Skip to main content

The Commercialization of Medical Nanotechnology for Medical Applications

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

The potential for nanotechnology to advance medical science has been demonstrated and is increasing as the ability to manufacture and combine an ever expanding selection of nanotechnologies creates a wide variety of opportunities. Mechanisms for the commercialization of these “nanomedical” products have met with both success and failure but always with valuable lessons to apply toward advancing the future for the technology platforms. Nanotechnology applications in medicine are already having a significant impact on marketed products as well as increasing the number of commercially viable products in both pharmaceutical and medical device pipelines directed toward a wide variety of therapeutic applications. Commercial uses of nanotechnology in the development and formulation of new pharmaceuticals as well as incorporation into the designs of medical devices are increasing and hold much promise for commercial success. Regulatory agencies and legal firms worldwide are cautiously examining some aspects of many nanotechnology products toward demonstrating sustainable histories of safety and efficacy in these various medical applications. Approaches that have been successful in commercializing approved and currently marketed nanomedical products have met with many challenges and have identified and resolved critical issues that could have prevented or hindered market entry. The commercial path becoming increasingly better defined for new and developing products that hold much promise to significantly improve medicine in areas such as nanomaterial-enabled pharmaceuticals, targeted nanomolecular therapeutics and diagnostics, nanobrachytherapy agents and nano-enabled medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

EMA:

European Medicines Agency

FDA:

United States Food and Drug Administrations

MRI:

Magnetic Resonance Imaging

PET:

positron emission tomography

SEM:

Scanning electron microscopy

STP:

Scanning tunneling microscopy

References

  • AlAli AB, Griffin MF, Butler PE (2015) Three-dimensional printing: surgical applications. Eplasty 15:e37, 352–67

    PubMed  PubMed Central  Google Scholar 

  • Alvarez-Roman R, Barre G, Guy RH, Fessi H (2001) Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection. Eur J Pharm Biopharm 52:191–195

    Article  CAS  PubMed  Google Scholar 

  • Antunes AM, Alencar MS, da Silva CH, Nunes J, Mendes FM (2012) Trends in nanotechnology patents applied to the health sector. Recent Pat Nanotechnol 6(1):29–43

    Article  CAS  PubMed  Google Scholar 

  • Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88(1054):20150207. doi: 10.1259/bjr.20150207. Epub 2015 Jun 12

    Google Scholar 

  • Bawa R (2007) Patents and nanomedicine. Nanomedicine 2(3):351–374

    Article  PubMed  Google Scholar 

  • Bawa R (2008) Patenting inventions in bionanotechnology: a guide for scientists and lawyers. Chapter 27. In: Reisner DE (ed) Bionanotechnology: global prospects. CRC Press, Boca Raton, pp 309–338

    Google Scholar 

  • Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C (2005) Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 1(2):150–158

    CAS  PubMed  Google Scholar 

  • Belassi W, Tukel OI (1996) A new framework for determining critical success/failure factors in projects. Int J Proj Manag 14(3):141–151

    Article  Google Scholar 

  • Bennat C, Muller-Goymann CC (2000) Skin penetration and stabilisation of formulations containing microfine titanium dioxide and a physical UV filter. Int J Cosmet Sci 22:271–283

    Article  CAS  PubMed  Google Scholar 

  • Bleeker EAJ, Evertz S, Geertsma RE, Peijenburg WJGM, Westra J, Wijnhoven SWP (2015) Assessing health and environmental risks of nanoparticles: current state of affairs in policy, science and areas of application, RIVM Report 2014–0157. National Institute for Public Health and the Environment, Bilthoven, 146 pp

    Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ (2016) Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 14

    Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins RPF, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review conducted out for ECETOC. Part Fibre Toxicol 3:11. doi:10.1186/1743-8977-3-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosetti R, Vereeck L (2012) The impact of effective patents on future innovations in nanomedicine. Pharm Pat Anal 1(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Budgell E (1714) The Spectator No. 605, October 1714

    Google Scholar 

  • Burgess R (2012) Understanding nanomedicine: an introductory textbook. Pan Stanford, Hoboken, 524 pp

    Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Wang J (2016) Progress in the development of nanotheranostic systems. Theranostics 6(7):915–917

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41

    Article  Google Scholar 

  • David CA, Owen A, Liptrott NJ (2016) Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine 11(11):1447–1464

    Article  CAS  PubMed  Google Scholar 

  • de Mel A (2016) Three-dimensional printing and the surgeon. Br J Surg 103(7):786–788

    Article  PubMed  Google Scholar 

  • Delaval M, Wohlleben W, Landsiedel R, Baeza-Squiban A, Boland S. (2016) Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Arch Toxicol [Epub ahead of print]

