Skip to main content

Exploiting Nanocarriers for Combination Cancer Therapy

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 950 Accesses

Abstract

Combination chemotherapy has vastly improved patient outcomes following treatment for cancer. Combining multiple drugs with non-overlapping mechanisms of action has been shown to forestall the development of drug resistance, leading to increased efficacy. Emerging insights into cancer pathophysiology from tumor genomics, metabolomics, and proteomics now present us with unprecedented opportunities to combine targeted molecular therapies together, or to combine molecular therapies with cytotoxic chemotherapy in a rationally designed manner based on unique molecular signatures. However, the clinical implementation of these improved drug combinations is frequently limited by overlapping drug toxicities. By using new nanotechnology platforms to enhance tumor targeting, and provide precise spatial and temporal control of drug delivery for each agent within a multi-drug regimen, it should be possible to mitigate these toxicity limitations and treat tumors with increasing safety, efficacy and durability. This chapter discusses recent efforts in developing nanoparticles to deliver multiple types of drugs for temporally-sequenced concurrent or sequential combination chemotherapy.

*Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

17-AAG:

17-allylamino-17-demethoxygeldanamycin

5-FU:

5-fluorouracil

6MP:

6-mercaptopurine (6MP)

AlClPc:

aluminum chloride phthalocyanine

dsRNA:

double-stranded RNA

EGFR:

epidermal growth factor receptor

EPR:

enhanced permeability and retention

HMSNs:

hollow mesoporous silica nanoparticles

LbL:

Layer-by-Layer

miRNA:

microRNA

mRNA:

messenger RNA

MMs:

macromonomers

MOMP:

nitrogen mustard with vincristine, methotrexate, and prednisone

MOPP:

nitrogen mustard with vincristine, procarbazine, and prednisone

MPS:

mononuclear phagocyte system

MSNs:

mesoporous silica nanoparticles

MTD:

maximum-tolerated-dose

NSAIDSs:

nonsteroidal anti-inflammatory drugs

PCL:

poly caprolactone

PDT:

photodynamic therapy

PEG:

poly(ethylene glycol)

PGLA:

poly(d,l-lactide-co-glycolide)

PLA:

polylactic acid

RNAi:

RNA interference

siRNA:

small interfering RNA

SSRIs:

serotonin reuptake inhibitors

TNBC:

triple-negative breast cancer

UCNs:

upconversion nanoparticles

UV:

ultraviolet

VAMP:

vincristine, amethopterin, 6MP, and prednisone

References

  • Agrawal V, Paul MK, Mukhopadhyay AK (2005) 6-mercaptopurine and daunorubicin double drug liposomes—preparation, drug-drug interaction and characterization. J Liposome Res 15:141–155

    Google Scholar 

  • Anglin R et al (2014) Risk of upper gastrointestinal bleeding with selective serotonin reuptake inhibitors with or without concurrent NonSteroidal anti-inflammatory use: a systematic review and meta-analysis. Am J Gastroenterol 109(6):811–819

    Article  CAS  PubMed  Google Scholar 

  • Ashley CE et al (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10(5):389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae Y et al (2007) Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release 122(3):324–330

    Article  CAS  PubMed  Google Scholar 

  • Bae Y et al (2010) Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm Res 27(11):2421–2432

    Article  CAS  PubMed  Google Scholar 

  • Baek S et al (2015) Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 7(34):14191–14216

    Article  CAS  PubMed  Google Scholar 

  • Batist G et al (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15(2):692–700

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP (2013) Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials 34(4):1289–1301, http://doi.org/10.1016/j.biomaterials.2012.10.024

    Google Scholar 

  • Burchenal JH et al (1954) Clinical studies on 6-mercaptopurine. Ann N Y Acad Sci 60(2):359–368

    Article  CAS  PubMed  Google Scholar 

  • Burrell RA et al (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345

    Article  CAS  PubMed  Google Scholar 

  • Capdeville R et al (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1(7):493–502

    Article  CAS  PubMed  Google Scholar 

  • Cardinale D et al (2010) Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol 28(25):3910–3916

