Skip to main content

Other Practices in PDT

  • Chapter
  • First Online:
  • 493 Accesses

Abstract

In addition to clinical PDT applications regarding antimicrobial and antineoplastic activity, photodynamic reactions have also been used in several other practices such as for fish tank decontamination, water treatment, antiangiogenic therapy for age-related macular degeneration, decontamination of surfaces, and even inactivation of pathogens for blood transfusion. Nowadays, not all potentials of photodynamic reactions are commercially available yet, but they definitely deserve to be highlighted in this chapter as alternative applications of photodynamic reactions in veterinary medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tezel TH, Bora NS, Kaplan H. Pathogenesis of age-related macular degeneration. Trends Mol Med. 2004;10(9):417–20.

    Article  CAS  PubMed  Google Scholar 

  2. Olivo M, Bhuvaneswari R, Lucky SS, Dendukuri N, Soo-Ping Thong P. Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals. 2010;3(5):1507–29.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kawczyk-Krupka A, Bugaj AM, Potempa M, Wasilewska K, Latos W, Sieroń A. Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: clinical perspectives. Photodiagnosis Photodyn Ther. 2015;12(2):161–75.

    Article  CAS  PubMed  Google Scholar 

  4. Gryson O. Servier medical art France: servier. 2016. Available from: http://www.servier.com/Powerpoint-image-bank.

  5. Cooper AE, Ahonen S, Rowlan JS, Duncan A, Seppälä EH, Vanhapelto P, et al. A novel form of progressive retinal atrophy in Swedish vallhund dogs. PLoS ONE. 2014;9(9):e106610.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Petersen-Jones SM, Komáromy AM. Dog models for blinding inherited retinal dystrophies. Hum Gene Ther Clin Dev. 2015;26(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  7. Aureliano DP, Ribeiro MS, Lindoso JAL, Pogliani FC, Sellera FP, Song D, et al. Treatment and control of leishmaniasis using photodynamic therapy. In: Leishmaniasis – trends in epidemiology, diagnosis and treatment. InTech; Rijeka, Croacia; 2014.

    Google Scholar 

  8. Wainwright M. Pathogen inactivation in blood products. Curr Med Chem. 2002;9(1):127–43.

    Article  CAS  PubMed  Google Scholar 

  9. Wainwright M, Baptista MS. The application of photosensitisers to tropical pathogens in the blood supply. Photodiagnosis Photodyn Ther. 2011;8(3):240–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson M, Dobson J, Harvey W. Sensitization of oral bacteria to killing by low-power laser radiation. Curr Microbiol. 1992;25(2):77–81.

    Article  CAS  PubMed  Google Scholar 

  11. Schagen FH, Moor AC, Cheong SC, Cramer SJ, van Ormondt H, van der Eb AJ, et al. Photodynamic treatment of adenoviral vectors with visible light: an easy and convenient method for viral inactivation. Gene Ther. 1999;6(5):873–81.

    Article  CAS  PubMed  Google Scholar 

  12. Zeina B, Greenman J, Purcell WM, Das B. Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol. 2001;144(2):274–8.

    Article  CAS  PubMed  Google Scholar 

  13. Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, et al. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol. 2009;9(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Song D, Lindoso JAL, Oyafuso LK, Kanashiro EHY, Cardoso JL, Uchoa AF, et al. Photodynamic therapy using methylene blue to treat cutaneous leishmaniasis. Photomed Laser Surg. 2011;29(10):711–5.

    Article  CAS  PubMed  Google Scholar 

  15. Gilaberte Y, Aspiroz C, Alejandre MC, Andres-Ciriano E, Fortuño B, Charlez L, et al. Cutaneous sporotrichosis treated with photodynamic therapy: an in vitro and in vivo study. Photomed Laser Surg. 2014;32(1):54–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ramirez LE, Lages-Silva E, Pianetti GM, Rabelo RM, Bordin JO, Moraes-Souza H. Prevention of transfusion-associated Chagas’ disease by sterilization of Trypanosoma cruzi-infected blood with gentian violet, ascorbic acid, and light. Transfusion. 1995;35(3):226–30.

    Article  CAS  PubMed  Google Scholar 

  17. Docampo R, Moreno SN, Cruz FS. Enhancement of the cytotoxicity of crystal violet against Trypanosoma cruzi in the blood by ascorbate. Mol Biochem Parasitol. 1988;27(2–3):241–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gadelha FR, Hanna PM, Mason RP, Docampo R. Evidence for free radical formation during horseradish peroxidase-catalyzed N-demethylation of crystal violet. Chem Biol Interact. 1992;85(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  19. Dahshan H, Abd-Elall AMM, Megahed AM, Abd-El-Kader MA, Nabawy EE. Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms. Egypt Environ Monit Assess. 2015;187(2):2.

    Article  PubMed  Google Scholar 

  20. Venglovsky J, Sasakova N, Placha I. Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresour Technol. 2009;100(22):5386–91.