    Google Scholar 

  • do Carmo FA, Sathler PC, Zancan P, Rodrigues CR, Castro HC, de Sousa VP, Sola-Penna M, Cabral LM (2014) Therapeutic nanosystems for oral administration of insulin. Curr Pharm Biotechnol 15(7):620–628

    Article  PubMed  Google Scholar 

  • Dorj B, Won JE, Purevdorj O, Patel KD, Kim JH, Lee EJ, Kim HW (2014) Novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery. Acta Biomater 10(3):1238–1250

    Article  CAS  PubMed  Google Scholar 

  • du Toit LC, Pillay V, Choonara YE, Pillay S, Harilall SL (2007) Patenting of nanopharmaceuticals in drug delivery: no small issue. Recent Pat Drug Deliv Formul 1(2):131–142

    Article  PubMed  Google Scholar 

  • Duda F, Bradel S, Bleich A, Abendroth P, Heemeier T, Ehlert N, Behrens P, Esser KH, Lenarz T, Brandes G, Prenzler NK (2015) Biocompatibility of silver containing silica films on Bioverit® II middle ear prostheses in rabbits. J Biomater Appl 30(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Eveleth R (2015) Why there aren’t yet nanobot doctors. The Atlantic, Aug 6, 2015. http://www.theatlantic.com/technology/archive/2015/08/nanobot-treatment-doctors-cancer/400613/. Accessed 24 June 2016

  • FDA (2014) Guidance for industry: considering whether an FDA-regulated product involves the application of nanotechnology. U.S. Department of Health and Human Services, Food and Drug Administration, Office of the Commissioner. June 2014, 14 pp. http://www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM401695.pdf. Accessed 24 June 2016

  • Feynman R (1959) There’s plenty of room at the bottom; an invitation to enter a new field of physics. From a transcript of a talk given on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of Technology

    Google Scholar 

  • Fierro IM, de Menezes Alencar MS, Lins Mendes FM, de Souza Mendes C, Nunes BF, de Souza Antunes AM (2014) Nanoparticles applied to antineoplastic agents: a patent landscape. Pharm Pat Anal 3(6):613–623

    Article  CAS  PubMed  Google Scholar 

  • Flynn T, Wei C (2005) The pathway to commercialization for nanomedicine. Nanomed Nanotechnol Biol Med 1:47–51

    Article  CAS  Google Scholar 

  • Garg T, Jain NK, Rath G, Goyal AK (2015) Nanotechnology-based photodynamic therapy: concepts, advances, and perspectives. Crit Rev Ther Drug Carrier Syst 32(5):389–439

    Article  PubMed  Google Scholar 

  • Gautier J, Allard-Vannier E, Hervé-Aubert K, Soucé M, Chourpa I (2013) Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24(43):432002

    Article  CAS  PubMed  Google Scholar 

  • Ghanaati S, Lorenz J, Obreja K, Choukroun J, Landes C, Sader RA (2014) Nanocrystalline hydroxyapatite-based material already contributes to implant stability after 3 months: a clinical and radiologic 3-year follow-up investigation. J Oral Implantol 40(1):103–109

    Article  PubMed  Google Scholar 

  • Godin B, Ferrari M (2012) Cardiovascular nano medicine: a posse ad esse. Methodist Debakey Cardiovasc J 8(1):2–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurzawska K, Svava R, Jørgensen NR, Gotfredsen K (2012) Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans. J Biomed Nanotechnol 8(6):1012–1024

    Article  CAS  PubMed  Google Scholar 

  • Hamburg MA (2012) FDA’s approach to regulation of products of nanotechnology. Science 336(6079):299–300

    Article  CAS  PubMed  Google Scholar 

  • Hobson DW (2009) Commercialization of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):189–202

    Article  PubMed  Google Scholar 

  • Hsu HJ, Bugno J, Lee SR, Hong S. (2016) Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Epub ahead of print]

    Google Scholar 

  • Huo L, Chen R, Shi X, Bai R, Wang P, Chang Y, Chen C (2015) High-content screening for assessing nanomaterial toxicity. J Nanosci Nanotechnol 15(2):1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Iost RM, Crespilho FN, Kern K, Balasubramanian K (2016) A primary battery-on-a-chip using monolayer graphene. Nanotechnology 27(29):29LT01 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • ISO (2009) Biological evaluation of medical devices – Part 1: evaluation and testing within a risk management process. International Standards Organisatoin. ISO 10993–1:2009, 21pp

