Skip to main content

Microbe-Assisted Degradation of Aldrin and Dieldrin

  • Chapter
  • First Online:
Microbe-Induced Degradation of Pesticides

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Aldrin and dieldrin are extensively used as synthetic pesticides in the agricultural industry, which classified as persistent organic pollutants (POPs). Although these compounds have been prohibited over the past decades in most countries, they are still found in the environment. Many studies have shown the microbial transformation of aldrin to dieldrin as main metabolic product, which has higher toxicity and persistence. However, some microorganisms had ability to convert dieldrin to some metabolic compounds. Furthermore, some studies have also revealed that dieldrin could be mineralized to CO2. In general, degradation of aldrin and dieldrin by fungi is faster than that of bacteria of which degradation pathway is clearly described. The efficiency of degrading microorganisms, introduced into contaminated sites, depends on many factors such as, pH, carbon and nitrogen sources, enzymes, hormones, and light. Some enzymes had been found to be involved in aldrin and dieldrin degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mallek, A. Y., Moharram, A. M., Abdel-Kader, M. I., & Omar, S. A. (1994). Effect of soil treatment with the organophosphorus insecticide profenofos on the fungal flora and some microbial activities. Microbiological Research, 149, 167–171.

    Article  Google Scholar 

  • Andrea, M. M., Peres, T. B., Luchini, L. C., & Pettinelli, A, Jr. (2000). Impact of longterm pesticide application on some soil biological parameters. Journal of Environmental Science and Health Part B, 35, 297–307.

    Article  Google Scholar 

  • Antonious, G. F. (2003). Impact of soil management and two botanical insecticides on urease and invertase activity. Journal of Environmental Science and Health Part B, 38, 479–488.

    Article  Google Scholar 

  • Bandala, E. R., Paulino, P., Juan, A. O., & Luis, G. T. (2006). Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures. Journal of Environmental Science and Health Part B, 41, 553–569.

    Article  Google Scholar 

  • Baxter, J., & Cummings, S. P. (2008). The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. Journal of Applied Microbiology, 104, 1605–1616.

    Article  Google Scholar 

  • Birolli, G. W., Yamamoto, K. Y., Oliveira, J. R., Nitschke, M., Seleghim, M. H. R., & Porto, L. M. (2015). Biotransformation of dieldrin by the marine fungus Penicillium miczynskii CBMAI 930. Biocatalysis and Agricultural Biotechnology, 4, 39–43.

    Article  Google Scholar 

  • Brain, K. R., & Lines, D. S. (1982). Consistency of metabolism of aldrin and dieldrin in suspension cultures from Phaseolus vulgaris root. Plant Cell Reports, 1, 176–179.

    Article  Google Scholar 

  • Carriger, J. F., Rand, G. M., Gardinali, P. R., Perry, W. B., Tompkins, M. S., & Fernandez, A. M. (2006). Pesticides of potential ecological concern in sediment from South Florida canals: An ecological risk prioritization for aquatic arthropods. Soil and Sediment Contamination, 15, 21–45.

    Article  Google Scholar 

  • Chen, S. K., & Edwards, C. A. (2001). A microcosm approach to assess the effects of fungicides on soil ecological processes and plant growth: Comparison of two soil types. Soil Biology and Biochemistry, 33, 1981–1991.

    Article  Google Scholar 

  • Demanou, J., Monkiedje, A., Njine, T., Foto, S. M., Nola, M., Serges, H., et al. (2004). Changes in soil chemical properties and microbial activities in response to the fungicide Ridomil gold plus copper. International Journal of Environmental Research and Public Health, 1, 26–34.

    Article  Google Scholar 

  • Faber, K., Mischitz, M., & Kroutil, W. (1996). Microbial epoxide hydrolases. Acta Chemica Scandinavica, 50, 249–258.