    Article  CAS  PubMed  Google Scholar 

  21. Magaraggia M, Faccenda F, Gandolfi A, Jori G. Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact. J Environ Monit. 2006;8(9):923–31.

    Article  CAS  PubMed  Google Scholar 

  22. Alves E, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, et al. Photodynamic antimicrobial chemotherapy in aquaculture: photoinactivation studies of Vibrio fischeri. PLoS ONE. 2011;6(6):e20970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jori G, Magaraggia M, Fabris C, Soncin M, Camerin M, Tallandini L, et al. Photodynamic inactivation of microbial pathogens: disinfection of water and prevention of water-borne diseases. J Environ Pathol Toxicol Oncol. 2011;30(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  24. Coppellotti O, Fabris C, Soncin M, Magaraggia M, Camerin M, Jori G, et al. Porphyrin photosensitised processes in the prevention and treatment of water- and vector-borne diseases. Curr Med Chem. 2012;19(6):808–19.

    Article  CAS  PubMed  Google Scholar 

  25. Fabris C, Soncin M, Jori G, Habluetzel A, Lucantoni L, Sawadogo S, et al. Effects of a new photoactivatable cationic porphyrin on ciliated protozoa and branchiopod crustaceans, potential components of freshwater ecosystems polluted by pathogenic agents and their vectors. Photochem Photobiol Sci. 2012;11(2):294–301.

    Article  CAS  PubMed  Google Scholar 

  26. Jemli M, Alouini Z, Sabbahi S, Gueddari M. Destruction of fecal bacteria in wastewater by three photosensitizers. J Environ Monit. 2002;4(4):511–6.

    Article  CAS  PubMed  Google Scholar 

  27. Bonnett R, Krysteva MA, Lalov IG, Artarsky SV. Water disinfection using photosensitizers immobilized on chitosan. Water Res. 2006;40(6):1269–75.

    Article  CAS  PubMed  Google Scholar 

  28. Carvalho CMB, Tomé JPC, Faustino MAF, Neves MGPMS, Tomé AC, Cavaleiro JAS, et al. Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection. J Porphyrins Phthalocyanines. 2009;13(04n05):574–7.

    Article  CAS  Google Scholar 

  29. Rotomskis R, Streckyte G, Bagdonas S. Phototransformations of sensitizers 2. Photoproducts formed in aqueous solutions of porphyrins. J Photochem Photobiol B Biol. 1997;39(2):172–5.

    Article  CAS  Google Scholar 

  30. Arrojado C, Pereira C, Tomé JPC, Faustino MAF, Neves MGPMS, Tomé AC, et al. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems. Photochem Photobiol Sci. 2011;10(10):1691–700.

    Article  CAS  PubMed  Google Scholar 

  31. Asok A, Arshad E, Jasmin C, Pai SS, Singh ISB, Mohandas A, et al. Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture. Microb Biotechnol. 2012;5(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  32. Wohllebe S, Richter P, Häder D-P. Chlorophyllin for the control of ichthyophthirius multifiliis (fouquet). Parasitol Res. 2012;111(2):729–33.

    Article  CAS  PubMed  Google Scholar 

  33. Häder D-P, Schmidl J, Hilbig R, Oberle M, Wedekind H, Richter PR. Treatment of ichthyophthiriasis with photodynamically active chlorophyllin. Parasitol Res. 2016;115(4):1509–17.

    Article  PubMed  Google Scholar 

  34. Häder D-P, Schmidl J, Hilbig R, Oberle M, Wedekind H, Richter P. Fighting fish parasites with photodynamically active chlorophyllin. Parasitol Res. 2016;115(6):2277–83.

    Article  PubMed  Google Scholar 

  35. Dai T, Gupta A, Huang Y-Y, Yin R, Murray CK, Vrahas MS, et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother. 2013;57(3):1238–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maclean M, MacGregor SJ, Anderson JG, Woolsey G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol. 2009;75(7):1932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murdoch LE, Maclean M, Endarko E, MacGregor SJ, Anderson JG. Bactericidal effects of 405 nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium species in liquid suspensions and on exposed surfaces. Sci World J. 2012;2012:1–8.

    Article  Google Scholar 

  38. St Denis TG, Dai T, Hamblin MR. Killing bacterial spores with blue light: when innate resistance meets the power of light. Photochem Photobiol. 2013;89(1):2–4.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Wu X, Chen J, Amin R, Lu M, Bhayana B, et al. Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: in vitro and in vivo studies. J Infect Dis. 2016;213(9):1380–7.

    Article  PubMed  Google Scholar 

  40. Maclean M, Murdoch LE, MacGregor SJ, Anderson JG. Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol. 2013;89(1):120–6.

    Google Scholar 

  41. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect. 2014;88(1):1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Parra Sellera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sellera, F.P., Pogliani, F.C., Sabino, C.P. (2016). Other Practices in PDT. In: Sellera, F., Nascimento, C., Ribeiro, M. (eds) Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-45007-0_13

Download citation

Publish with us

Policies and ethics