2012) A new procedure to record the rupture of bonds between macromolecules and the surface of the quartz crystal microbalance (QCM). Langmuir 28:13793–13797

    Article  CAS  Google Scholar 

  100. Yuan YJ, Van Der Werff MJ, Chen H, Hirst ER, Xu WL et al (2007) Bond rupture of biomolecular interactions by resonant quartz crystal. Anal Chem 79:9039–9044

    Article  CAS  Google Scholar 

  101. van der Werff MJ, Yuan YJ, Hirst ER, Xu WL, Chen H et al (2007) Quartz crystal microbalance induced bond rupture sensing for medical diagnostics. IEEE Sens J 7:762–769

    Article  CAS  Google Scholar 

  102. Yuan YJ, Zhao Y, Xu WL (2010) Characterization of molecular interactions of an immobilized biotinylated monolayer and streptavidin-coated microspheres by bond-rupture scanning. Anal Chim Acta 680:59–64

    Article  CAS  Google Scholar 

  103. Dultsev FN, Speight RE, Fiorini MT, Blackburn JM, Abell C et al (2001) Direct and quantitative detection of bacteriophage by “hearing” surface detachment using a quartz crystal microbalance. Anal Chem 73:3935–3939

    Article  CAS  Google Scholar 

  104. Dultsev FN, Kolosovsky EA, Mik IA, Lomzov AA, Pyshnyi DV (2014) QCM-based measurement of bond rupture forces in DNA double helices for complementarity sensing. Langmuir 30:3795–3801

    Article  CAS  Google Scholar 

  105. Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C et al (2001) Direct and sensitive detection of a human virus by rupture event scanning. Nat Biotechnol 19:833–837

    Google Scholar 

  106. Saphire E, Parren P (2001) Listening for viral infection. Nat Biotechnol 19:823–824

    Article  CAS  Google Scholar 

  107. Cooper MA, Dultsev FN, Ostanin VP, Klenerman D (2011) Separation and detection of bacteria using rupture event scanning. Anal Chim Acta 702:233–238

    Article  CAS  Google Scholar 

  108. Ghosh SK, Ostanin VP, Johnson CL, Lowe CR, Seshia AA (2011) Probing biomolecular interaction forces using an anharmonic acoustic technique for selective detection of bacterial spores. Biosens Bioelectron 29:145–150

    Google Scholar 

  109. Heitmann V, Wegener J (2007) Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal Chem 79:3392–3400

    Article  CAS  Google Scholar 

  110. Edvardsson M, Rodahl M, Kasemo B, Höök F (2005) A dual-frequency QCM-D setup operating at elevated oscillation amplitudes. Anal Chem 77:4918–4926

    Article  CAS  Google Scholar 

  111. Edvardsson M, Rodahl M, Höök F (2006) Investigation of binding event perturbations caused by elevated QCM-D oscillation amplitude. The Analyst 131:822–828

    Article  CAS  Google Scholar 

  112. Zhdanov VP, Edvardsson M, Höök F, Kasemo B (2006) Suppression of binding events via external perturbation with emphasis on QCM. Chem Phys Lett 424:214–217

    Article  CAS  Google Scholar 

  113. Dultsev FN, Kolosovsky EA (2011) Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band. Anal Chim Acta 687:75–81

    Google Scholar 

  114. Wegener J (1998) Impedanzspektroskopische Und Mikrogravimetrische Untersuchung an Barrierebildenden Zellen Auf Planaren Goldelektroden. Thesis, Westfälische Wilhelms-University Münster

    Google Scholar 

  115. Martin BA, Hager HE (1989) Velocity profile on quartz crystals oscillating in liquids. J Appl Phys 65:2630–2635

    Article  Google Scholar 

  116. Borovsky B, Mason B, Krim J (2000) Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator. J Appl Phys 88:4017–4021

    Article  CAS  Google Scholar 

  117. Dmitriev RI, Papkovsky DB (2012) Optical probes and techniques for O2 measurement in live cells and tissue. Cell Mol Life Sci 69:2025–2039

    Article  CAS  Google Scholar 

  118. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732

    Article  CAS  Google Scholar 

  119. Koo Lee Y-E, Cao Y, Kopelman R, Koo SM, Brasuel M et al (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76:2498–2505