    Article  Google Scholar 

  • Ferguson, J. A., & Korte, F. (1977). Epoxidation of aldrin to exo-dieldrin by soil bacteria. Applied and Environmental Microbiology, 34, 7–13.

    Google Scholar 

  • Foght, J., April, T., Biggar, K., & Aislabie, J. (2001). Bioremediation of DDT-contaminated soils: A review. Bioremediation Journal, 5, 225–246.

    Article  Google Scholar 

  • Huggenholtz, P., & MacRae, I. C. (1990). Stimulation of aldrin and dieldrin loss from soils treated with carbon amendments and saturated-ring analogues. Bulletin of Environmental Contamination and Toxicology, 45, 223–227.

    Article  Google Scholar 

  • Ingram, C. W., Coyne, M. S., & Williams, D. W. (2005). Effects of commercial diazinon and imidacloprid on microbial urease activity in soil. Journal of Environmental Quality, 34, 1573–1580.

    Article  Google Scholar 

  • Janke, D., & Fritsche, W. J. (1985). Nature and significance of microbial cometabolism of xenobiotics. Basic Microbiology, 25, 603–619.

    Article  Google Scholar 

  • Jensen, G. E., Skaare, J. U., & Egaas, E. (1991). Response of xenobiotic metabolizing enzymes in rainbouw trout (Onchohypus mykiss) to endosulfan, detected by enzyme activities and immunochemical methods. Aquatic Toxicology, 21, 81–92.

    Article  Google Scholar 

  • Kamei, I., Takagi, K., & Kondo, R. (2010). Bioconversion of dieldrin by wood rotting fungi and metabolite detection. Pest Management Science, 66, 888–891.

    Google Scholar 

  • Kataoka, R., Takagi, K., Kamei, I., Kiyota, H., & Sato, Y. (2010). Bidegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environmental Science and Technology, 44, 6343–6349.

    Article  Google Scholar 

  • Kearns, C. W., Ingle, L., & Metcalf, R. F. (1945). New chlorinated-hydrocarbon insecticide. Journal of Economic Entomology, 38, 661–668.

    Article  Google Scholar 

  • Klein, W., Kohli, J., Weisgerber, I., & Korte, F. (1973). Fate of aldrin-14C in potatoes and soil under outdoor conditions. Journal of Agricultural and Food Chemistry, 21, 152–156.

    Article  Google Scholar 

  • Kohli, J., Zarif, S., Weisgerber, I., Klein, W., & Korte, F. (1973). Fate of aldrin-14C in sugar beets and soil under outdoor conditions. Journal of Agricultural and Food Chemistry, 21, 855–857.

    Article  Google Scholar 

  • Lichtenstein, E. P., & Schulz, K. R. (1960). Epoxidation of aldrin and heptachlor in soils as influenced by auto claving, moisture and soil types. Journal of Economic Entomology, 53, 192–197.

    Article  Google Scholar 

  • Lichtenstein, E. P., Schulz, K. R., & Cowley, G. T. (1963). Inhibition of the conversion of aldrin to dieldrin in soils with methylenedioxyphenyl synergists. Journal of Economic Entomology, 56, 485–489.

    Article  Google Scholar 

  • Lichtenstein, E. P., Schulz, K. R., Skrentny, R. F., & Stitt, P. A. (1965). Insecticidal residues in cucumbers and alfalfa grown on aldrin- or heptachlortreated soils. Journal of Economic Entomology, 58, 742–746.

    Article  Google Scholar 

  • Lopez, L., Pozo, C., Rodelas, B., Calvo, C., & Gonzalez-Lopez, J. (2006). Influence of pesticides and herbicides presence on phosphatase activity and selected bacterial microbiota of a natural lake system. Ecotoxicology, 15, 487–493.

    Article  Google Scholar 

  • Luckens, M. M., & Phelps, K. I. (1969). Serum enzyme patterns in acute poisoning with organochlorine insecticides (Vol. 17, p. 4). Madison: Department of Entomology, University of Winconsin.