    Google Scholar 

  • Jacob T, Hemavathy K, Jacob J, Hingorani A, Marks N, Ascher E (2011) A nanotechnology-based delivery system: nanobots. Novel vehicles for molecular medicine. J Cardiovasc Surg 52(2):159–167

    CAS  Google Scholar 

  • Jain S, Valvi PU, Swarnakar NK, Thanki K (2012) Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharm 9(9):2542–2553

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Bhankur N, Swarnakar NK, Thanki K (2015a) Phytantriol based “stealth” lyotropic liquid crystalline nanoparticles for improved antitumor efficacy and reduced toxicity of docetaxel. Pharm Res 32(10):3282–3292

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Spandana G, Agrawal AK, Kushwah V, Thanki K (2015b) Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol Pharm 12(11):3871–3884

    Article  CAS  PubMed  Google Scholar 

  • Kapse SV, Gaikwad RV, Samad A, Devarajan PV (2012) Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability. Int J Pharm 429(1–2):104–112

    Article  CAS  PubMed  Google Scholar 

  • Kasili PM, Vo-Dinh T (2005) Optical nanobiosensor for monitoring an apoptotic signaling process in a single living cell following photodynamic therapy. J Nanosci Nanotechnol 5(12):2057–2062

    Article  CAS  PubMed  Google Scholar 

  • Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I (2014) Issues and concerns in nanotech product development and its commercialization. J Control Release 193:51–62

    Article  CAS  PubMed  Google Scholar 

  • Keeney M, Jiang XY, Yamane M, Lee M, Goodman S, Yang F (2015) Nanocoating for biomolecule delivery using layer-by-layer self-assembly. J Mater Chem B Mater Biol Med 3(45):8757–8770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy J. (2007) Nanotechnology: the future is coming sooner than you think. A Joint Economic Committee ctudy. Joint Economic Committee United States Congress. March 2007. 20 pp. http://www.thenewatlantis.com/docLib/20120213_TheFutureisComingSoonerThanYouThink.pdf. Accessed 24 June 2016

  • Kohli V, Elezzabi AY (2009) Prospects and developments in cell and embryo laser nanosurgery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Kolhe S, Parikh K (2012) Application of nanotechnology in cancer: a review. Int J Bioinform Res Appl 8(1–2):112–125

    Article  CAS  PubMed  Google Scholar 

  • Korrapati PS, Karthikeyan K, Satish A, Krishnaswamy VR, Venugopal JR, Ramakrishna S (2016) Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater Sci Eng C Mater Biol Appl 67:747–765

    Article  CAS  PubMed  Google Scholar 

  • Korting HC, Zienecke H, Schafer-Korting M, Braun-Falco O (1990) Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris. Eur J Clin Pharmacol 39(4):349–351

    Article  CAS  PubMed  Google Scholar 

  • Lafley AG, Tichy N (2011) The art and science of finding the right CEO. Harvard Business Review. Oct 2011, https://hbr.org/2011/10/the-art-and-science-of-finding-the-right-ceo. Accessed 24 June 2016

  • Landesman-Milo D, Peer D (2016) Transforming nanomedicines from lab scale production to novel clinical modality. Bioconjug Chem 27(4):855–862

    Article  CAS  PubMed  Google Scholar 

  • Leite EA, Grabe-Guimarães A, Guimarães HN, Machado-Coelho GL, Barratt G, Mosqueira VC (2007) Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci 80(14):1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Chen X, Huang P (2016) Graphene-based nanomaterials for bioimaging. Adv Drug Deliv Rev. [Epub ahead of print]

    Google Scholar 

  • Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X, Liang XJ (2015) Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91:44–56

    Article  Google Scholar 

  • Lopes MA, Abrahim BA, Cabral LM, Rodrigues CR, Seiça RM, de Baptista Veiga FJ, Ribeiro AJ (2014) Intestinal absorption of insulin nanoparticles: contribution of M cells. Nanomedicine 10(6):1139–1151

    CAS  PubMed  Google Scholar 

  • Lorscheidt S, Lamprecht A (2016) Safety assessment of nanoparticles for drug delivery by means of classic in vitro assays and beyond. Expert Opin Drug Deliv. [Epub ahead of print]

    Google Scholar 

  • Lowy DA, Patrut A (2008) Nonobatteries: decreasing size power sources for growing technologies. Recent Pat Nanotechnol 2(3):208–219

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu TW, Wallig MA, Dobrucki IT, Dobrucki LW, Nelson ER, Swanson KS, Smith AM. (2016) Efficient targeting of adipose tissue macrophages in obesity with polysaccharide nanocarriers. ACS Nano. [Epub ahead of print]