    Article  CAS  PubMed  Google Scholar 

  • Chen AM et al (2009a) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5(23):2673–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2009b) Novel cationic lipid that delivers siRNA and enhances therapeutic effect in lung cancer cells. Mol Pharm 6(3):696–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Bathula SR et al (2010a) Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J Biol Chem 285(29):22639–22650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wu JJ, Huang L (2010b) Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Mol Ther 18(4):828–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clementi C et al (2011) Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol Pharm 8(4):1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Conde J et al (2016) Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater 15(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT (2013) Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7(11):9571–9584, http://doi.org/10.1021/nn4047925

    Google Scholar 

  • Devita VT, Moxley JH, Brace K, Frei E III (1965) Intensive combination chemotherapy and X-irradiation in the treatment of Hodgkin’s disease. Ant Intern Med 6:881–895

    Google Scholar 

  • Devita VT, Serpick AA, Carbone PP (1970) Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med 73(6):881–895, http://doi.org/10.7326/0003-4819-73-6-881

    Google Scholar 

  • Di L, Kerns EH, Carter GT (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15(19):2184–2194

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A 108(5):1850–1855, http://doi.org/10.1073/pnas.1011379108

    Google Scholar 

  • Dong Y, Feng S-SS-S (2004) Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25(14):2843–2849

    Article  CAS  PubMed  Google Scholar 

  • Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Dreaden EC et al (2015) Tumor-targeted synergistic blockade of MAPK and PI3K from a layer-by-layer nanoparticle. Clin Cancer Res 21(19):4410–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  • Emilienne Soma C et al (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21(1):1–7

    Article  Google Scholar 

  • Engelman JA et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farber S et al (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). New England J Med 238(23):787–793

    Article  CAS  Google Scholar 

  • Fletcher JI et al (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Floyd SR et al (2013) The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature 498(7453):246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca C, Simões S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. New England J Med 363(20):1938–1948

    Article  CAS  Google Scholar 

  • Frei E, Freireich EJ, Gehan E, Pinkel D, Holland JF, Selawry O, Haurani F, Spurr CL, Hayes DM, James GW, Rothberg H, Sodee DB, Rundles RW, Schroeder LR, Hoogstraten B, Wolman IJ, Traggis DG, Cooper T, Gendel BR, Ebaugh F, Taylor R (1961) Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 18(4):431–454

    Google Scholar 

  • Freireich EJ, Karon M, Frei E III (1964) Quadruple combination therapy (VAMP) for acute lymphocytic leukemia of childhood. Proc Am Ass Cancer Res 5:20

    Google Scholar 

  • Gabizon A et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54(4):987–992

    CAS  PubMed  Google Scholar 

  • Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6(3):928–939

    Article  CAS  PubMed  Google Scholar 

  • Giddi HS, Arunagirinathan MA, Bellare JR (2007) Self-assembled surfactant nano-structures important in drug delivery: a review. Indian J Exp Biol 45(2):133–159

    PubMed  Google Scholar 

  • Gilman A, Philips FS (1946) The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science (New York, NY) 103(2675):409–436

    Article  CAS  Google Scholar 

  • Gnanasammandhan MK et al (2016) Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb, Er/Tm upconversion nanoparticles. Nat Protoc 11(4):688–713

    Article  CAS  PubMed  Google Scholar 

  • Goldman A et al (2015) Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun 6:6139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman LS et al (1946) Nitrogen mustard therapy: use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA 132(3):126–132

    Article  CAS  Google Scholar 

  • Greco F, Vicent MJ (2009) Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 61(13):1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Hainaut P, Plymoth A (2013) Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 25(1):50–51

    Article  PubMed  Google Scholar 

  • Han H, Davis ME (2013) Single-antibody, targeted nanoparticle delivery of camptothecin. Mol Pharm 10(7):2558–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Harasym TO et al (2007) Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol Res 16(8):361–374

    PubMed  Google Scholar 

  • Heyn RM et al (1960) The comparison of 6-mercaptopurine with the combination of 6-mercaptopurine and azaserine in the treatment of acute leukemia in children: results of a cooperative study. Blood 15:350–359