    Google Scholar 

  • Matsumoto, E., Kawanaka, Y., Yun, S. J., & Oyaizu, H. (2008). Isolation of dieldrin- and endrin-degrading bacteria using 1,2-epoxycyclohexane as a structural analog of both compounds. Applied Microbiology and Biotechnology, 80, 1095–1103.

    Article  Google Scholar 

  • Matsumoto, E., Kawanaka, Y., Yun, S. J., & Oyaizu, H. (2009). Bioremediation of the organochlorine pesticides, dieldrin and endrin and their occurrence in the environment. Applied Microbiology and Biotechnology, 84, 205–216.

    Article  Google Scholar 

  • Matsumura, F., & Boush, G. M. (1967). Dieldrin: Degradation by soil microorganisms. Science, 156, 959–961.

    Article  Google Scholar 

  • Matsumura, F., & Boush, G. M. (1968). Degradation of insecticides by a soil fungus, Trichoderma viride. Journal of Economic Entomology, 61, 610–612.

    Article  Google Scholar 

  • Matsumura, F., Patil, K. C., & Boush, G. M. (1970). Formation of “photodieldrin” by microorganisms. Science, 170, 1206–1207.

    Article  Google Scholar 

  • Matthews, H. B., & Matsumura, F. (1969). Metabolic fate of dieldrin in the rat. Pesticide Biochemistry and Physiology, 14, 192–207.

    Google Scholar 

  • Maule, A., Plyte, S., & Quirk, A. V. (1987). Dehalogenation of organochlorine insecticides by mixed anaerobic microbial populations. Pesticide Biochemistry and Physiology, 27, 229–236.

    Article  Google Scholar 

  • Mishra, A. K., & Pandey, A. B. (1989). Toxicity of three pesticides to some nitrogen fixing cyanobacteria. Ecotoxicology and Environmental Safety, 17, 236–246.

    Article  Google Scholar 

  • Mullin, C. A., & Wilkinson, C. F. (1980). Insect epoxide hydrolase: Properties of a purified enzyme from the southern armyworm (Spodoptera eridania). New York: Department of Entomology, University of Cornell.

    Google Scholar 

  • Osburn, W. O., & Kensler, T. W. (2008). Nrf2 signaling: An adaptive response pathway for protection against environmental toxic insults. Mutation Research, 659, 31–39.

    Article  Google Scholar 

  • Patil, K. C., Matsumura, F., & Boush, G. M. (1970). Degradation of endrin, aldrin, and DDT by soil microorganisms. Applied Microbiology, 19, 879–881.

    Google Scholar 

  • Patil, K. C., Matsumura, F., & Boush, G. M. (1972). Metabolic transformation of DDT, dieldrin, aldrin and endrin by marine microorganisms. Environmental Science and Technology, 6, 629–632.

    Article  Google Scholar 

  • Pimentel, D. (1995). Amounts of pesticides reaching target pests: Environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8, 17–29.

    Article  Google Scholar 

  • Reddy, M. S., & Jayaprada, P. (1991). Toxic impact of aldrin on acid and alkaline phospatase activity of penaeid prwn, Metapenaeus monoceros in vitro study. Bulletin of Environmental Contamination and Toxicology, 46, 479–484.

    Article  Google Scholar 

  • Saez, F., Pozo, C., Gomez, M. A., Martınez-Toledo, M. V., Rodelas, B., & Gonzalez- Lopez, J. (2006). Growth and denitrifying activity of Xanthobacter autotrophicus CECT 7064 in the presence of selected pesticides. Applied Microbiology and Biotechnology, 71, 563–567.

    Article  Google Scholar 

  • Sakakibara, F., Kazuhiro, T., Ryota, K., Hiromasa, K., Yuuki, S., & Sanae, O. (2011). Isolation and identification of dieldrin-degrading Pseudonocardia sp. Strain KSF27 using a soil–charcoal perfusion method with aldrin trans-diol as a structural analog of dieldrin. Biochemical and Biophysical Research Communications, 411, 76–81.