    Article  CAS  Google Scholar 

  120. Cao Y, Koo Lee Y-E, Kopelman R (2004) Poly(decyl Methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. The Analyst 129:745–750

    Article  CAS  Google Scholar 

  121. Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB (2011) Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. Acs Nano 5:5499–5508

    Google Scholar 

  122. Coogan MP, Court JB, Gray VL, Hayes AJ, Lloyd SH et al (2010) Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO3Na)2)3]Cl2. Photochem Photobiol Sci 9:103–109

    Article  CAS  Google Scholar 

  123. Wang X, Stolwijk JA, Sperber M, Meier RJ, Wegener J et al (2013) Ultra-small, highly stable, and membrane-impermeable fluorescent nanosensors for oxygen. Methods Appl Fluoresc 1:035002

    Article  CAS  Google Scholar 

  124. Wang X, Gorris HH, Stolwijk JA, Meier RJ, Groegel DBM et al (2011) Self-referenced RGB colour imaging of intracellular oxygen. Chem Sci 2:901–906

    Article  CAS  Google Scholar 

  125. Wang X, Stolwijk JA, Lang T, Sperber M, Meier RJ et al (2012) Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134:17011–17014

    Article  CAS  Google Scholar 

  126. Guice KB, Caldorera ME, McShane MJ (2005) Nanoscale internally referenced oxygen sensors produced from self-assembled nanofilms on fluorescent nanoparticles. J Biomed Opt 10:064031_1-10

    Google Scholar 

  127. Cheng Z, Aspinwall CA (2006) Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles. The Analyst 131:236–243

    Article  CAS  Google Scholar 

  128. Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W et al (2008) Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chem Commun 2:5307–5309

    Article  CAS  Google Scholar 

  129. Dmitriev RI, Zhdanov AV, Ponomarev GV, Yashunski DV, Papkovsky DB (2010) Intracellular oxygen-sensitive phosphorescent probes based on cell-penetrating peptides. Anal Biochem 398:24–33

    Article  CAS  Google Scholar 

  130. Dmitriev RI, Ropiak HM, Ponomarev GV, Yashunsky DV, Papkovsky DB (2011) Cell-penetrating conjugates of coproporphyrins with oligoarginine peptides: rational design and application for sensing intracellular O2. Bioconjug Chem 22:2507–2518

    Article  CAS  Google Scholar 

  131. Dmitriev RI, Zhdanov AV, Jasionek G, Papkovsky DB (2012) Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes. Anal Chem 84:2930–2938

    Article  CAS  Google Scholar 

  132. Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem 73:4124–4133

    Article  CAS  Google Scholar 

  133. Wu C, Bull B, Christensen K, McNeill J (2009) Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew Chem Int Ed Engl 48:2741–2745

    Article  CAS  Google Scholar 

  134. Wang X-H, Peng H-S, Chang Z, Hou L-L, You F-T et al (2012) Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen. Microchim Acta 178:147–152

    Article  CAS  Google Scholar 

  135. Napp J, Behnke T, Fischer L, Würth C, Wottawa M et al (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83:9039–9346

    Article  CAS  Google Scholar 

  136. Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS et al (2013) In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods 216:146–151

    Article  CAS  Google Scholar 

  137. Fercher A, O’Riordan TC, Zhdanov AV, Dmitriev RI, Papkovsky DB (2010) Imaging of cellular oxygen and analysis of metabolic responses of mammalian cells. In: Papkovsky DB (ed) Live cell imaging. Humana Press, New York, pp 257–273

    Google Scholar 

  138. Meier RJ, Schreml S, Wang X, Landthaler M, Babilas P et al (2011) Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew Chem Int Ed Engl 50:10893–10896

    Article  CAS  Google Scholar 

  139. Hofmann J, Meier RJ, Mahnke A, Schatz V, Brackmann F et al (2013) Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation. Methods Appl Fluoresc 1:045002

    Article  CAS  Google Scholar 

  140. Horvath T, Monson E, Sumner J, Xu H, Kopelman R (2002) Use of steady-state fluorescence anisotropy with pebble nanosensors for chemical analysis. In: Bornhop D, Dunn D, Mariella RJ, Murphy C, Nicolau D, Nie S et al (eds) Biomedical nanotechnology architectures and applications. SPIE, pp 486–492

    Google Scholar 

  141. Schmälzlin E, van Dongen JT, Klimant I, Marmodée B, Steup M et al (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89:1339–1345