    CAS  PubMed  Google Scholar 

  • Hu C-MJ, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83(8):1104–1111

    Article  CAS  PubMed  Google Scholar 

  • Huang P et al (2014) Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc 136(33):11748–11756

    Article  CAS  PubMed  Google Scholar 

  • Hudis CA (2007) Trastuzumab--mechanism of action and use in clinical practice. New England J Med 357(1):39–51

    Article  CAS  Google Scholar 

  • Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang T et al (2014) Gel–liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv Funct Mater 24(16):2295–2304

    Article  CAS  Google Scholar 

  • Jiang T et al (2015) Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv Mater 27(6):1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC (2003) Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2(3):205–213

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689–698

    Article  CAS  PubMed  Google Scholar 

  • Kala S et al (2014) Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer. J Med Chem 57(6):2634–2642

    Article  CAS  PubMed  Google Scholar 

  • Kalos M et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and Can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73–95ra73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneshiro TL, Lu Z-R (2009) Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials 30(29):5660–5666

    Article  CAS  PubMed  Google Scholar 

  • Karaca, M. et al., 2016. Micelle Mixtures for Co-administration of Gemcitabine and GDC-0449 to treat Pancreatic Cancer. Mol. Pharm., p.acs.molpharmaceut.5b00971.

    Google Scholar 

  • Karra N et al (2013) Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small 9(24):4221–4236

    Article  CAS  PubMed  Google Scholar 

  • Katragadda U et al (2013) Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis. PLoS One 8(3):e58619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaye SB (1993) P glycoprotein (P-gp) and drug resistance--time for reappraisal? Br J Cancer 67(4):641–643

    Google Scholar 

  • Keung AJ et al (2014) Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158(1):110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E et al (2010) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31(16):4592–4599

    Article  CAS  PubMed  Google Scholar 

  • Kim CS et al (2015) Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules. Bioconjug Chem 26(5):950–954

    Article  CAS  PubMed  Google Scholar 

  • Kneuer C et al (2000) Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int J Pharm 196(2):257–261

    Article  CAS  PubMed  Google Scholar 

  • Kolishetti N et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 107(42):17939–17944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong YW et al (2012) microRNAs in cancer management. Lancet Oncol 13(6):e249–e258

    Article  CAS  PubMed  Google Scholar 

  • Kormann MSD et al (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29(2):154–157

    Article  CAS  PubMed  Google Scholar 

  • Kulhari H, Pooja D, Prajapati SK, Chauhan AS (2011) Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int J Pharm 405(1–2):203–209, http://doi.org/10.1016/j.ijpharm.2010.12.002

    Google Scholar 

  • Lammers T et al (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30(20):3466–3475

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Nan A (2012) Combination drug delivery approaches in metastatic breast cancer. J Drug Delivery 2012(8):1–17

    Google Scholar 

  • Lee ALZ et al (2011) Synergistic anticancer effects achieved by co-delivery of TRAIL and paclitaxel using cationic polymeric micelles. Macromol Biosci 11(2):296–307

    Google Scholar 

  • Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G, Yaffe MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149(4):780–794, http://doi.org/10.1016/j.cell.2012.03.031

    Google Scholar 

  • Li Y et al (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release 71(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Li S-D et al (2008) Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 16(1):163–169

    Article  CAS  PubMed  Google Scholar 

  • Li F et al (2015) Multiple layer-by-layer lipid-polymer hybrid nanoparticles for improved FOLFIRINOX chemotherapy in pancreatic tumor models. Adv Funct Mater 25(5):788–798

    Article  CAS  Google Scholar 

  • Liao L et al (2014) A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc 136(16):5896–5899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    Article  CAS  PubMed  Google Scholar 

  • Luo B et al (2008) Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A 105(51):20380–20385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137(5):835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machover D et al (1982) Treatment of advanced colorectal and gastric adenocarcinomas with 5-FU combined with high-dose folinic acid: a pilot study. Cancer Treat Rep 66(10):1803–1807

    CAS  PubMed  Google Scholar 

  • Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14(8):561–584

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y et al (2016) Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat Nanotechnol 11(6):533–538

