Skip to main content

Charging Architectures for Electric and Plug-In Hybrid Electric Vehicles

  • Chapter
  • First Online:

Abstract

This chapter provides an overview of the different charging architectures available for electric vehicles and plug-in hybrid electric vehicles. The charging architectures are addressed following two main categories: onboard chargers, used mainly for slow and semi-fast charging (generally AC connection), and off-board chargers, used for fast charging (DC connection). The chapter focuses on the mainstream solutions available in the industry, and also presents some recent advances and trends found in the literature. In addition, the chapter provides an introduction to well-established charging standards being used by manufacturers. Finally, the control schemes used in charging configurations, including the control schemes for DC–DC and AC–DC converter stages, are discussed, the latter considering both single- and three-phase control schemes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haghbin S, Lundmark S, Alakula M, Carlson O (2013) Grid-connected integrated battery chargers in vehicle applications: review and new solution. IEEE Trans Ind Electron 60(2):459–473

    Article  Google Scholar 

  2. Khaligh A, Dusmez S (2012) Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans Vehicular Technol 61(8):3475–3489

    Article  Google Scholar 

  3. Yilmaz M, Krein PT (2013) Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans Power Electron 28(5):2151–2169

    Article  Google Scholar 

  4. Aggeler D, Canales F, Zelaya-De La Parra H, Coccia A, Butcher N, Apeldoorn O (2010) Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. Gothenburg, Sweden, pp 1–8

    Google Scholar 

  5. Aditya K, Williamson SS. Design considerations for loosely coupled inductive power transfer (IPT) system for electric vehicle battery charging—a comprehensive review. In: Transportation Electrification Conference and Expo (ITEC), 2014 IEEE, June 2014, pp 1–6

    Google Scholar 

  6. Gautam DS, Musavi F, Edington M, Eberle W, Dunford WG (2012) An automotive onboard 3.3-kw battery charger for PHEV application. IEEE Trans Vehicular Technol 61(8):3466–3474

    Article  Google Scholar 

  7. Kim J-S, Choe G-Y, Jung H-M, Lee B-K, Cho Y-J, Han K-B (2010) Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6

    Google Scholar 

  8. Chae H-J, Moon H-T, Lee J-Y (2010) On-board battery charger for PHEV without high-voltage electrolytic capacitor. Electron Lett 46(25):1691–1692

    Article  Google Scholar 

  9. Chae HJ, Kim WY, Yun SY, Jeong YS, Lee JY, Moon HT (2011) 3.3 kw on board charger for electric vehicle. In: 2011 I.E. 8th International Conference on Power Electronics and ECCE Asia (ICPE ECCE), May 2011, pp 2717–2719

    Google Scholar 

  10. Bae S, Kwasinski A (2012) Spatial and temporal model of electric vehicle charging demand. IEEE Trans Smart Grid 3(1):394–403

    Article  Google Scholar 

  11. Qian K, Chengke Z, Allan M, Yuan Y (2011) Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans Power Syst 26(2):802–810

    Article  Google Scholar 

  12. SAE electric vehicle and plug in hybrid electric vehicle conductive charge coupler (2012) SAE Std. J1772, Oct 2012

    Google Scholar 

  13. Oh C-Y, Kim D-H, Woo D-G, Sung W-Y, Kim Y-S, Lee B-K (2013) A high-efficient nonisolated single-stage on-board battery charger for electric vehicles. IEEE Trans Power Electron 28(12):5746–5757

    Article  Google Scholar 

  14. Lee Y-J, Khaligh A, Emadi A (2009) Advanced integrated bidirectional ac/dc and dc/dc converter for plug-in hybrid electric vehicles. IEEE Trans Vehicular Technol 58(8):3970–3980

    Article  Google Scholar 

  15. Onar OC, Kobayashi J, Erb DC, Khaligh A (2012) A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs. IEEE Trans Vehicular Technol 61(5):2018–2032

    Article  Google Scholar 

  16. Rippel WE (1990) Integrated traction inverter and battery charger apparatus. US Patent 4,920,475, 24 Apr 1990

    Google Scholar 

  17. Rippel WE, Cocconi AG (1992) Integrated motor drive and recharge system. US Patent 5,099,186, 24 Mar 1992

    Google Scholar 

  18. De Sousa L, Bouchez B (2011) Combined electric device for powering and charging. US Patent App. 13/127,850, 15 Sept 2011

