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Supervisor’s Foreword

Throughout the last decades elaborate laboratory techniques to isolate and culture
mammalian cells have been developed and continuously improved so that cell
culture models from almost any mammalian tissue are available today for experi-
ments ex vivo. This development has been originally motivated by the perspective
to study one particular cell type apart from the complexity of an entire organism
under well-defined laboratory conditions on a molecular scale. But cultured cells
are not just simplified study objects to understand the molecular mechanisms of life,
they also serve as valuable tools in bioanalysis when used as sensory elements in
cell-based assays (CBAs). In CBAs the cells are exposed to a chemical, biological
or physical challenge along a well-defined experimental protocol and the response
of the cells to this challenge is used as a biomarker. When all experimental
parameters are properly selected, CBAs provide a first and valuable estimate for the
corresponding tissue response within the living organism. In this sense, CBAs are
considered to be an intermediate between complex testing in living animals and
simple, binary or ternary molecular assay systems. The number of applications for
cell-based assays (CBAs) is huge and steadily increasing in all branches of
biomedical research. For a successful assay it is indispensable but not sufficient to
have an appropriate cell culture model available. It is equally important to have
sensitive experimental strategies to monitor the behavior of these cells upon
exposure to drugs, toxins, nanomaterials or other stressors. Moreover, the response
of the cells to a given stimulus needs to be measured quantitatively in order to
determine threshold concentrations, to establish structure-activity relationships or to
compare different classes of compounds within one assay. Two different strategies
have evolved to monitor and analyze cell-based assays. They are classified as
label-based or label-free readout approaches dependent on whether they rely on
chemical additives (fluorescent probes, antibodies, chromophores, etc.) to make the
cell response measurable or not. Label-free approaches do not rely on chemical
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detection principles but measure physical quantities (impedance, refractive index,
viscoelasticity, etc.) to quantify the cell response (see also Sperber et al. 20161).

Maximilian Oberleitner has devoted his thesis to the optimization, extension and
combination of existing label-free approaches for monitoring cells in culture. The
heart of his work is the quartz crystal microbalance (QCM) technique which has a
long track record as a mass-sensitive tool to study molecular adsorption processes at
the solid-liquid interface. In recent years it had been shown that these acoustic
devices are also well-suited to report on the adhesion of cells, their viability and
their cytomechanics. One of the weak spots of this technique has been its limited
throughput. Max has tackled this problem by developing a scalable concept for
multichannel QCM with more than one readout electrode per resonator and he
applied it to monitor cell-based assays of various types. Another problem with
QCM-based cell monitoring is the limited information content. Analysis of the
resonant oscillation of QCM-sensors provides a maximum of two quantitative
parameters, the resonance frequency and energy dissipation. Even though these are
available as a function of time, the description of living systems asks for more
independent information. It was Max’s strategy to improve the device in this respect
by combining it with other label-free readout approaches that provide an inde-
pendent perspective of the cell response. And here he made efficient use of his
‘multichannel QCM concept’ developed before with coplanar electrodes on the
surface of the quartz resonator. In addition to exciting the resonator’s shear oscil-
lation the surface electrodes were used to record electrochemical impedance spectra
of the cells under study. This technique by itself has been known for many years
and it is referred to as electric cell-substrate impedance sensing—or shortly ECIS.
In combination with almost simultaneous QCM readings, the QCM-ECIS approach
provides the viscoelastic and dielectric properties of the cells grown on the surface
electrodes at the same time. Thus, the information content has been truly improved
by another non-invasive readout approach. In this very same line Max has also
combined QCM devices with optochemical sensing (OCS) of oxygen or tempera-
ture. The former was used to monitor the cells’ respiration in parallel to recording
their viscoelastic and dielectric properties. The latter was important to quantify the
surface temperature when the quartz resonator is driven with elevated amplitudes in
actuator applications. Both OCS-approaches were based on coating the resonator
with polymer films that were doped with fluorescent indicators for oxygen or
temperature. Thus, the title of this thesis indeed boils down its content: label-free,
multi-parametric monitoring of cell-based assays with substrate-embedded sensors.

