Skip to main content

Pharmacokinetics and Pharmacodynamics of Nano-Drug Delivery Systems

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Incorporation of drugs into nano-drug delivery systems (nano-DDSs) leads to profound changes in their disposition (distribution and elimination) and pharmacological activity (magnitude of desired and adverse effects). Nano-DDSs of different types (liposomes, particles, drug conjugates, etc.) and of different composition are intensively investigated nowadays in pre-clinical and clinical settings. Specifically, the relationships between the nano-DDSs composition, efficiency of their targeting to the intended site of action, and the magnitude of the desired vs. adverse effects are examined. In this chapter, the pathways of nano-DDSs disposition at the systemic, local, and intracellular levels are described, and the formulation properties that affect the drug targeting efficiency at each of these levels are discussed. Complexity of the nano-DDSs disposition pathways and limitations of drug targeting approaches are illustrated using specific examples: (1) delivery of antigenic peptides to the endoplasmic reticulum (ER) of the antigen presenting cells using PLGA-based nano-DDSs for the purpose of anti-cancer vaccination, (2) delivery of analgesic peptides to the brain using bolavesicle-based nano-DDSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChE:

Acetylcholine esterase

BBB:

Blood–brain barrier

B-CSF-B:

Blood-cerebrospinal fluid barrier

CNS:

Central nervous system

DC:

Dendritic cell

DDS:

Drug delivery system

EPR:

Enhanced permeability and retention effect

ER:

Endoplasmic reticulum

PD:

Pharmacodynamics

PK:

Pharmacokinetics

References

  • Amigorena S, Savina A (2010) Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol 22:109–117

    Article  CAS  PubMed  Google Scholar 

  • Andersson H, Kappeler F, Hauri HP (1999) Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval. J Biol Chem 274:15080–15084

    Article  CAS  PubMed  Google Scholar 

  • Azzopardi EA, Ferguson EL, Thomas DW (2013) The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother 68:257–274

    Article  CAS  PubMed  Google Scholar 

  • Babu A, Templeton AK, Munshi A et al (2014) Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech 15:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    Article  CAS  PubMed  Google Scholar 

  • Barenholz Y (2012) Doxil – the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  PubMed  Google Scholar 

  • Bigdeli A, Palchetti S, Pozzi D et al (2016) Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano 10:3723–3737

    Article  CAS  PubMed  Google Scholar 

  • Boyd BJ, Galle A, Daglas M et al (2015) Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J Drug Target 23:847–853

    Article  CAS  PubMed  Google Scholar 

  • Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128

    Article  CAS  PubMed  Google Scholar 

  • Dakwar GR, Abu Hammad I, Popov M et al (2012) Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles. J Control Release 160:315–321

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  • Danquah MK, Zhang XA, Mahato RI (2011) Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev 63:623–639

    Article  PubMed  Google Scholar 

  • Das A, Adhikari C, Nayak D et al (2016) First evidence of the liposome-mediated deintercalation of anticancer drug doxorubicin from the drug-DNA complex: a spectroscopic approach. Langmuir 32:159–170

    Article  CAS  PubMed  Google Scholar 

  • Decuzzi P, Godin B, Tanaka T et al (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327

    Article  CAS  PubMed  Google Scholar 

  • D’Souza GG, Weissig V (2009) Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 6:1135–1148

    Article  PubMed  Google Scholar 

  • Dufort S, Sancey L, Coll J-L (2012) Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev 64:179–189

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Richardson SC (2012) Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 9:2380–2402

    Article  CAS  PubMed  Google Scholar 

  • Ernsting MJ, Murakami M, Roy A et al (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172:782–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foged C, Brodin B, Frokjaer S et al (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298:315–322

    Article  CAS  PubMed  Google Scholar 

  • Fu A, Tang R, Hardie J et al (2014) Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem 25:1602–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilleron J, Querbes W, Zeigerer A et al (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 31:638–646

    Article  CAS  PubMed  Google Scholar 

  • Grinberg S, Linder C, Kolot V et al (2005) Novel cationic amphiphilic derivatives from vernonia oil: synthesis and self-aggregation into bilayer vesicles, nanoparticles, and DNA complexants. Langmuir 21:7638–7645