    Article  CAS  Google Scholar 

  142. Hogan MC (1999) Phosphorescence quenching method for measurement of intracellular in isolated skeletal muscle fibers. J Appl Physiol 86:720–724

    CAS  Google Scholar 

  143. O’Riordan TC, Zhdanov AV, Ponomarev GV, Papkovsky DB (2007) Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved fluorometry. Anal Chem 79:9414–9419

    Article  CAS  Google Scholar 

  144. Liu H, Yang H, Hao X, Xu H, Lv Y et al (2013) Development of polymeric nanoprobes with improved lifetime dynamic range and stability for intracellular oxygen sensing. Small 9:2639–2648

    Article  CAS  Google Scholar 

  145. Golub AS, Pittman RN (2008) pO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. Am J Physiol Heart Circ Physiol 294:H2905–H2916

    Article  CAS  Google Scholar 

  146. Gerritsen HC, Sanders R, Draaijer A, Ince C, Levine YK (1997) Fluorescence lifetime imaging of oxygen in living cells. J Fluoresc 7:11–15

    Article  CAS  Google Scholar 

  147. Korzeniowska B (2012) Nanoparticle-based intracellular diagnostics. Thesis, Dublin City University

    Google Scholar 

  148. Ast C, Schmälzlin E, Löhmannsröben H-G, van Dongen JT (2012) Optical oxygen micro- and nanosensors for plant applications. Sensors 12:7015–7032

    Article  CAS  Google Scholar 

  149. Zhong W, Urayama P, Mycek M-A (2003) Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing. J Phys D Appl Phys 36:1689–1695

    Article  CAS  Google Scholar 

  150. Sud D, Zhong W, Beer D, Mycek M-A (2005) Measurement of intracellular oxygen levels using fluorescence lifetime imaging microscopy (FLIM). In: Licha K, Cubeddu R (eds) Proceedings SPIE 5859, photon migration and diffuse-light imaging II, p 585907_1-10

    Google Scholar 

  151. Schmälzlin E, Walz B, Klimant I, Schewe B, Löhmannsröben H-G (2006) Monitoring hormone-induced oxygen consumption in the salivary glands of the blowfly, Calliphora vicina, by use of luminescent microbeads. Sens Actuators B Chem 119:251–254

    Article  CAS  Google Scholar 

  152. Pittman RN, Golub AS, Carvalho H (2010) Measurement of oxygen in the microcirculation using phosphorescence quenching microscopy. In: Takahashi E, Bruley DF (eds) Oxygen transport to tissue XXXI. Springer, New York, pp 157–162

    Google Scholar 

  153. Wang X, Achatz DE, Hupf C, Sperber M, Wegener J et al (2013) Imaging of cellular oxygen via two-photon excitation of fluorescent sensor nanoparticles. Sens Actuators B Chem 188:257–262

    Article  CAS  Google Scholar 

  154. Kondrashina AV, Dmitriev RI, Borisov SM, Klimant I, Brien IO et al (2012) A phosphorescent nanoparticle-based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modalities. Adv Funct Mater 22:4931–4939

    Article  CAS  Google Scholar 

  155. Dmitriev RI, Zhdanov AV, Nolan YM, Papkovsky DB (2013) Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials 34:9307–9317

    Article  CAS  Google Scholar 

  156. Dmitriev RI, Borisov SM, Kondrashina AV, Pakan JMP, Anilkumar U et al (2014) Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell Mol Life Sci. doi:10.1007/s00018-014-1673-5

    Google Scholar 

  157. Dmitriev RI, Papkovsky DB (2015) Multi-parametric O2 imaging in three-dimensional neural cell models with the phosphorescent probes. In: Lossi L, Merighi A (eds) Neuronal cell death. Springer New York, pp 55–71

    Google Scholar 

  158. Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV et al (2014) Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater Sci 2:853

    Article  CAS  Google Scholar 

  159. Shonat RD, Kight AC (2003) Oxygen tension imaging in the mouse retina. Ann Biomed Eng 31:1084–1096

    Article  Google Scholar 

  160. Golub AS, Tevald MA, Pittman RN (2011) Phosphorescence quenching microrespirometry of skeletal muscle in situ. Am J Physiol Heart Circ Physiol 300:H135–H143

    Article  CAS  Google Scholar 

  161. Sakadzić S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ et al (2010) Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods 7:755–759

