Skip to main content

Magnetic Cell Manipulation and Sorting

  • Chapter
  • First Online:
Microtechnology for Cell Manipulation and Sorting

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Cell manipulation is one of the fastest growing segments of biotechnology engineering, and magnetic cell separation plays a large part in its development. Because of low magnetic permeability of biological materials, the magnetostatic forces can be made to operate highly selectively on cells tagged with magnetic nanoparticles, with no interference from the physiological electrolyte solutions used for cell suspension and from other cells. The increasing availability of inexpensive permanent magnet blocks capable of generating fields in excess of 1 tesla (T) and gradients up to 1000 T/m combined with a large selection of targeting antibodies against nearly all cell surface markers of interest in clinical and laboratory applications, together with high-quality superparamagnetic iron oxide nanoparticles, makes magnetic separation an appealing alternative to other cell separation methods, including centrifugation and fluorescence-activated cell sorting. This chapter provides a brief overview of the underlying physical principles and a number of examples selected from a large body of scientific literature published on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA 105(47):18165–18170. doi:10.1073/pnas.0809795105

    Article  Google Scholar 

  • Beharrell PA (2012) Applications of superconducting magnetic separation. Quantum Design, Inc., San Diego. http://www.qdusa.com/sitedocs/productBrochures/Applications_of_Superconducting_Magnetic_Separation_2012.pdf. Date Accessed 15 Mar 2016

  • Bozorth RM (1993) Ferromagnetism. Wiley-IEEE Press, London

    Book  Google Scholar 

  • Buck A, Moore LR, Lane CD, Kumar A, Stroff C, White N, Xue W, Chalmers JJ, Zborowski M (2015) Magnetic separation of algae genetically modified for increased intracellular iron uptake. J Magn Magn Mater 380:201–204. doi:10.1016/j.jmmm.2014.09.008

    Article  Google Scholar 

  • Caralla T, Joshi P, Fleury S, Luangphakdy V, Shinohara K, Pan H, Boehm C, Vasanji A, Hefferan TE, Walker E, Yaszemski M, Hascall V, Zborowski M, Muschler GF (2013) In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Eng Part A 19(1–2):125–134. doi:10.1089/ten.tea.2011.0622

    Article  Google Scholar 

  • Chalmers JJ, Xiong Y, Jin X, Shao M, Tong X, Farag S, Zborowski M (2010) Quantification of non-specific binding of magnetic micro- and nanoparticles using cell tracking velocimetry: implication for magnetic cell separation and detection. Biotechnol Bioeng 105(6):1078–1093. doi:10.1002/bit.22635

    Google Scholar 

  • Chen A, Byvank T, Chang WJ, Bharde A, Vieira G, Miller BL, Chalmers JJ, Bashir R, Sooryakumar R (2013) On-chip magnetic separation and encapsulation of cells in droplets. Lab Chip 13(6):1172–1181. doi:10.1039/c2lc41201b

    Article  Google Scholar 

  • de Wit S, van Dalum G, Lenferink AT, Tibbe AG, Hiltermann TJ, Groen HJ, van Rijn CJ, Terstappen LW (2015) The detection of EpCAM(+) and EpCAM(−) circulating tumor cells. Sci Rep 5:12270. doi:10.1038/srep12270

    Article  Google Scholar 

  • Doctor RD, Panchal CB, Swietlik CE (1986) A model of open-gradient magnetic separation for coal cleaning using a superconducting quadrupole field. AIChE Symp Ser 82:154–168

    Google Scholar 

  • Fukui S, Nakajima H, Ozone A, Hayatsu M, Yamaguchi M, Sato T, Imaizumi H, Nishijima S, Watanabe T (2002) Study on open gradient magnetic separation using multiple magnetic field sources. IEEE Trans Appl Supercond 12(1):959–962. doi:10.1109/TASC.2002.1018559

    Article  Google Scholar 

  • Furlani EP (2001) Permanent magnet and electromechanical devices: materials, analysis, and applications. Academic Press, San Diego

    Google Scholar 

  • Gao L, Ct Wyatt Shields, Johnson LM, Graves SW, Yellen BB, Lopez GP (2015) Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems. Biomicrofluidics 9(1):014105. doi:10.1063/1.4905875

    Article  Google Scholar 

  • Giddings JC (1985) Optimized field-flow fractionation system based on dual stream splitters. Anal Chem 57(4):945–947