    Google Scholar 

  • Mann EE, Thompson LC, Shannahan JH, Wingard CJ (2012) Changes in cardiopulmonary function induced by nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(6):691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle RC (1999) Biotechnology as a route to nanotechnology. Trends Biotechnol 17(7):271–274

    Article  CAS  PubMed  Google Scholar 

  • Monica JC Jr (2012) FDA’s evolving approach to nanotechnology. Food Drug Law J 67(4):405–411

    PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Juan B, Kouri JB, Ramırez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607–621

    Article  CAS  PubMed  Google Scholar 

  • NNI (2016) Tech transfer and commercialization. Webpage..http://www.nano.gov/techtransfer. Accessed 24 June 2016

  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS, Grey goo on the gkin? (2007) Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277

    Article  CAS  PubMed  Google Scholar 

  • Nuñez-Anita RE, Acosta-Torres LS, Vilar-Pineda J, Martínez-Espinosa JC, de la Fuente-Hernández J, Castaño VM (2014) Toxicology of antimicrobial nanoparticles for prosthetic devices. Int J Nanomedicine 9:3999–4006

    PubMed  PubMed Central  Google Scholar 

  • Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116

    Google Scholar 

  • Park JS, Kim DH, Kim HN, Wang CJ, Kwak MK, Hur E, Suh KY, An SS, Levchenko A (2016). Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat Mater Published online 14 March 2016

    Google Scholar 

  • Pereira RF, Bártolo PJ (2016) Traditional therapies for skin wound healing. Adv Wound Care 5(5):208–229

    Article  Google Scholar 

  • Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  PubMed  Google Scholar 

  • Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y et al (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149

    Article  PubMed  PubMed Central  Google Scholar 

  • Piktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P, Bucki (2016) Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnol 14(1):39

    Article  Google Scholar 

  • Prieto F, Sep lveda B, Calle A, Llobera A, Domínguez C, Abad A, Montoya A, Lechuga LM (2003) An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14:907–912

    Article  CAS  Google Scholar 

  • Radomska A, Leszczyszyn J, Radomski MW (2016) The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv Clin Exp Med 25(1):151–162

    Article  PubMed  Google Scholar 

  • Rausch LM (1998) High-tech industries drive global economic activity. U.S. National Science Foundation. Division of Science Resource Studies: Issue Brief. Directorate for Social, Behavioral and Economic Sciences. NSF 98–319 July 20, 1998. http://www.nsf.gov/statistics/issuebrf/sib98319.htm. Accessed 24 June 2016

  • Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical biosensors for the detection of toxins: nanomaterials, magnetic beads and microfluidics systems. A review. Anal Chim Acta 908:8–21

    Article  PubMed  Google Scholar 

  • Rezaei B, Ghani M, Shoushtari AM, Rabiee M (2016) Electrochemical biosensors based on nanofibres for cardiac biomarker detection: a comprehensive review. Biosens Bioelectron 78:513–523

    Article  CAS  PubMed  Google Scholar 

  • Richter GM, Stampfl U, Stampfl S, Rehnitz C, Holler S, Schnabel P, Grunze M (2005) A new polymer concept for coating of vascular stents using PTFEP (poly(bis(trifluoroethoxy)phosphazene) to reduce thrombogenicity and late in-stent stenosis. Invest Radiol 40(4):210–218

    Article  CAS  PubMed  Google Scholar 

  • Rivero PJ, Urrutia A, Goicoechea J, Zamarreño CR, Arregui FJ, Matías IR (2011) An antibacterial coating based on a polymer/sol–gel hybrid matrix loaded with silver nanoparticles. Nanoscale Res Lett 6(1):305–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Roco M (2004) Nanoscale science and engineering: unifying and transforming tools. AIChE J 50(5):890–897

    Article  CAS  Google Scholar 

  • Rolland A, Collet B, Le Verge R, Toujas L (1989) Blood clearance and organ distribution of intravenously administered polymethacrylic nanoparticles in mice. J Pharm Sci 78(6):481–484

    Article  CAS  PubMed  Google Scholar 

  • Ronchi P, Terjung S, Pepperkok R (2012) At the cutting edge: applications and perspectives of laser nanosurgery in cell biology. Biol Chem Apr 393(4):235–248

    CAS  Google Scholar 

  • Rosanoff MA (1932). Edison in his laboratory. Harper’s Monthly, September 1932; 402–17

    Google Scholar 

  • Roy E, Patra S, Madhuri R, Sharma PK (2016) Stimuli-responsive poly(N-isopropyl acrylamide)-co-tyrosine-gadolinium: iron oxide nanoparticle-based nanotheranostic for cancer diagnosis and treatment. Colloids Surf B: Biointerfaces 142:248–258