Max’s scientific rigor in characterizing the performance of any new device in
combination with his attention to detail make this thesis a highly informative ref-
erence for anybody working in the field of cell-based assays. No other publication

1M. Sperber, C. Hupf, M.-M. Lemberger, B. Goricnik, N. Hinterreiter, S. Lukic, M. Oberleitner, J.
A. Stolwijk, and J. Wegener, “Monitoring the Impact of Nanomaterials on Animal Cells by
Impedance Analysis: A Noninvasive, Label-Free, and Multimodal Approach”, in Measuring
Biological Impacts of Nanomaterials (Ed.: J. Wegener), Springer International Publishing, Cham,
2016, 45–108.
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format than a thesis would allow spreading out all the experimental information that
is relevant for a qualified judgement of different technical concepts. Most important
to me is the enormous work that Max dedicated to the reproducibility of his
approaches. Every assay was repeated as often as necessary to get reliable infor-
mation about reproducibility and performance—always based on well-known sta-
tistical concepts. This last point may sound trivial. But looking through the
scientific literature reveals that it is unfortunately not. Max’s enthusiasm and talent
to support concepts or experimental results by graphical elements provides a value
by itself and will be appreciated by his readers. His dedication and determination
paid off. All in all it has been a great pleasure to supervise this thesis and to work
with Max in the lab.

Regensburg, Germany Prof. Dr. Joachim Wegener
August 2016
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Abbreviations and Acronyms

+ctrl Positive Control
1ElQ 1-Electrode Quartz; 5 MHz AT-cut quartz disk

(Øq = 14 mm) with one electrode on either side
(ØE = 6 mm)

2,4-DNP 2, 4-Dinitrophenol
2-D Two-dimensional
2ElQ 2-Electrode Quartz; 5 MHz AT-cut quartz disk

(Øq = 14 mm) with two electrodes on either side
(ØE = 3.5mm)

3-D Three-dimensional
8-CPT-cAMP 8-(4-Chlorophenylthio)adenosine 3’,5’-cyclic

monophosphate
8W1E™ ECIS array comprising 8 wells with 1 working electrode in

each; trademark of Applied Biophysics, Troy, NY, USA
AC Alternating Current
AFM Atomic Force Microscopy
AJ Adherens Junction
ATP Adenosine Triphosphate
BAEC Bovine Aortic Endothelial Cells
BCEC Bovine Corneal Endothelial Cells
BOD Biological Oxygen Demand
BPAEC Bovine Pulmonary Artery Endothelial Cells
cAMP Adenosine 3’,5’-cyclic monophosphate
CBB Cell-Based Biosensor/ Biosensing
cD Cytochalasin D
CE Counter Electrode
CMS® Cell Monitoring System [64]
CPT-cAMP see 8-CPT-cAMP
ctrl Control
−ctrl Negative Control
DAPI 4’,6-diamidin-2-phenylindol
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DC Direct Current
DM Dichroitic Mirror
DMEM Dulbecco’s Modified Eagle’s Medium
DMSO Dimethylsulfoxide
DO Dissolved Oxygen
DSMZ German Collection of Microorganisms and Cell Cultures
EBSS−− Earles’ Balanced Salt Solution, w/o Ca2+ and Mg2+

EBSS+− Earles’ Balanced Salt Solution, w/ Ca2+ and w/o Mg2+

EBSS−+ Earles’ Balanced Salt Solution, w/o Ca2+ and w/ Mg2+

EBSS++ Earles’ Balanced Salt Solution, w/ Ca2+ and Mg2+

EC Epithelial Cells
ECAR Extracellular Acidification Rate
ECIS® Electric Cell-Substrate Impedance Sensing; registered

trademark of Applied Biophysics, Troy, NY, USA
ECM Extracellular Matrix
EDTA Ethylenediaminetetraacetic acid
ELPO Electroporation
EnFET Enzyme Field-Effect Transistor
Eu(benzac)3(phen) Tris(benzoylacetonato)-mono(phenanthroline)-europium