    Article  CAS  Google Scholar 

  162. McEvoy AK, McDonagh CM, MacCraith BD (1996) Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol-gel-derived porous silica coatings. Analyst 121:785–788

    Article  CAS  Google Scholar 

  163. Nock V, Blaikie RJ, David T (2009) Oxygen control for bioreactors and in-vitro cell assays. In: 4th international conference on advanced materials and nanotechnology (AMN-4), 8–12 Feb 2009. AIP conference proceedings, Dunedin, New Zealand, pp 67–70

    Google Scholar 

  164. Tolosa L, Kostov Y, Harms P, Rao G (2002) Noninvasive measurement of dissolved oxygen in shake flasks. Biotechnol Bioeng 80:594–597

    Article  CAS  Google Scholar 

  165. Wittmann C, Kim HM, John G, Heinzle E (2003) Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks. Biotech Lett 25:377–380

    Article  CAS  Google Scholar 

  166. John GT, Klimant I, Wittmann C, Heinzle E (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol Bioeng 81:829–836

    Article  CAS  Google Scholar 

  167. Guarino RD, Dike LE, Haq TA, Rowley JA, Pitner JB et al (2004) Method for determining oxygen consumption rates of static cultures from microplate measurements of pericellular dissolved oxygen concentration. Biotechnol Bioeng 86:775–787

    Google Scholar 

  168. Pang H-L, Kwok N-Y, Chow LM-C, Yeung C-H, Wong K-Y et al (2007) ORMOSIL oxygen sensors on polystyrene microplate for dissolved oxygen measurement. Sens Actuators B Chem 123:120–126

    Article  CAS  Google Scholar 

  169. PreSens Precision Sensing GmbH, “Regensburg, Germany”. http://www.presens.de/

  170. DASGIP Information and Process Technology GmbH, “Jülich, Germany”. http://www.dasgip.de/

  171. Oxford Optronix Ltd., “Abingdon, United Kingdom”. http://www.oxford-optronix.com/

  172. Pyro Science GmbH, “Aachen, Germany”. http://www.pyro-science.com/

  173. Luxcel Biosciences Ltd., “Cork, Ireland”. http://luxcel.com/

  174. Thomas PC, Halter M, Tona A, Raghavan SR, Plant AL et al (2009) A noninvasive thin film sensor for monitoring oxygen tension during in vitro cell culture. Anal Chem 81:345–355

    Article  CAS  Google Scholar 

  175. Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103

    Article  CAS  Google Scholar 

  176. Steinem C, Janshoff A, Wegener J, Ulrich W-P, Willenbrink W et al (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12:787–808

    Article  CAS  Google Scholar 

  177. Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A et al (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    Article  CAS  Google Scholar 

  178. Fredriksson C, Khilman S, Kasemo B, Steel DM (1998) In vitro real-time characterization of cell attachment and spreading. J Mater Sci Mater Med 9:785–788

    Article  CAS  Google Scholar 

  179. Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34:121–151

    Article  CAS  Google Scholar 

  180. Lord MS, Modin C, Foss M, Duch M, Simmons A et al (2006) Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27:4529–4537

    Article  CAS  Google Scholar 

  181. Michaelis S (2010) Non-invasive biosensors to characterize the cell-material interface. Thesis, Westfälische Wilhelms-University Münster

    Google Scholar 

  182. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  183. Rasband WS, “ImageJ”. http://imagej.nih.gov/ij/

  184. Avouris P, Persson BNJ (1984) Excited states at metal surfaces and their non-radiative relaxation. J Phys Chem 571:837–848

    Article  Google Scholar 

  185. Waldeck DH, Alivisatos AP, Harris CB (1985) Nonradiative damping of molecular electronic excited states by metal surfaces. Surf Sci 158:103–125

    Article  CAS  Google Scholar 

  186. Zhou X-L, Zhu X-Y, White JM (1990) Photodissociation of intraadsorbate bonds at adsorbate-metal interfaces. Acc Chem Res 23:327–332

    Article  CAS  Google Scholar 

  187. Zhou X-L, Zhu X-Y, White JM (1991) Photochemistry at adsorbate/metal interfaces. Surf Sci Rep 13:73–220

    Article  CAS  Google Scholar 

  188. Imahori H, Norieda H, Nishimura Y, Yamazaki I, Higuchi K et al (2000) Chain length effect on the structure and photoelectrochemical properties of self-assembled monolayers of porphyrins on gold electrodes. J Phys Chem B 104:1253–1260