    Article  CAS  PubMed  Google Scholar 

  • Santoso MR, Yang PC (2016) Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem Cells Int 2016:4198790. doi:10.1155/2016/4198790, Epub 2016 Apr 3

    Article  PubMed  PubMed Central  Google Scholar 

  • SCENIHR (2009) Risk assessment of products of nanotechnologies. European Commission, Scientific Committee on Emerging and Newly Identified Health Risks. European Commission 2009, 71 pp. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf. Accessed 24 June 2016

  • SCENIHR (2015) Guidance on the determination of potential health effects of nanomaterials used in medical devices. Commission, Scientific Committee on Emerging and Newly Identified Health Risks. European Commission 2015, 77 pp. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_045.pdf. Accessed 24 June 2016

  • Schmittlein DC, Mahajan V (1982) Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Mark Sci 1(1):57–78

    Article  Google Scholar 

  • Shakweh M, Ponchel G, Fattal E (2004) Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 1(1):141–163

    Article  CAS  PubMed  Google Scholar 

  • Shapira A, Livney YD, Broxterman HJ, Assaraf YG (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14(3):150–163

    Article  CAS  PubMed  Google Scholar 

  • Subramani K, Jung RE, Molenberg A, Hammerle CH (2009) Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 24(4):616–626

    PubMed  Google Scholar 

  • Sudhakar CK, Upadhya N, Verma A, Jain A, Charyulu RN, Jain S (2015) Chapter 1 – Nanomedicine and tissue engineering. In: Grohens Y, Ninan N, Thomas S (eds) Nanotechnology applications for tissue engineering. Elsevier, Amsterdam, pp 1–19

    Chapter  Google Scholar 

  • Sundar DS, Antoniraj MG, Kumar CS, Mohapatra SS, Houreld NN, Ruckmani K (2016) Recent trends of biocompatible and biodegradable nanoparticles in drug delivery: a review. Curr Med Chem. [Epub ahead of print]

    Google Scholar 

  • Tamjid E, Simchi A, Dunlop JW, Fratzl P, Bagheri R, Vossoughi M (2013) Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces. J Biomed Mater Res A 101(10):2796–2807

    Article  PubMed  Google Scholar 

  • Tan A, Chawla R, Mahdibeiraghdar S, Jeyaraj R, Rajadas J, Hamblin MR, Seifalian AM (2016) Nanotechnology and regenerative therapeutics in plastic surgery: the next frontier. J Plast Reconstr Aesthet Surg 69(1):1–13

    Google Scholar 

  • Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N (2014, April) Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 1313:35–56

    Google Scholar 

  • Valkonen P (2012) How to set up an effective IP strategy and manage a nanotechnology-based patent portfolio. Chapter 5. In: Helwegen W, Escoffier L (eds) Nanotechnology commercialization for managers and scientists. Pan Stanford Publishing, Singapore, pp 103–130

    Chapter  Google Scholar 

  • Vashist SK, Venkatesh AG, Mitsakakis K, Czilwik G, Roth G, von Stetten F, Zengerle R (2012) Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. BioNanoSci 2:115–126

    Article  Google Scholar 

  • Venditto VJ, Szoka FC Jr (2013) Cancer nanomedicines: so many papers so few drugs! Adv Drug Deliv Rev 65(1):80–88

    Article  CAS  PubMed  Google Scholar 

  • Venkatraman S (2014) Has nanomedicine lived up to its promise? Nanotechnology 25(37):372501

    Article  PubMed  Google Scholar 

  • Wacker MG, Proykova A, Santos GM (2016) Dealing with nanosafety around the globe-regulation vs. innovation. Int J Pharm 509(1–2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li C, Yao C, Ding L, Lei Z, Wu M (2016) Techniques for investigating molecular toxicology of nanomaterials. J Biomed Nanotechnol 12(6):1115–1135

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson LJ, White RJ, Chipman JK (2011) Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 20(11):543–549

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Foote M, Prow TW (2015) Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(3):428–445

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Fu LM, Wen X, Liu Y, Tian Y, Liu YC, Han RC, Gao ZY, Wang TE, Sha YL, Jiang YQ, Wang Y, Zhang JP (2016) Nanoprobes for two-photon excitation time-resolved imaging of living animals: in situ analysis of tumor-targeting dynamics of nanocarriers. Biomaterials 100:152–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Hobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hobson, D.W. (2016). The Commercialization of Medical Nanotechnology for Medical Applications. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_17

Download citation

Publish with us

Policies and ethics