(III)
Eu(dnm)3(topo)2 Tris(dinaphthoylmethane)-bis(trioctylphosphine oxide)-

europium(III)
FA Focal Adhesion
FCS Fetal Calf Serum
FED Field-Effect Device
FITC Fluorescein Isothiocyanate
FLIM Fluorescence (Phosphorescence) Lifetime Imaging
FN Fibronectin
GA Glutaraldehyde
GJ Gap Junction
GOx Glucose Oxidase Enzyme
HAEC Human Aortic Endothelial Cells
HC Hydrocortisone
HCS High-Content Screening
HD Hemidesmosome
HTS High-Throughput Screening
HUAEC Human Umbilical Artery Endothelial Cells
HUVEC Human Umbilical Vein Endothelial Cells
IA Impedance Analyzer
IDEs Interdigital Electrodes
IF Intermediate Filaments
IR Infrared Radiation
IS Impedance Spectroscopy
ISFET Ion-Selective Field-Effect Transistor
ITO Indium Tin Oxide
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IUPAC International Union of Pure and Applied Chemistry
LAPS Light-Addressable Potentiometric Sensor
LED Light-Emitting Diode
MDCK-II Madin Darby Canine Kidney cell line, strain II
ME Microelectrode
MEM Minimum Essential Medium Eagle
MISFET Metal-Insulation-Semiconductor Field-Effect Transistor
MLAPS Multiple Light-Addressable Potentiometric Sensor
MLC Metal-Ligand Complex
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
NRK Normal Rat Kidney cell line, strain 52E
OCR Oxygen Consumption Rate
OCS Optical Chemical Sensor/ Sensing
PBS−− Phosphate Buffered Saline, w/o Ca2+ and Mg2+

PBS+ Phosphate Buffered Saline, w/a2+ and Mg2+

PEBBLE Probes Encapsulated By Biologically Localized
Embedding

PEDOT Poly(3, 4-ethylenedioxythiophene)
PFA Paraformaldehyde
PhoP Photopolymer
PKA Protein kinase A
PMT Photomultiplier Tube
PSP Pressure-Sensitive Paint
PSS Poly(styrenesulfonate)
PtTFPP 5,10,15,20-Tetrakis-(2,3,4,5,6-pentafluorophenyl)-

porphyrin-platinum(II)
QCM Quartz Crystal Microbalance
Q-factor Quality Factor; cf. Eq. (63)
REVS Rupture Event Scanning
RI Refractive Index
RIfS Reflectometric Interference Spectroscopy
RLD Rapid Lifetime Determination
ROI Region of Interest
rpm Rounds Per Minute
RT Room Temperature
RWG Resonant Waveguide Grating
SDM Standard Deviation of Mean
SEM Standard Error of Mean
SFM Serum-Free Medium
SI Supplementary Information
SPR Surface Plasmon Resonance
TER, TEER Transepithelial/Transendothelial Electrical Resistance
TIR Total Internal Reflection
TJ Tight Junction
TSM Thickness Shear Mode
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TSP Temperature-Sensitive Paint
UV Ultraviolet Radiation
VIS Visible Radiation
Vrms Root-Mean-Square Voltage
w/ with
w/o without
WE Working Electrode
ZO Zonula Occludens
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Symbols

Ø Diameter
a Model Parameter, a ¼ rC � ffiffiffiffiffiffiffiffiffiffiffiffiffi

qsub=d
p

X1=2 � cm
h i

d Decay Length
e Electric Permittivity
g Viscosity
hi Angle of Incident Light
k Wavelength
m Wave Frequency
q Density; Specific Resistance
s Luminescence Lifetime
u Phase Angle, Phase Shift
x Radial Frequency, x ¼ 2pf
U Electric Potential [V]; Quantum Yield
w Electrical Flux, w ¼ RR

A
~D � d~A½A � s�

A Area
B Susceptance
c66 Piezoelectrically Stiffened Quartz Elastic Constant,

c66 ¼ c66 þ e262=e22, for AT-cut Quartz: c66 = 2.947 10 �
10 kg/m−1/s−2

cp Specific Heat Capacity
C Capacitance; Circumference
d Distance
dq Quartz Thickness, dq = 330 µm for fs = 5 MHz
~D Electric Displacement Field, ~D ¼ e0er~E A � s �m�2½ �
e Euler’s Number, Base of the Natural Logarithm, e �

2.71828
e26 Piezoelectric Stress Constant; for AT-cut Quartz: e26 =

9.54 � 10−2 A�s�m−2

~E Electrical Field; ~Eð~rÞ ¼ �rUð~rÞ
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E Young’s Modulus
f Frequency
F Fractional voltage drop across a cell layer [%], cf. Eq. (67)
~F Force
~g Gravitational Acceleration
G Conductance
G Complex Shear Modulus
h Height; Plank Constant
i Complex Current
î Current Amplitude
I Electrical Current; Luminescence Intensity
ImðZÞ Imaginary Part of the Complex Impedance
j Imaginary Unit
k Spring Constant; Rate Constant
KSV Stern-Volmer Quenching Constant
L Inductance
m Mass
M Molar Mass
ni Refractive Index of Medium i
N Number of Values Used for Averaging
pO2 Oxygen Partial Pressure
ptot Total Pressure
q Charge
Q Quality Factor, Q-factor, Q ¼ 1=D ¼ Xtot=Rtot; Quencher
r Radius; Damping Constant (r ¼ gqp

2=d2q)
R Resistance
ReðZÞ Real Part of the Complex Impedance
t Time
T Temperature
u Complex Voltage
û Voltage Amplitude
U Voltage
v Velocity
V Volume
w Gaussian Distribution Coefficient, wair = 2.84, wwater =

2.03
x Shear Amplitude; Displacement
X Reactance
Z Complex Impedance
Zj j Impedance Magnitude
Z Impedance
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Special (Bio)Chemical Reagents

2, 4-Dinitrophenol
(2,4-DNP)

Sigma-Aldrich; St. Louis, MO, USA

4’, 6-diamidin-
2-phenylindol
(DAPI)

Sigma-Aldrich; St. Louis, MO, USA

5, 10, 15,
20-Tetrakis-

(2,3,4,5,6-pentafluorophenyl)-porphyrin-platinum(II)
(PtTFPP)

Porphyrine Systems
GbR; Appen,
Germany
8-
(4-Chlorophenylthio)
adenosine 3’,5’-cyc-
lic monophosphate
sodium salt
(8-CPT-cAMP)

Sigma-Aldrich; St. Louis, MO, USA

Alexa Fluor® 488
phalloidin

Life Technologies; Carlsbad, CA, USA

Alexa Fluor® 546
rabbit anti-mouse
IgG (H+L)

Life Technologies; Carlsbad, CA, USA

Cytochalasin D (cD) Sigma-Aldrich; St. Louis, MO, USA
Dimethylsulfoxide
(DMSO)

Sigma-Aldrich; St. Louis, MO, USA

FITC-Dextran 250
kDa

Sigma-Aldrich; St. Louis, MO, USA

Glutaraldehyde (GA) Merck KGaA; Darmstadt, Germany
LIVE/DEAD® via-
bility/ cytotoxicity
kit

Molecular Probes, Life Technologies; Carlsbad, CA, USA

xxv



Paraformaldehyde
(PFA)

Merck Schuchardt OHG; Hohenbrunn

Photoresist AZ® ECI
3027

Microchemicals; Ulm, Germany

Poly
(vinylidene-chloride/
acrylonitrile) (80:20)

Polysciences, Inc.; Warrington, PA, USA

Sylgard® 182 sili-
cone elastomer kit

Dow Corning; Midland, MI, USA

THF Sigma-Aldrich; St. Louis, MO, USA
TI Prime Microchemicals; Ulm, Germany
Toluene Merck; Darmstadt, Germany
Tris(benzoylaceto-
nato)-mono(phenan-
throline)-europium
(III)
(Eu(benzac)3(phen))

Sigma-Aldrich; St. Louis, MO, USA

Tris(dinaphthoyl-
methane)-bis(trioc-
tylphosphine oxide)-
europium(III) (Eu
(dnm)3(topo)2)

Synthesized at the institute, according to
Peng’s procedure [329]

TRITC-phalloidin Sigma-Aldrich; St. Louis, MO, USA
Triton-X-100 Sigma-Aldrich; St. Louis, MO, USA
ZO-1 mouse mono-
clonal antibody

Life Technologies; Carlsbad, CA, USA
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