    Article  CAS  Google Scholar 

  189. Roche PJR, Cheung MC-K, Yung KY, Kirk AG, Chodavarpu VP et al (2010) Application of gold quenching of luminescence to improve oxygen sensing using a ruthenium (4,7-diphenyl-1,10-phenanthroline)3Cl2:TEOS thin film. Sens Actuators B Chem 147:581–586

    Article  CAS  Google Scholar 

  190. Ghosh D, Chattopadhyay N (2015) Gold and silver nanoparticles based superquenching of fluorescence: a review. J Lumin 160:223–232

    Article  CAS  Google Scholar 

  191. Imahori H, Kashiwagi Y, Endo Y, Hanada T, Nishimura Y et al (2004) Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths. Langmuir 20:73–81

    Article  CAS  Google Scholar 

  192. Schneider G, Decher G, Nerambourg N, Praho R, Werts MHV et al (2006) Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett 6:530–536

    Article  CAS  Google Scholar 

  193. Perry RH, Green DW, Maloney JO (2008) Perry’s chemical engineers’ handbook. McGraw-Hill Book Company, New York

    Google Scholar 

  194. Hilsenrath J (1955) Tables of thermal properties of gases: comprising tables of thermodynamic and transport properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam. U.S. Dept. Of Commerce, National Bureau of Standards

    Google Scholar 

  195. Heitmann V (2008) Funktionelle Bedeutung Spezifischer Zell-Matrix-Interaktionen: Eine Biophysikalische Studie. Thesis, Westfälische Wilhelms-University Münster

    Google Scholar 

  196. Adam G, Läuger P, Stark G (2009) Physikalische Chemie Und Biophysik. Springer, Berlin

    Book  Google Scholar 

  197. Weast RC (1988) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  198. Korson L, Drost-Hansen W, Millero FJ (1969) Viscosity of water at various temperatures. J Phys Chem 73:34–39

    Article  CAS  Google Scholar 

  199. Arain S, Weiss S, Heinzle E, John GT, Krause C et al (2005) Gas sensing in microplates with optodes: influence of oxygen exchange between sample, air, and plate material. Biotechnol Bioeng 90:271–280

    Article  CAS  Google Scholar 

  200. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  CAS  Google Scholar 

  201. Lechtken P (1974) Singulett-Sauerstoff. Chem unserer Zeit 8:11–16

    Article  CAS  Google Scholar 

  202. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 234:351–371

    Article  Google Scholar 

  203. Sies H, de Groot H (1992) Role of reactive oxygen species in cell toxicity. Toxicol Lett 64:547–551

    Article  Google Scholar 

  204. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  205. Ceroni P, Lebedev AY, Marchi E, Yuan M, Esipova TV et al (2011) Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study. Photochem Photobiol Sci 10:1056–1065

    Article  CAS  Google Scholar 

  206. Rabek JF, Ranby B (1975) Role of singlet oxygen in photo-oxidative degradation and photostabilization of polymers. Polym Eng Sci 15:15–18

    Article  Google Scholar 

  207. Egerton GS, Morgan AG (1971) The photochemistry of dyes. IV-the role of singlet oxygen and hydrogen peroxide in photosensitised degradation of polymers. J Soc Dyers Colour 87:268–277

    Article  CAS  Google Scholar 

  208. Kaplan ML, Kelleher PG (1970) Oxidation of a polymer surface with gas-phase singlet (1Δg) oxygen. Science 169:1206–1207

    Article  CAS  Google Scholar 

  209. Zweig A, Henderson WA Jr (1975) Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers, and reactants. J Polym Sci Polym Chem Ed 13:717–736

    Article  CAS  Google Scholar 

  210. Enko B, Borisov SM, Regensburger J, Bäumler W, Gescheidt G et al (2013) Singlet oxygen-induced photodegradation of the polymers and dyes in optical sensing materials and the effect of stabilizers on these processes. J Phys Chem A 117:8873–8882

    Article  CAS  Google Scholar 

  211. Ouannes C, Wilson T (1968) Quenching of singlet oxygen by tertiary amines. Effect of DABCO. J Am Chem Soc 46:6527–6528

    Article  Google Scholar 

  212. Ogryzlo EA, Tang CW (1970) Quenching of oxygen (1Δg) by amines. J Am Chem Soc 92:5034–5036

    Article  CAS  Google Scholar 

  213. Ricketts SR, Douglas P (2008) A simple colorimetric luminescent oxygen sensor using a green LED with Pt octaethylporphyrin in ethyl cellulose as the oxygen-responsive element. Sens Actuators B Chem 135:46–51

    Article  CAS  Google Scholar 

  214. Guillory JP, Cook CF (1973) Energy transfer processes involving ultraviolet stabilizers. quenching of singlet oxygen. J Polym Sci Polym Chem Ed 11:1927–1937

    Article  CAS  Google Scholar 

  215. Atkinson RS, Brimage DRG, Davidson RS, Gray E (1973) Use of tertiary amino-groups as substituents to stabilise compounds towards attack by singlet oxygen. J Chem Soc Perkin Trans 1:960–964

    Article  Google Scholar 

  216. Matheson IBC, Lee J (1972) Quenching of photophysically formed singlet (1Δg) oxygen in solution by amines. J Am Chem Soc 94:3310–3313

    Article  CAS  Google Scholar 

  217. Ackerman RA, Rosenthal I, Pitts JN Jr (1971) Singlet oxygen in the environmental sciences. X. Absolute rates of deactivation of O2 (1Δg) in the gas phase by sulfur compounds. J Chem Phys 54:4960

    Article  CAS  Google Scholar 

  218. Hasty N, Merkel PB, Radlick P, Kearns DR (1972) Role of azide in singlet oxygen reactions: reaction of azide with singlet oxygen. Tetrahedron Lett 13:49–52

    Article  Google Scholar 

  219. Kaiser S, Di Mascio P, Murphy ME, Sies H (1990) Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Arch Biochem Biophys 277:101–108

    Article  CAS  Google Scholar 

  220. Mukai K, Daifuku K, Okabe K, Tanigaki T, Inoue K (1991) Structure-activity relationship in the quenching reaction of singlet oxygen by tocopherol (vitamin E) derivatives and related phenols. Finding of linear correlation between the rates of quenching of singlet oxygen and scavenging of peroxyl and phenoxyl radicals in solution. J Org Chem 56:4188–4192

    Article  CAS  Google Scholar 

  221. Ohara K, Kikuchi K, Origuchi T, Nagaoka S (2009) Singlet oxygen quenching by trolox C in aqueous micelle solutions. J Photochem Photobiol B 97:132–137

    Article  CAS  Google Scholar 

  222. Jung MY, Min DB (2009) ESR study of the singlet oxygen quenching and protective activity of trolox on the photodecomposition of riboflavin and lumiflavin in aqueous buffer solutions. J Food Sci 74:2–8

    Article  CAS  Google Scholar 

  223. Ouchi A, Aizawa K, Iwasaki Y, Inakuma T, Terao J et al (2010) Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method. J Agric Food Chem 58:9967–9978

    Article  CAS  Google Scholar 

  224. Nagaoka S, Fujii A, Hino M, Takemoto M, Yasuda M et al (2007) UV protection and singlet oxygen quenching activity of aloesaponarin I. J Phys Chem B 111:13116–13123

    Article  CAS  Google Scholar 

  225. Nagai S, Ohara K, Mukai K (2005) Kinetic study of the quenching reaction of singlet oxygen by flavonoids in ethanol solution. J Phys Chem B 109:4234–4240

    Article  CAS  Google Scholar 

  226. Tournaire C, Croux S, Maurette M-T, Beck I, Hocquaux M et al (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1Δg) quenching. J Photochem Photobiol B 19:205–215

    Article  CAS  Google Scholar 

  227. Mukai K, Nagai S, Ohara K (2005) Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radic Biol Med 39:752–761

    Article  CAS  Google Scholar 

  228. Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663–1021

    Article  CAS  Google Scholar 

  229. Köse ME, Carroll BF, Schanze KS (2005) Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films. Langmuir 21:9121–9129

    Article  CAS  Google Scholar 

  230. Baleiz̃a C, Nagl S, Schäferling M, Berberan-Santos MN, Wolfbeis OS (2008) Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity. Anal Chem 80:6449–6457