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12):6387–6392

    CAS  PubMed  Google Scholar 

  • Mayer LD, Janoff AS (2007) Optimizing combination chemotherapy by controlling drug ratios. Mol Interv 7(4):216–223

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, Wang X, Zhao Y, Ji Z, Zink JI, Nel AE (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7:994–1005

    Google Scholar 

  • Meng H et al (2015) Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9(4):3540–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi Y, Zhao J, Feng S-S (2013) Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J Control Release 169(3):185–192

    Article  CAS  PubMed  Google Scholar 

  • Misra R et al (2014) Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly(lactide-co-glycolide) nanoformulation. Int J Pharm 475(1–2):372–384

    Article  CAS  PubMed  Google Scholar 

  • Morsut L et al (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164(4):780–791

    Article  CAS  PubMed  Google Scholar 

  • Morton, S.W. et al., 2014. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Science signaling, 7(325), pp.ra44–ra44. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24825919&retmode=ref&cmd=prlinks.

  • Moxley JH et al (1967) Intensive combination chemotherapy and X-irradiation in Hodgkin’s disease. Cancer Res 27(7):1258–1263

    PubMed  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430

    Google Scholar 

  • Nassirpour R et al (2013) miR-221 promotes tumorigenesis in human triple negative breast cancer cells. A. Ahmad, ed. PLoS One 8(4):e62170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo VN et al (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441(7089):106–110

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648

    Article  CAS  PubMed  Google Scholar 

  • Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7(9):7442–7447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J et al (2012) Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 11(10):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil Y et al (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  • Perrault SD et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  CAS  PubMed  Google Scholar 

  • Piovan C et al (2012) Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol 6(4):458–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt RJ et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar, U. et al., 2013. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. In Cancer research. American Association for Cancer Research, pp. 2412–2417.

    Google Scholar 

  • Pritchard JR et al (2013) Defining principles of combination drug mechanisms of action. Proc Natl Acad Sci U S A 110(2):E170–E179

    Article  CAS  PubMed  Google Scholar 

  • Qhobosheane M et al (2001) Biochemically functionalized silica nanoparticles. Analyst 126(8):1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Ramsey S (2005) What do we want from our investment in cancer research? Health Aff 24:W5R101–W5R104

    Article  Google Scholar 

  • Ribas A et al (2013) Hepatotoxicity with combination of vemurafenib and ipilimumab. New England J Med 368(14):1365–1366

    Article  CAS  Google Scholar 

  • Rösler A, Vandermeulen GW, Klok HA (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53(1):95–108

    Article  PubMed  Google Scholar 

  • Rothenberg M, Ling V (1989) Multidrug resistance: molecular biology clinical relevance. J Natl Cancer Inst 81(12):907–910

    Article  CAS  PubMed  Google Scholar 

  • Rozema DB et al (2007) Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104(32):12982–12987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad M, Garbuzenko OB, Minko T (2008) Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine 3(6):761–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra S et al (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73(20):4988–4993

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8(10):2861–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seino M et al (2016) Time-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel. Oncol Rep 35(1):593–601

    PubMed  Google Scholar 

  • Sengupta S et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572

    Article  CAS  PubMed  Google Scholar 

  • Shen J et al (2014) Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol Pharm 11(10):3342–3351

    Article  CAS  PubMed  Google Scholar 

  • Shi M et al (2009) Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv Funct Mater 19:1689–1696

    Article  CAS  Google Scholar 

  • Shim G et al (2011) Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J Control Release 155(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T et al (2012) The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 18(8):2316–2325

    Article  CAS  PubMed  Google Scholar 

  • Shin H-C et al (2011) A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm 8(4):1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H-C et al (2012) Pharmacokinetic study of 3-in-1 poly(ethylene glycol)-block-poly(d, l-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. J Control Release 163(1):93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skipper HE et al (1954) Observations on the anticancer activity of 6-mercaptopurine. Cancer Res 14(4):294–298

    CAS  PubMed  Google Scholar 

  • Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 47(8):1382–1395, http://doi.org/10.1002/anie.200703039

    Google Scholar 

  • Song XR et al (2009) Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 37(3–4):300–305