    Google Scholar 

  19. De Sousa L, Silvestre B, Bouchez B (2010) A combined multiphase electric drive and fast battery charger for electric vehicles. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6

    Google Scholar 

  20. Bruyre A, De Sousa L, Bouchez B, Sandulescu P, Kestelyn X, Semail E (2010) A multiphase traction/fast-battery-charger drive for electric or plug-in hybrid vehicles: solutions for control in traction mode. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–7

    Google Scholar 

  21. Lacroix S, Laboure E, Hilairet M (2010) An integrated fast battery charger for electric vehicle. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6

    Google Scholar 

  22. Haghbin S, Lundmark S, Alakula M, Carlson O (2011) An isolated high-power integrated charger in electrified-vehicle applications. IEEE Trans Vehicular Technol 60(9):4115–4126

    Article  Google Scholar 

  23. Haghbin S, Khan K, Zhao S, Alakula M, Lundmark S, Carlson O (2013) An integrated 20-kw motor drive and isolated battery charger for plug-in vehicles. IEEE Trans Power Electron 28(8):4013–4029

    Article  Google Scholar 

  24. Alaküla M, Haghbin S (2011) Electrical apparatus comprising drive system and electrical machine with reconnectable stator winding. WO Patent App. PCT/SE2011/050,745, 22 Dec 2011

    Google Scholar 

  25. Chang H-C, Liaw C-M (2009) Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities. IEEE Trans Vehicular Technol 58(7):3198–3215

    Article  Google Scholar 

  26. Silva V, Kieny C (2011) Impacts of EV on power systems and minimal control solutions to mitigate these. Essen, Germany, RWE Deutschland AG. http://www.g4v.eu/downloads.html

  27. Christen D, Tschannen S, Biela J (2012) Highly efficient and compact DC-DC converter for ultra-fast charging of electric vehicles. In: 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Sep 2012, pp LS5d.3–1–LS5d.3–8

    Google Scholar 

  28. Chan CC, Chau KT (1997) An overview of power electronics in electric vehicles. IEEE Trans Ind Electron 44(1):3–13

    Article  Google Scholar 

  29. Gomez JC, Morcos MM (2003) Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans Power Del 18(3):975–981

    Article  Google Scholar 

  30. Du Y, Zhou X, Bai S, Lukic S, Huang A (2010) Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks. Palm Springs, CA, USA, Feb 2010, pp 1145–1151

    Google Scholar 

  31. Rivera S, Wu B, Kouro S, Yaramasu V, Wang J (2015) Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus. IEEE Trans Ind Electron 62(4):1999–2009

    Article  Google Scholar 

  32. Bai S, Lukic SM (2013) Unified active filter and energy storage system for an MW electric vehicle charging station. IEEE Trans Power Electron 28(12):5793–5803

    Article  Google Scholar 

  33. Williamson SS, Rathore AK, Musavi F (2015) Industrial electronics for electric transportation: current state-of-the-art and future challenges. IEEE Trans Ind Electron 62(5):3021–3032

    Article  Google Scholar 

  34. Kakigano H, Miura Y, Ise T (2010) Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans Power Electron 25(12):3066–3075

    Article  Google Scholar 

  35. Sannino A, Postiglione G, Bollen MHJ (2003) Feasibility of a DC network for commercial facilities. IEEE Trans Ind Appl 39(5):1499–1507

    Article  Google Scholar 

  36. Ito Y, Zhongqing Y, Akagi H (2004) DC micro-grid based distribution power generation system. 3:1740–1745

    Google Scholar 

  37. CHAdeMO Association. CHAdeMO Association & Protocol. http://www.chademo.com/wp/wp-content/uploads/2016/04/brochure_04.2016.compressed.pdf. Accessed Jul 2016

  38. Dusmez S, Cook A, Khaligh A (2011) Comprehensive analysis of high quality power converters for level 3 off-board chargers. In: Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, Sep 2011, pp 1–10