    Google Scholar 

  231. Borisov SM, Wolfbeis OS (2006) Temperature-sensitive europium (III) probes and their use for simultaneous luminescent sensing of temperature and oxygen. Anal Chem 78:5094–5101

    Article  CAS  Google Scholar 

  232. Borisov SM, Vasylevska AS, Krause C, Wolfbeis OS (2006) Composite luminescent material for dual sensing of oxygen and temperature. Adv Func Mater 16:1536–1542

    Article  CAS  Google Scholar 

  233. Fischer LH, Stich MIJ, Wolfbeis OS, Tian N, Holder E et al (2009) Red- and green-emitting iridium(III) complexes for a dual barometric and temperature-sensitive paint. Chem Eur J 15:10857–10863

    Article  CAS  Google Scholar 

  234. Fischer LH, Karakus C, Meier RJ, Risch N, Wolfbeis OS et al (2012) Referenced dual pressure- and temperature-sensitive paint for digital color camera read out. Chem Eur J 18:15706–15713

    Article  CAS  Google Scholar 

  235. Lam H, Rao G, Loureiro J, Tolosa L (2011) Dual optical sensor for oxygen and temperature based on the combination of time domain and frequency domain techniques. Talanta 84:65–70

    Article  CAS  Google Scholar 

  236. Nagl S, Stich MIJ, Schäferling M, Wolfbeis OS (2009) Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature. Anal Bioanal Chem 393:1199–1207

    Article  CAS  Google Scholar 

  237. Zelelow B, Khalil GE, Phelan G, Carlson B, Gouterman M et al (2003) Dual luminophor pressure sensitive paint: II. Lifetime based measurement of pressure and temperature. Sens Actuators B Chem 96:304–314

    Article  CAS  Google Scholar 

  238. Nagl S, Wolfbeis OS (2007) Optical multiple chemical sensing: status and current challenges. The Analyst 132:507–511

    Article  CAS  Google Scholar 

  239. Borisov SM, Krause C, Arain S, Wolfbeis OS (2006) Composite material for simultaneous and contactless luminescent sensing and imaging of oxygen and carbon dioxide. Adv Mater 18:1511–1516

    Article  CAS  Google Scholar 

  240. Schroeder CR, Neurauter G, Klimant I (2007) Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems. Microchim Acta 158:205–218

    Article  CAS  Google Scholar 

  241. Vasylevska GS, Borisov SM, Krause C, Wolfbeis OS (2006) Indicator-loaded permeation-selective microbeads for use in fiber optic simultaneous sensing of pH and dissolved oxygen. Chem Mater 18:4609–4616

    Article  CAS  Google Scholar 

  242. Schröder CR, Polerecky L, Klimant I (2007) Time-resolved pH/pO2 mapping with luminescent hybrid sensors. Anal Chem 79:60–70

    Article  CAS  Google Scholar 

  243. Tian Y, Shumway BR, Cody Youngbull A, Li Y, Jen AK-Y et al (2010) Dually fluorescent sensing of pH and dissolved oxygen using a membrane made from polymerizable sensing monomers. Sens Actuators B Chem 147:714–722

    Article  CAS  Google Scholar 

  244. Lu H, Jin Y, Tian Y, Zhang W, Holl MR et al (2011) New ratiometric optical oxygen and pH dual sensors with three emission colors for measuring photosynthetic activity in cyanobacteria. J Mater Chem 21:19293

    Article  CAS  Google Scholar 

  245. Liu R, Xiao T, Cui W, Shinar J, Shinar R (2013) Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring. Anal Chim Acta 778:70–78

    Article  CAS  Google Scholar 

  246. Zhang L, Su F, Buizer S, Lu H, Gao W et al (2013) A dual sensor for real-time monitoring of glucose and oxygen. Biomaterials 34:9779–9788

    Article  CAS  Google Scholar 

  247. Stich MIJ, Schaeferling M, Wolfbeis OS (2009) Multicolor fluorescent and permeation-selective microbeads enable simultaneous sensing of pH, oxygen, and temperature. Adv Mater 21:2216–2220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Oberleitner .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oberleitner, M. (2018). QCM-OCS: Optochemical Sensing of Temperature and pO2 in the Cell Surface Junction. In: Label-free and Multi-parametric Monitoring of Cell-based Assays with Substrate-embedded Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45384-2_6

Download citation

Publish with us

Policies and ethics