    Article  CAS  PubMed  Google Scholar 

  • Grinberg S, Kolot V, Linder C et al (2008) Synthesis of novel cationic bolaamphiphiles from vernonia oil and their aggregated structures. Chem Phys Lipids 153:85–97

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Afonin KA, Viard M et al (2015) Bolaamphiphiles as carriers for siRNA delivery: from chemical syntheses to practical applications. J Control Release 213:142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzel M, Bovier A, Tuting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13:365–376

    Article  PubMed  Google Scholar 

  • Ishida T, Kiwada H (2008) Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm 354:56–62

    Article  CAS  PubMed  Google Scholar 

  • Kanapathipillai M, Brock A, Ingber DE (2014) Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 79–80:107–118

    Article  PubMed  Google Scholar 

  • Kaplun V, Stepensky D (2014) Efficient decoration of nanoparticles intended for intracellular drug targeting with targeting residues, as revealed by a new indirect analytical approach. Mol Pharm 11:2906–2914

    Article  CAS  PubMed  Google Scholar 

  • Keck CM, Muller RH (2013) Nanotoxicological classification system (NCS) – a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84:445–448

    Article  CAS  PubMed  Google Scholar 

  • Kozlovskaya L, Stepensky D (2013) Quantitative analysis of the brain-targeted delivery of drugs and model compounds using nano-delivery systems. J Control Release 171:17–23

    Article  CAS  PubMed  Google Scholar 

  • Kozlovskaya L, Abou-Kaoud M, Stepensky D (2014) Quantitative analysis of drug delivery to the brain via nasal route. J Control Release 189:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99:392–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammers T, Kiessling F, Hennink WE et al (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187

    Article  CAS  PubMed  Google Scholar 

  • Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang J, Wientjes MG et al (2012) Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev 64:29–39

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tseng Y-C, Huang L (2012) Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method? Pharm Res 29:3273–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3:703–717

    Article  CAS  Google Scholar 

  • Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164:138–144

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    Article  CAS  PubMed  Google Scholar 

  • Maity AR, Stepensky D (2015) Delivery of drugs to intracellular organelles using drug delivery systems: analysis of research trends and targeting efficiencies. Int J Pharm 496:268–274

    Article  CAS  PubMed  Google Scholar 

  • Maity AR, Stepensky D (2016a) Efficient subcellular targeting to the cell nucleus of quantum dots densely decorated with a nuclear localization sequence peptide. ACS Appl Mater Interfaces 8:2001–2009

    Article  CAS  PubMed  Google Scholar 

  • Maity AR, Stepensky D (2016b) Limited efficiency of drug delivery to specific intracellular organelles using subcellularly “targeted” drug delivery systems. Mol Pharm 13:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mantegazza AR, Magalhaes JG, Amigorena S et al (2013) Presentation of phagocytosed antigens by MHC class I and II. Traffic 14:135–152

    Article  CAS  PubMed  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503

    Article  CAS  PubMed  Google Scholar 

  • Naahidi S, Jafari M, Edalat F et al (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194

    Article  CAS  PubMed  Google Scholar 

  • Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464

    Article  CAS  PubMed  Google Scholar 

  • North AJ (2006) Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J Cell Biol 172:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paillard A, Hindre F, Vignes-Colombeix C et al (2010) The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability. Biomaterials 31:7542–7554

    Article  CAS  PubMed  Google Scholar 

  • Palchetti S, Colapicchioni V, Digiacomo L et al (2016) The protein corona of circulating PEGylated liposomes. Biochim Biophys Acta 1858:189–196

    Article  CAS  PubMed  Google Scholar 

  • Parveen S, Sahoo SK (2006) Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs. Clin Pharmacokinet 45:965–988

    Article  CAS  PubMed  Google Scholar 

  • Perry JL, Reuter KG, Kai MP et al (2012) PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 12:5304–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philosof-Mazor L, Dakwar GR, Popov M et al (2013) Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: new vehicles for magnetically targeted drug delivery. Int J Pharm 450:241–249

    Article  CAS  PubMed  Google Scholar 

  • Popilski H, Stepensky D (2015) Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems. Expert Opin Drug Metab Toxicol 11:767–784