    Article  CAS  PubMed  Google Scholar 

  • Stylianopoulos T et al (2012) Multistage nanoparticles for improved delivery into tumor tissue. In: D Nejat (ed) Nanomedicine. Academic Press, pp 109–130

    Google Scholar 

  • Tardi P, Johnstone S et al (2009a) In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 33(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Tardi PG, Dos Santos N et al (2009b) Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther 8(8):2266–2275

    Article  CAS  PubMed  Google Scholar 

  • Tekade RK et al (2008) Surface-engineered dendrimers for dual drug delivery: a receptor up-regulation and enhanced cancer targeting strategy. J Drug Target 16(10):758–772

    Article  CAS  PubMed  Google Scholar 

  • Tekade RK et al (2009) Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul 26(4):287–296

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajan G, Greish K, Ghandehari H (2013) Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm 84(2):330–334

    Article  CAS  PubMed  Google Scholar 

  • Tobío M et al (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15(2):270–275

    Article  PubMed  Google Scholar 

  • Vaklavas C, Forero-Torres A (2012) Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther Adv Hematol 3(4):209–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Vlerken LE et al (2010) Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J 12(2):171–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vivero-Escoto J, Elnagheeb M (2015) Mesoporous silica nanoparticles loaded with cisplatin and phthalocyanine for combination chemotherapy and photodynamic therapy in vitro. Nanomaterials 5(4):2302–2316

    Article  CAS  Google Scholar 

  • Wang Y et al (2006) Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5(10):791–796

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Lv P-P, Chen X-M, Yue Z-G, Fu Q, Liu S-Y et al (2013) Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials 34(15):3912–3923, http://doi.org/10.1016/j.biomaterials.2013.02.030

    Google Scholar 

  • Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):16014

    Article  Google Scholar 

  • Williams HD et al (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1):315–499

    Article  PubMed  CAS  Google Scholar 

  • Wong M-Y, Chiu GNC (2010) Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 21(4):401–410, http://doi.org/10.1097/CAD.0b013e328336e940

    Google Scholar 

  • Wu J et al (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci 10(3):350–357

    CAS  PubMed  Google Scholar 

  • Xu X et al (2013) Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci U S A 110(46):18638–18643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2006) Preparation of poly epsilon-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm 324(2):185–190

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Jon S, Langer RS, Farokhzad OC (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. ChemMedChem 2:1268–1271

    Google Scholar 

  • Zhang N et al (2013) Trastuzumab-doxorubicin conjugate provides enhanced anti-cancer potency and reduced cardiotoxicity. J Cancer Ther 04(01):308–322

    Article  CAS  Google Scholar 

  • Zhang Y et al (2016) Polymeric prodrug grafted hollow mesoporous silica nanoparticles encapsulating near-infrared absorbing dye for potent combined photothermal-chemotherapy. ACS Appl Mater Interfaces 8(11):6869–6879

    Article  CAS  PubMed  Google Scholar 

  • Zheng C et al (2013) Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials 34(13):3431–3438

    Article  CAS  PubMed  Google Scholar 

  • Zhu C et al (2010) Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials 31(8):2408–2416

    Article  CAS  PubMed  Google Scholar 

  • Zoli W et al (2001) In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol 37(1):69–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr Ian Cannell for reading and commenting on the chapter.

Financial Support

This work was supported by the Ovarian Cancer Research Foundation (MBY, PTH; Program Project Development Grant), the Breast Cancer Alliance (MBY, PTH; Exceptional Project Award), the Department of Defense (PTH; CDMRP Ovarian Cancer Research Program Teal Innovator Award), the National Institutes of Health (MBY; R01-ES015339, R01-GM104047, ECD; NIBIB 1F32EB017614-02), and the Misrock Foundation (YWK). Support was provided in part by the Koch Institute Support Grant (P30-CA14051) from the National Cancer Institute.

Conflict of Interest Statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paula T. Hammond or Michael B. Yaffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, Y.W., Dreaden, E.C., Hammond, P.T., Yaffe, M.B. (2016). Exploiting Nanocarriers for Combination Cancer Therapy. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_16

Download citation

Publish with us

Policies and ethics