    Article  Google Scholar 

  • Scheunert, I., Kohli, J., Kaul, R., & Klein, W. (1977). Fate of [14C] aldrin in crop rotation under outdoor conditions. Ecotoxicology and Environmental Safety, 1, 365–385.

    Article  Google Scholar 

  • Schonbrod, R. D., Hoyers, S. J., & Yu, S. J. (1973). The epoxidation of aldrin by microsomes from the Fc strain of housefly: A genetic survey. In Pesticide Biochemistry and Physiology (pp. 259–270). Department of Entomology, Oregon State University.

    Google Scholar 

  • Stewart, D. K. R., & Gaul, S. O. (1977). Dihydrochlordene dicarboxylic acid residues in soil treated with high rates of aldrin. Bulletin of Environmental Contamination and Toxicology, 17, 712–713.

    Article  Google Scholar 

  • Takagi, T. (2008). Surfactant effects on environmental behavior of pesticides. Reviews of Environmental Contamination and Toxicology, 194, 1–177.

    Google Scholar 

  • Treon, J. F., Clevelend, F. P., & Cappel, J. (1955). Toxicity of endrin for laboratory animals. Journal of Agricultural and Food Chemistry, 3, 842–848.

    Article  Google Scholar 

  • Tu, C. M., Miles, J. R. W., & Harris, C. R. (1968). Soil microbial degradation of aldrin. Life Sciences, 7, 311–322.

    Article  Google Scholar 

  • Virag, D., Naar, Z., & Kiss, A. (2007). Microbial toxicity of pesticide derivatives roduced with UV-photodegradation. Bulletin of Environmental Contamination and Toxicology, 79, 356–359.

    Article  Google Scholar 

  • Walker, C. H. (1978). Spesies differences in microsomal monooygenase activity and their relationship to biological half-lives. Drug Metabolism Reviews, 7, 295–323.

    Article  Google Scholar 

  • Wang, M. C., Gong, M., Zang, H. B., Hua, X. M., Yao, J., Pang, Y. J., et al. (2006). Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. Journal of Environmental Science and Health Part B, 41, 399–413.

    Article  Google Scholar 

  • Wardle, D. A., Nicholson, K. S., & Rahman, A. (1994). Influence of herbicide applications on the decomposition, microbial biomass, and microbial activity of pasture shoot and root litter. New Zealand Journal of Agricultural Research, 37, 29–39.

    Article  Google Scholar 

  • World Health Organization. (1989). Environmental health criteria 91, Aldrin and Dieldrin. Geneva: World Health Organization.

    Google Scholar 

  • Xiao, P., Mori, T., Kamei, I., Kiyota, H., Takagi, K., & Kondo, R. (2011). Novel metabolic pathway of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere, 85, 218–224.

    Article  Google Scholar 

  • Yamazaki, K., Takagi, K., Kataoka, R., Kotake, M., Yamada, T., & Kiyota, H. (2014). Novel phosphorylation of aldrin-trans-diol by dieldrin-degrading fungus Mucor racemosus strain DDF. International Biodeterioration and Biodegradation, 92, 36–40.

    Article  Google Scholar 

  • Yu, S. J., & Terriere, L. C. (1972). Enzyme induction in the housefly: The specificity of the cyclodiene insecticides. In Pesticide biochemistry and physiology (Vol. 2, pp. 184–190). Corvallis, Oregon: Department of Entomology, Oregon State University.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for the Research Project supported by International Research Collaboration and Scientific Publication 2016, from the Directorate General of Higher Education, Ministry of Research, Technology and Higher Education, Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Setyo Purnomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Purnomo, A.S. (2017). Microbe-Assisted Degradation of Aldrin and Dieldrin. In: Singh, S. (eds) Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45156-5_1

Download citation

Publish with us

Policies and ethics