    Article  CAS  PubMed  Google Scholar 

  • Popov M, Linder C, Deckelbaum RJ et al (2010) Cationic vesicles from novel bolaamphiphilic compounds. J Liposome Res 20:147–159

    Article  CAS  PubMed  Google Scholar 

  • Popov M, Abu Hammad I, Bachar T et al (2013) Delivery of analgesic peptides to the brain by nano-sized bolaamphiphilic vesicles made of monolayer membranes. Eur J Pharm Biopharm 85:381–389

    Article  CAS  PubMed  Google Scholar 

  • Rochat B (2009) Importance of influx and efflux systems and xenobiotic metabolizing enzymes in intratumoral disposition of anticancer agents. Curr Cancer Drug Targets 9:652–674

    Article  CAS  PubMed  Google Scholar 

  • Ruenraroengsak P, Cook JM, Florence AT (2010) Nanosystem drug targeting: facing up to complex realities. J Control Release 141:265–276

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H, Hennink WE, Brinks V (2013) The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res 30:1729–1734

    Article  CAS  PubMed  Google Scholar 

  • Segura E, Villadangos JA (2011) A modular and combinatorial view of the antigen cross-presentation pathway in dendritic cells. Traffic 12:1677–1685

    Article  CAS  PubMed  Google Scholar 

  • Seib FP, Jones AT, Duncan R (2006) Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer – doxorubicin. J Drug Target 14:375–390

    Article  CAS  PubMed  Google Scholar 

  • Shechter Y, Heldman E, Sasson K et al (2010) Delivery of neuropeptides from the periphery to the brain: studies with enkephalin. ACS Chem Neurosci 1:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneh-Edri H, Stepensky D (2011) ‘IntraCell’ plugin for assessment of intracellular localization of nano-delivery systems and their targeting to the individual organelles. Biochem Biophys Res Commun 405:228–233

    Article  CAS  PubMed  Google Scholar 

  • Sneh-Edri H, Likhtenshtein D, Stepensky D (2011) Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm 8:1266–1275

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH, Pasternak GW (2003) Historical review: opioid receptors. Trends Pharmacol Sci 24:198–205

    Article  CAS  PubMed  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427

    Article  CAS  PubMed  Google Scholar 

  • Stepensky D (2010) Quantitative aspects of intracellularly-targeted drug delivery. Pharm Res 27:2776–2780

    Article  CAS  PubMed  Google Scholar 

  • Stepensky D (2014) Pharmacokinetic and pharmacodynamic aspects of focal and targeted delivery of drugs. In: Domb AJ, Khan W (eds) Focal controlled drug delivery. Springer, New York

    Google Scholar 

  • Taurin S, Nehoff H, Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164:265–275

    Article  CAS  PubMed  Google Scholar 

  • Teasdale RD, Jackson MR (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. Annu Rev Cell Dev Biol 12:27–54

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev 57:95–109

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    Article  CAS  PubMed  Google Scholar 

  • van der Meel R, Vehmeijer LJ, Kok RJ et al (2013) Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev 65:1284–1298

    Article  PubMed  Google Scholar 

  • Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185:1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissig V, Guzman-Villanueva D (2015) Nanopharmaceuticals (part 2): products in the pipeline. Int J Nanomedicine 10:1245–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V et al (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  • Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang Y, Cao Y et al (2013) Transport barriers and strategies of antitumor nanocarriers delivery system. J Biomed Mater Res A 101:3661–3669

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank our collaborators in the bolavesicle project: Prof. Eli Heldman, Dr. Sarina Grinberg, and Prof. Charles Linder from the Ben-Gurion University of the Negev, Beer-Sheva, Israel. The experimental results presented in this chapter were generated with support of research grants from the Israel Science Foundation, the USA-Israel Binational Science Foundation, Prof. Yannai Tabb Cancer Research Foundation, and the Planning and Budgeting Committee of the Israeli Council for Higher Education for Outstanding Post-doctoral Fellows from China and India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stepensky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maity, A.R., Stepensky, D. (2016). Pharmacokinetics and Pharmacodynamics of Nano-Drug Delivery Systems. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_14

Download citation

Publish with us

Policies and ethics