    Article  Google Scholar 

  • Gider S, Awschalom DD, Douglas T, Mann S, Chaparala M (1995) Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 268(5207):77–80

    Article  Google Scholar 

  • Gijs MA, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563. doi:10.1021/cr9001929

    Article  Google Scholar 

  • Grützkau A, Radbruch A (2010) Small but mighty: how the MACS®-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry Part A 77A(7):643–647. doi:10.1002/cyto.a.20918

    Article  Google Scholar 

  • Gutierrez L, Costo R, Gruttner C, Westphal F, Gehrke N, Heinke D, Fornara A, Pankhurst QA, Johansson C, Veintemillas-Verdaguer S, Morales MP (2015) Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans 44(7):2943–2952. doi:10.1039/c4dt03013c

    Article  Google Scholar 

  • Hackett S, Hamzah J, Davis TM, St Pierre TG (2009) Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim Biophys Acta 1792(2):93–99

    Article  Google Scholar 

  • Hafeli UO, Aue J, Damani J (2008) The biocompatibility and toxicity of magnetic particles. In: Zborowski M, Chalmers JJ (eds) Magnetic cell separation. Elsevier B.V., Amsterdam

    Google Scholar 

  • Hahn YK, Park JK (2011) Versatile immunoassays based on isomagnetophoresis. Lab Chip 11(12):2045–2048. doi:10.1039/c0lc00569j

    Article  Google Scholar 

  • Hatch GP, Stelter RE (2001) Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J Magn Magn Mater 225(1–2):262–276. doi:10.1016/S0304-8853(00)01250-6

    Article  Google Scholar 

  • Hirota N, Kurashige M, Iwasaka M, Ikehata M, Uetake H, Takayama T, Nakamura H, Ikezoe Y, Ueno S, Kitazawa K (2004) Magneto-Archimedes separation and its application to the separation of biological materials. Phys B 346:267–271. doi:10.1016/j.physb.2004.01.063

    Article  Google Scholar 

  • Hoyos M, Moore L, Williams PS, Zborowski M (2011) The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species. J Magn Magn Mater 323(10):1384–1388. doi:10.1016/j.jmmm.2010.11.051

    Article  Google Scholar 

  • http://www.miltenyibiotec.com

  • http://www.easysep.com

  • http://www.sepmag.eu/. Last accessed April 2016

  • http://www.miltenyibiotec.com. Last accessed April 2016

  • https://m.bdbiosciences.com/us/reagents/research/magnetic-cell-separation/other-species-cell-separation-reagents/cell-separation-magnet/p/552311. Last accessed April 2016

  • https://www.thermofisher.com/us/en/home/brands/product-brand/dynal.html. Last accessed April 2016

  • Hu X, Abedini-Nassab R, Lim B, Yang Y, Howdyshell M, Sooryakumar R, Yellen BB, Kim C (2015) Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets. J Appl Phys 118(20):203904. doi:10.1063/1.4936219

    Article  Google Scholar 

  • Hwang JY, Takayasu M, Friedlaender FJ, Kullerud G (1984) Application of magnetic susceptibility gradients to magnetic separation. J Appl Phys 55(6):2592–2594

    Article  Google Scholar 

  • Ijiri Y, Poudel C, Williams PS, Moore LR, Orita T, Zborowski M (2013) Inverted linear Halbach array for separation of magnetic nanoparticles. IEEE Trans Magn 49(7):3449–3452. doi:10.1109/TMAG.2013.2244577

    Article  Google Scholar 

  • Jakubovics JP (1994) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiles D (2016) Introduction to magnetism and magnetic materials, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Jin X, Zhao Y, Richardson A, Moore L, Williams PS, Zborowski M, Chalmers JJ (2008) Differences in magnetically induced motion of diamagnetic, paramagnetic, and superparamagnetic microparticles detected by cell tracking velocimetry. Analyst 133(12):1767–1775. doi:10.1039/b802113a

    Article  Google Scholar 

  • Jin X, Yazer MH, Chalmers JJ, Zborowski M (2011) Quantification of changes in oxygen release from red blood cells as a function of age based on magnetic susceptibility measurements. Analyst 136(14):2996–3003

    Article  Google Scholar 

  • Jin X, Abbot S, Zhang X, Kang L, Voskinarian-Berse V, Zhao R, Kameneva MV, Moore LR, Chalmers JJ, Zborowski M (2012) Erythrocyte enrichment in hematopoietic progenitor cell cultures based on magnetic susceptibility of the hemoglobin. PLoS One 7(8):e39491

    Article  Google Scholar 

  • Joshi P, Williams PS, Moore LR, Caralla T, Boehm C, Muschler G, Zborowski M (2015) Circular Halbach array for fast magnetic separation of hyaluronan-expressing tissue progenitors. Anal Chem 87(19):9908–9915. doi:10.1021/acs.analchem.5b02431

    Article  Google Scholar 

  • Kantor AB, Gibbons I, Miltenyi S, Schmitz J (1998) Magnetic cell sorting with colloidal superparamagnetic particles. In: Recktenwald D, Radbruch A (eds) Cell separation methods and applications. Marcel Dekker, New York, pp 153–173

    Google Scholar 

  • Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, Martel JM, Kojic N, Smith K, Chen PI, Yang J, Hwang H, Morgan B, Trautwein J, Barber TA, Stott SL, Maheswaran S, Kapur R, Haber DA, Toner M (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710. doi:10.1038/nprot.2014.044

    Article  Google Scholar 

  • Karl S, David M, Moore L, Grimberg BT, Michon P, Mueller I, Zborowski M, Zimmerman PA (2008) Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission. Malar J 7:66

    Article  Google Scholar 

  • Karle M, Miwa J, Czilwik G, Auwarter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290. doi:10.1039/c0lc00129e

    Article  Google Scholar 

  • Knowlton SM, Sencan I, Aytar Y, Khoory J, Heeney MM, Ghiran IC, Tasoglu S (2015) Sickle cell detection using a smartphone. Sci Rep 5:15022. doi:10.1038/srep15022

    Article  Google Scholar 

  • Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523–2558. doi:10.1109/TMAG.2010.2046907

    Article  MathSciNet  Google Scholar 

  • Krishnan KM (2016) Fundamentals and applications of magnetic materials. Oxford University Press, Oxford, UK

    Google Scholar 

  • Lara O, Tong X, Zborowski M, Farag SS, Chalmers JJ (2006) Comparison of two technologies to deplete T cells from human blood samples. Biotechnol Bioeng 94(1):66–80. doi:10.1002/bit.20807

    Article  Google Scholar 

  • Leigh DR, Steinert S, Moore LR, Chalmers JJ, Zborowski M (2005) Cell tracking velocimetry as a tool for defining saturation binding of magnetically conjugated antibodies. Cytometry Part A J Int Soc Anal Cytol 66(2):103–108. doi:10.1002/cyto.a.20155

    Article  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217. doi:10.1039/b915999c

    Article  Google Scholar 

  • Mahajan KD, Vieira GB, Ruan G, Miller BL, Lustberg MB, Chalmers JJ, Sooryakumar R, Winter JO (2012) A MagDot-nanoconveyor assay detects and isolates molecular biomarkers. Chem Eng Prog 108:41–46

    Google Scholar 

  • McCloskey KE, Chalmers JJ, Zborowski M (2000) Magnetophoretic mobilities correlate to antibody binding capacities. Cytometry 40(4):307–315

    Article  Google Scholar 

  • Melnik K, Sun J, Fleischman A, Roy S, Zborowski M, Chalmers JJ (2007) Quantification of magnetic susceptibility in several strains of Bacillus spores: implications for separation and detection. Biotechnol Bioeng 98(1):186–192. doi:10.1002/bit.21400

    Article  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–238. doi:10.1002/cyto.990110203

    Article  Google Scholar 

  • Mirica KA, Shevkoplyas SS, Phillips ST, Gupta M, Whitesides GM (2009) Measuring densities of solids and liquids using magnetic levitation: fundamentals. J Am Chem Soc 131(29):10049–10058. doi:10.1021/ja900920s

    Article  Google Scholar 

  • Mirica KA, Phillips ST, Mace CR, Whitesides GM (2010) Magnetic levitation in the analysis of foods and water. J Agric Food Chem 58(11):6565–6569. doi:10.1021/jf100377n

    Article  Google Scholar 

  • Moore LR, Milliron S, Williams PS, Chalmers JJ, Margel S, Zborowski M (2004) Control of magnetophoretic mobility by susceptibility-modified solutions as evaluated by cell tracking velocimetry and continuous magnetic sorting. Anal Chem 76(14):3899–3907. doi:10.1021/ac049910f

    Article  Google Scholar 

  • Moore LR, Nehl F, Dorn J, Chalmers JJ, Zborowski M (2013) Open gradient magnetic red blood cell sorter evaluation on model cell mixtures. IEEE Trans Magn 49(1):309–315. doi:10.1109/Tmag.2012.2225098

    Article  Google Scholar 

  • Nath P, Strelnik J, Vasanji A, Moore LR, Williams PS, Zborowski M, Roy S, Fleischman AJ (2009) Development of multistage magnetic deposition microscopy. Anal Chem 81(1):43–49. doi:10.1021/ac8010186

    Article  Google Scholar 

  • Nishijima S, Takeda S (2006) Superconducting high gradient magnetic separation for purification of wastewater from paper factory. IEEE Trans Appl Supercond 16(2):1142–1145. doi:10.1109/TASC.2006.871346

    Article  Google Scholar 

  • Osman O, Zanini LF, Frenea-Robin M, Dumas-Bouchiat F, Dempsey NM, Reyne G, Buret F, Haddour N (2012) Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed Microdev 14(5):947–954. doi:10.1007/s10544-012-9673-4

    Article  Google Scholar 

  • Pamme N (2012) On-chip bioanalysis with magnetic particles. Curr Opin Chem Biol 16(3–4):436–443. doi:10.1016/j.cbpa.2012.05.181

    Article  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256. doi:10.1021/ac049183o

    Article  Google Scholar 

  • Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA 22(4):210–216

    Article  Google Scholar 

  • Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062. doi:10.1016/j.chroma.2009.06.039

    Article  Google Scholar 

  • Posfai M, Lefevre CT, Trubitsyn D, Bazylinski DA, Frankel RB (2013) Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Front Microbiol 4:344. doi:10.3389/fmicb.2013.00344

    Article  Google Scholar 

  • Ramadan Q, Samper V, Poenar DP, Yu C (2006) An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens Bioelectron 21(9):1693–1702. doi:10.1016/j.bios.2005.08.006

    Article  Google Scholar 

  • Ramsey NF (1990) Molecular beams. The international series of monographs on physics. Oxford University Press, Oxford

    Google Scholar 

  • Rosensweig RE (1997) Ferrohydrodynamics. Dover, Mineola

    Google Scholar 

  • Russell AP, Evans CH, Westcott VC (1987) Measurement of the susceptibility of paramagnetically labeled cells with paramagnetic solutions. Anal Biochem 164:181–189

    Article  Google Scholar 

  • Sahore V, Fritsch I (2014) Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses. Anal Chem 86(19):9405–9411. doi:10.1021/ac502014t

    Article  Google Scholar 

  • Schneider T, Karl S, Moore LR, Chalmers JJ, Williams PS, Zborowski M (2010) Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter. Analyst 135(1):62–70. doi:10.1039/b908210g

    Article  Google Scholar 

  • Schwinger J, DeRaad LLJ, Milton KA, W-y Tsai (1998) Classical electrodynamics. Perseus Books, Reading

    Google Scholar 

  • Shen F, Hwang H, Hahn YK, Park JK (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem 84(7):3075–3081. doi:10.1021/ac201505j

    Article  Google Scholar 

  • Simon MD, Geim AK (2000) Diamagnetic levitation: flying frogs and floating magnets (invited). J Appl Phys 87:6200–6204

    Article  Google Scholar 

  • Sumari D, Grimberg BT, Blankenship D, Mugasa J, Mugittu K, Moore L, Gwakisa P, Zborowski M (2016) Application of magnetic cytosmear for the estimation of Plasmodium falciparum gametocyte density and detection of asexual stages in asymptomatic children. Malar J 15(1):113. doi:10.1186/s12936-016-1170-4

    Article  Google Scholar 

  • Sun JJ (1980) Methods and apparatus for separating particles using a magnetic barrier. U.S. Patent

    Google Scholar 

  • Sun J, Zborowski M, Chalmers JJ (2011) Quantification of both the presence, and oxidation state, of Mn in Bacillus atrophaeus spores and its imparting of magnetic susceptibility to the spores. Biotechnol Bioeng 108(5):1119–1129

    Article  Google Scholar 

  • Takayasu M, Kelland DR, Minervini JV (2000) Continuous magnetic separation of blood components from whole blood. IEEE Trans Appl Supercond 10(1):927–930

    Article  Google Scholar 

  • Tasoglu S, Khoory JA, Tekin HC, Thomas C, Karnoub AE, Ghiran IC, Demirci U (2015) Levitational image cytometry with temporal resolution. Adv Mater 27(26):3901–3908. doi:10.1002/adma.201405660

    Article  Google Scholar 

  • Thanh NTK (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ugelstad J, Stenstad P, Kilaas L, Prestvik WS, Herje R, Berge A, Hornes E (1993) Monodisperse magnetic polymer particles. New biochemical and biomedical applications. Blood Purif 11(6):349–369

    Article  Google Scholar 

  • Vojtisek M, Tarn M, Hirota N, Pamme N (2012) Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid Nanofluid 13:625–635. doi:10.1007/s10404-012-0979-6

    Article  Google Scholar 

  • Vyas KN, Palfreyman JJ, Love DM, Mitrelias T, Barnes CH (2012) Magnetically labelled gold and epoxy bi-functional microcarriers for suspension based bioassay technologies. Lab Chip 12(24):5272–5278. doi:10.1039/c2lc41022b

    Article  Google Scholar 

  • Watarai H, Namba M (2001) Magnetophoretic behavior of single polystyrene particles in aqueous manganese(II) chloride. Anal Sci 17(10):1233–1236

    Article  Google Scholar 

  • Watson JHP (1973) Magnetic filtration. J Appl Phys 44(9):4209–4213. doi:10.1063/1.1662920

    Article  Google Scholar 

  • Weston MC, Gerner MD, Fritsch I (2010) Magnetic fields for fluid motion. Anal Chem 82(9):3411–3418. doi:10.1021/ac901783n

    Article  Google Scholar 

  • Williams PS, Zborowski M, Chalmers JJ (1999) Flow rate optimization for the quadrupole magnetic cell sorter. Anal Chem 71(17):3799–3807

    Article  Google Scholar 

  • Williams PS, Carpino F, Zborowski M (2010) Characterization of magnetic nanoparticles using programmed quadrupole magnetic. Philos Trans Ser A Math Phys Eng Sci 368(1927):4419–4437. doi:10.1098/rsta.2010.0133

    Article  Google Scholar 

  • Xue W (2016) Measurements of Cellular Intrinsic Magnetism with Cell Tracking Velocimetry and Separation with Magnetic Deposition Microscopy, Ph.D. Thesis, The Ohio State University

    Google Scholar 

  • Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64:2510–2521

    Article  Google Scholar 

  • Zborowski M, Chalmers JJ (2008) Magnetic cell separation, vol 32. Laboratory techniques in biochemistry and molecular biology, vol 32. Elsevier, B.V., Amsterdam

    Google Scholar 

  • Zborowski M, Chalmers JJ (2015) Magnetophoresis: fundamentals and applications. Wiley Encycl Electr Electron Eng. doi:10.1002/047134608X.W8236

    Google Scholar 

  • Zborowski M, Malchesky PS, Jan TF, Hall GS (1992) Quantitative separation of bacteria in saline solution using lanthanide Er(III) and a magnetic field. J Gen Microbiol 138(1):63–68. doi:10.1099/00221287-138-1-63

    Article  Google Scholar 

  • Zborowski M, Fuh CB, Green R, Sun L, Chalmers JJ (1995) Analytical magnetapheresis of ferritin-labeled lymphocytes. Anal Chem 67(20):3702–3712

    Article  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN (2003) Red blood cell magnetophoresis. Biophys J 84(4):2638–2645. doi:10.1016/S0006-3495(03)75069-3

    Article  Google Scholar 

  • Zhang H, Moore LR, Zborowski M, Williams PS, Margel S, Chalmers JJ (2005) Establishment and implications of a characterization method for magnetic nanoparticle using cell tracking velocimetry and magnetic susceptibility modified solutions. Analyst 130(4):514–527. doi:10.1039/b412723d

    Article  Google Scholar 

  • Zimmels Y, Yaniv I (1976) Characterization of magnetic forces by means of suspended particles in paramagnetic solutions. IEEE Trans Magn 4:359–368

    Article  Google Scholar 

  • Zimmerman PA, Thomson JM, Fujioka H, Collins WE, Zborowski M (2006) Diagnosis of malaria by magnetic deposition microscopy. Am J Trop Med Hyg 74(4):568–572

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Chalmers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zborowski, M., Chalmers, J.J., Lowrie, W.G. (2017). Magnetic Cell Manipulation and Sorting. In: Lee, W., Tseng, P., Di Carlo, D. (eds) Microtechnology for Cell Manipulation and Sorting. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-44139-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44139-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44137-5

  • Online ISBN: 978-3-319-44139-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics