Skip to main content

“Soranovskii”: A New Miscanthus Cultivar Developed in Russia

  • Conference paper
  • First Online:
Perennial Biomass Crops for a Resource-Constrained World

Abstract

We developed a novel miscanthus cultivar, Soranovskii, based on Far Eastern populations that were successfully cultivated in West Siberia. Its plastid DNA belongs to M. sacchariflorus. We analyzed the saccharification of Soranovskii biomass compared with other species: Phalaris arundinacea, Thrachomitum lancifolium, and Sida hermaphrodita. The biomass of Phalaris was the most easily hydrolyzed. Milling and pretreatment by alkaline peroxide provided optimal conditions for complete enzymatic hydrolysis of miscanthus biomass. As the result, we obtained a sugar-containing substrate suitable for subsequent fermentation by microorganisms to ethanol and other substances. We also attempted to isolate cellulosolytic microorganisms from natural communities and to assess their biotechnological potential. Among the studied microorganisms we detected potential producers of ethanol and lactic acid on miscanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198

    Article  CAS  PubMed  Google Scholar 

  • Dashtban M, Buchkowski R, Qin W (2011) Effect of different carbon sources on cellulase production by Hypocrea jecorina (Trichoderma reesei) strains. Int J Biochem Mol Biol 2(3):274–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler PA, McLauchlin AR, Hall LM (2003) The potential industrial uses of forage grasses including Miscanthus. University of Wales, Bangor, BioComposites Centre

    Google Scholar 

  • Hames BR (2009) Biomass compositional analysis for energy applications. Biofuels, Methods and Protocols, pp 145–167

    Google Scholar 

  • Henry RJ (2010) Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol J 8(3):288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002a) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89(2):279–286

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson TR, Chase MW, Lledó DM, Salamin N, Renvoize SA (2002b) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115(5):381–392

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson TR, Klaas M, Jones MB, Prickett R, Barth S (2015) Miscanthus: a case study for the utilization of natural genetic variation. Plant Genet Resour 13:219–237

    Article  Google Scholar 

  • Hutchinson HB, Clayton J (1919) On the decomposition of cellulose by an aerobic organism (Spirochaeta cytophaga, n. sp.). J Agric Sci 9(02):143–172

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Lee WC, Kuan WC (2015) Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J 10:540–554

    Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Ann Rev Microbiol 49(1):399–426

    Article  CAS  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158(1):35–45

    Article  CAS  PubMed  Google Scholar 

  • Salvadó J, Velásquez JA, Ferrando F (2003) Binderless fiberboard from steam exploded Miscanthus sinensis: optimization of pressing and pretreatment conditions. Wood Sci Technol 37(3–4):279–286

    Google Scholar 

  • Schädel C, Blöchl A, Richter A, Hoch G (2010) Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem 48(1):1–8

    Article  PubMed  Google Scholar 

  • Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol 99(11):5099–5103

    Article  CAS  PubMed  Google Scholar 

  • Shumny VK, Veprev SG, Nechiporenko NN, Goryachkovskaya TN, Slynko NM, Kolchanov NA, Peltek SE (2010) A new form of Miscanthus (Chinese silver grass, Miscanthus sinensis—Andersson) as a promising source of cellulosic biomass. Adv Biosci Biotechnol 1(3):167–170

    Article  Google Scholar 

  • Sun Q, Lin Q, Yi ZL, Yang ZR, Zhou FS (2010) A taxonomic revision of Miscanthus sl. (Poaceae) from China. Bot J Linnean Soc 164(2):178–220

    Article  Google Scholar 

  • Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 24(8):228

    Article  Google Scholar 

  • Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5(1)

    Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Budget project VI.58.1.3 and by the EU FP7 Grant 150204 “Enhancing biomass production from marginal lands with perennial grasses.”

Cellobiase F10 and cellulase B1 from Pen. verruculosum were kindly provided by A. P. Sinitsyn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Peltek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Goryachkovskaya, T. et al. (2016). “Soranovskii”: A New Miscanthus Cultivar Developed in Russia. In: Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M. (eds) Perennial Biomass Crops for a Resource-Constrained World. Springer, Cham. https://doi.org/10.1007/978-3-319-44530-4_6

Download citation

Publish with us

Policies and ethics