    Google Scholar 

  39. Wilson JWA (1978) The forced-commutated inverter as a regenerative rectifier. IEEE Trans Ind Appl IA-14(4):335–340

    Article  Google Scholar 

  40. Bin W (2006) High-power converters and AC drives. Wiley-IEEE Press, Chichester, West Sussex

    Google Scholar 

  41. Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg (eds) (2002) Control in power electronics: selected problems. Academic Press, New York

    Google Scholar 

  42. Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives. Wiley-IEEE Press, Chichester, West Sussex

    Book  Google Scholar 

  43. Kolar JW, Ertl H, Zach FC (1996) Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (Vienna) rectifier employing a novel integrated power semiconductor module. In: Applied Power Electronics Conference and Exposition, 1996. APEC’96. Conference Proceedings 1996, Eleventh Annual, vol 2, pp 514–523

    Google Scholar 

  44. Bai S, Lukic SM (2013) New method to achieve ac harmonic elimination and energy storage integration for 12-pulse diode rectifiers. IEEE Trans Ind Electron 60(7):2547–2554

    Article  Google Scholar 

  45. Garcia O, Zumel P, De Castro A, Cobos JA (2006) Automotive dc-dc bidirectional converter made with many interleaved buck stages. IEEE Trans Power Electron 21(3):578–586

    Article  Google Scholar 

  46. Kutkut NH, Divan DM, Novotny DW, Marion RH (1998) Design considerations and topology selection for a 120-kw IGBT converter for EV fast charging. IEEE Trans Power Electron 13(1):169–178

    Article  Google Scholar 

  47. Pahlevaninezhad M, Das P, Drobnik J, Jain PK, Bakhshai A (2012) A novel ZVZCS full-bridge DC/DC converter used for electric vehicles. IEEE Trans Power Electron 27(6):2752–2769

    Article  Google Scholar 

  48. International Energy Agency (2015) Hybrid and electric vehicles annual report. http://www.ieahev.org. Accessed May 2015

  49. Dickerman L, Harrison J (2010) A new car, a new grid. IEEE Power Energy Mag 8(2):55–61

    Article  Google Scholar 

  50. Mohagheghi S, Parkhideh B, Bhattacharya S (2012) Inductive power transfer for electric vehicles: potential benefits for the distribution grid. In: Electric Vehicle Conference (IEVC), 2012 I.E. International, 2012, pp 1–8

    Google Scholar 

  51. Plugs, socket-outlets, vehicle connectors and vehicle inlets—conductive charging of electric vehicles—part 2: dimensional compatibility and interchangeability requirements for a.c. pin and contact-tube accessories (2011) IEC 62196–2, Oct 2011

    Google Scholar 

  52. Botsford C, Szczepanek A (2009) Fast charging vs. slow charging: pros and cons for the new age of electric vehicles. In: Battery, hybrid and fuel cell electric vehicle symposium (EVS), 2009 24th International, May 2009

    Google Scholar 

  53. Malinowski M (2001) Sensorless control strategies for three-phase PWM rectifiers. PhD thesis, Warsaw University of Technology

    Google Scholar 

  54. Blaschke F (1972) The process of feldorientirung to regleung the asynchronous machine. Siemens researchers Dev 1 (1): 184-193

    Google Scholar 

  55. Rodriguez J, Franquelo LG, Kouro S, Leon JI, Portillo RC, Prats MAM, Perez MA (2009) Multilevel converters: an enabling technology for high-power applications. Proceed IEEE 97(11):1786–1817

    Article  Google Scholar 

  56. Ohnishi T (1991) Three phase PWM converter/inverter by means of instantaneous active and reactive power control. In: Industrial electronics, control and instrumentation, 1991. Proceedings. IECON’91, 1991 International Conference on, Oct/Nov 1991, vol 1, pp 819–824

    Google Scholar 

  57. Malinowski M, Kazmierkowski MP, Hansen S, Blaabjerg F, Marques GD (2001) Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Trans Ind Appl 37(4):1019–1027

    Article  Google Scholar 

  58. Serpa LA, Barbosa PM, Steimer PK, Kolar JW (2008) Five-level virtual-flux direct power control for the active neutral-point clamped multilevel inverter. In: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, Jun 2008, pp 1668–1674

    Google Scholar 

  59. Serpa LA, Kolar JW (2007) Virtual-flux direct power control for mains connected three-level NPC inverter systems. In: Power conversion conference—Nagoya, 2007. PCC ’07. pp 130–136

    Google Scholar 

  60. Eloy-García J, Arnaltes S, Rodríguez-Amenedo JL (2007) Extended direct power control for multilevel inverters including dc link middle point voltage control. IET Electron Power Appl 1(4):571–580

    Article  Google Scholar 

  61. Rivera S, Kouro S, Wu B, Alepuz S, Malinowski M, Cortes P, Rodriguez J (2014) Multilevel direct power control—a generalized approach for grid-tied multilevel converter applications. IEEE Trans Power Electron 29(10):5592–5604

    Article  Google Scholar 

  62. Kar NC, Iyer KLV, Labak A, Lu X, Lai C, Balamurali A, Esteban B, Sid-Ahmed M (2013) Courting and sparking: wooing consumers? Interest in the EV market. IEEE Electr Mag 1(1):21–31

    Article  Google Scholar 

  63. Lukic S, Pantic Z (2013) Cutting the cord: static and dynamic inductive wireless charging of electric vehicles. IEEE Electr Mag 1(1):57–64

    Article  Google Scholar 

  64. Pedder DAG, Brown AD, Skinner JA (1999) A contactless electrical energy transmission system. IEEE Trans Ind Electron 46(1):23–30

    Article  Google Scholar 

  65. Wang C-S, Stielau OH, Covic GA (2005) Design considerations for a contactless electric vehicle battery charger. IEEE Trans Ind Electron 52(5):1308–1314

    Article  Google Scholar 

  66. Green AW, Boys JT (1994) 10 khz inductively coupled power transfer-concept and control. In: Power Electronics and Variable-Speed Drives, 1994. Fifth International Conference on, Oct 1994, pp 694–699

    Google Scholar 

  67. Pantic Z, Bai S, Lukic SM (2009) Inductively coupled power transfer for continuously powered electric vehicles. In: Vehicle Power and Propulsion Conference, 2009. VPPC’09. IEEE, Sept 2009, pp 1271–1278

    Google Scholar 

  68. Huh J, Lee SW, Lee WY, Cho GH, Rim CT (2011) Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans Power Electron 26(12):3666–3679

    Article  Google Scholar 

  69. Shin J, Shin S, Kim Y, Ahn S, Lee S, Jung G, Jeon S-J, Cho D-H (2014) Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans Ind Electron 61(3):1179–1192

    Article  Google Scholar 

  70. Vasiladiotis M, Rufer A (2015) A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations. IEEE Trans Ind Electron 62(5):3213–3222

    Article  Google Scholar 

  71. Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596

    Article  Google Scholar 

  72. Perez MA, Bernet S, Rodriguez J, Kouro S, Lizana R (2015) Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans Power Electron 30(1):4–17

    Article  Google Scholar 

  73. Tsirinomeny M, Rufer A (2015) Configurable modular multilevel converter (CMMC) for flexible EV. In: Power Electronics and Applications (EPE’15 ECCE-Europe), 2015 17th European Conference on, Sept 2015, pp 1–10

    Google Scholar 

  74. Nabae A, Takahashi I, Akagi H (1981) A new neutral-point-clamped PWM inverter. IEEE Trans Ind Appl IA-17(5):518–523

    Article  Google Scholar 

  75. Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Perez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580

    Article  Google Scholar 

  76. Tan L, Wu B, Rivera S, Yaramasu V (2015) Comprehensive dc power balance management in high-power three-level dc-dc converter for electric vehicle fast charging. IEEE Trans Power Electron 31(1):89–100, Jan 2016

    Google Scholar 

  77. Rivera S, Wu B, Kouro S (2014) Distributed DC bus EV charging station using a single DC-link H-bridge multilevel converter. In: 2014 I.E. 23rd International Symposium on Industrial Electronics (ISIE), June 2014, pp 1496–1501

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kouro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rivera, S., Kouro, S., Wu, B. (2017). Charging Architectures for Electric and Plug-In Hybrid Electric Vehicles. In: Veneri, O. (eds) Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles. Springer, Cham. https://doi.org/10.1007/978-3-319-43651-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43651-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43649-4

  • Online ISBN: 978-3-319-43651-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics