Skip to main content

Proteomic Applications for Farm Animal Management

  • Chapter
  • First Online:
Agricultural Proteomics Volume 1

Abstract

The implementation of proteomics is an important step towards a better understanding of the complex biological systems that define animal health and production. The role that proteomics can play in the context of farm animal production is increasingly recognized and to date proteomics has been applied to characterize the physiology behind animal growth and development, reproduction, welfare and animal products. Furthermore, recent advances in mass spectrometry technologies have led to the development of novel strategies aimed at the identification of biomarkers present in different tissues and body fluids. Identification of valid biomarkers in animal tissue or body fluids such as serum, urine, milk, saliva, cerebrospinal fluid and semen to enable bio-monitoring on animal health and provide valuable information, on production, feeding status, and animal-environment interaction is a priority in this field. Therefore, analysis of the proteome linked with biomarker discovery is emerging into a field of high interest, with the aim of improving farm animal productivity and welfare. The present book chapter addresses the recent specific advances of interest in farm animal proteomics and introduces biomarker approaches that are relevant in animal health, production and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Google Scholar 

  2. Jones AC, Mead A, Kaiser MJ, Austen MC, Adrian AW, Auchterlonie NA et al (2015) Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish Fish 16:668–683

    Article  Google Scholar 

  3. Almeida A, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S et al (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9:1–17

    Google Scholar 

  4. Morzel M, Chambon C, Hamelin M, Santé-Lhoutellier V, Sayd T, Monin G (2004) Proteome changes during pork meat ageing following use of two different pre-slaughter handling procedures. Meat Sci 67:689–696

    Article  CAS  PubMed  Google Scholar 

  5. Morzel M, Chambon C, Lefèvre F, Paboeuf G, Laville E (2006) Modifications of trout (Oncorhynchus mykiss) muscle proteins by preslaughter activity. J Agric Food Chem 54:2997–3001

    Article  CAS  PubMed  Google Scholar 

  6. Morais S, Silva T, Cordeiro O, Rodrigues P, Guy DR, Bron JE et al (2012) Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genom 13:448

    Article  CAS  Google Scholar 

  7. Paredi G, Raboni S, Bendixen E, De Almeida AM, Mozzarelli A (2012) “Muscle to meat” molecular events and technological transformations: the proteomics insight. J Proteomics 75:4275–4289

    Article  CAS  PubMed  Google Scholar 

  8. Montowska M, Pospiech E (2013) Species-specific expression of various proteins in meat tissue: proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected poultry species. Food Chem 136:1461–1469

    Article  CAS  PubMed  Google Scholar 

  9. Gobert M, Sayd T, Gatellier P, Santé-Lhoutellier V (2014) Application to proteomics to understand and modify meat quality. Meat Sci 98:539–543

    Article  CAS  PubMed  Google Scholar 

  10. Bassols A, Turk R, Roncada P (2014) A proteomics perspective: from animal welfare to food safety. Curr Protein Pept Sci 15:156–168

    Article  CAS  PubMed  Google Scholar 

  11. Piovesana S, Capriotti AL, Caruso G, Cavaliere C, La Barbera G, Chiozzi RZ et al (2016) Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 1428:193–201

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Yang J et al (2016) Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. J Proteomics 136:174–182

    Article  CAS  PubMed  Google Scholar 

  13. Colburn W, Degruttola VG, Demets DL, Downing GJ, Hoth DF, Oates JA et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Biomarkers definitions working group. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  14. Ceciliani F, Ceron JJ, Eckersall PD, Sauerwein H (2012) Acute phase proteins in ruminants. J Proteomics 75:4207–4231

    Article  CAS  PubMed  Google Scholar 

  15. Henry CJ (2010) Biomarkers in veterinary cancer screening: applications, limitations and expectations. Vet J 185:10–14

    Article  PubMed  Google Scholar 

  16. Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130:395–398

    Article  CAS  PubMed  Google Scholar 

  17. Rogowska-Wrzesinska A, Le Bihan M-C, Thaysen-Andersen M, Roepstorff P (2013) 2D gels still have a niche in proteomics. J Proteomics 88:4–13

    Article  CAS  PubMed  Google Scholar 

  18. Albalat A, Husi H, Siwy J, E Nally J, Mclauglin M, D Eckersall P et al (2014) Capillary electrophoresis interfaced with a mass spectrometer (CE-MS): technical considerations and applicability for biomarker studies in animals. Curr Protein Pept Sci 15:23–35

    Google Scholar 

  19. Mullen W, Albalat A, Gonzalez J, Zerefos P, Siwy J, Franke J et al (2012) Performance of different separation methods interfaced in the same MS-reflection TOF detector: a comparison of performance between CE versus HPLC for biomarker analysis. Electrophoresis 33:567–574

    Article  CAS  PubMed  Google Scholar 

  20. Klein J, Papadopoulos T, Mischak H, Mullen W (2014) Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 35:1060–1064

    Article  CAS  PubMed  Google Scholar 

  21. Nally JE, Mullen W, Callanan JJ, Mischak H, Albalat A (2015) Detection of urinary biomarkers in reservoir hosts of leptospirosis by capillary electrophoresis-mass spectrometry. Proteomics-Clin Appl 9:543–551

    Article  CAS  PubMed  Google Scholar 

  22. Albalat A, Husi H, Stalmach A, Schanstra JP, Mischak H (2014) Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis 6:247–266

    Article  CAS  PubMed  Google Scholar 

  23. Mansor R, Mullen W, Albalat A, Zerefos P, Mischak H, Barrett DC et al (2013) A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics 85:89–98

    Article  CAS  PubMed  Google Scholar 

  24. Di Luca A, Elia G, Hamill R, Mullen AM (2013) 2D DIGE proteomic analysis of early post mortem muscle exudate highlights the importance of the stress response for improved water-holding capacity of fresh pork meat. Proteomics 13:1528–1544

    Article  PubMed  CAS  Google Scholar 

  25. Janjanam J, Singh S, Jena MK, Varshney N, Kola S, Kumar S et al (2014) Comparative 2D-DIGE proteomic analysis of bovine mammary epithelial cells during lactation reveals protein signatures for lactation persistency and milk yield. PLoS ONE 9:e102515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Almeida AM, Plowman JE, Harland DP, Thomas A, Kilminster T, Scanlon T et al (2014) Influence of feed restriction on the wool proteome: a combined iTRAQ and fiber structural study. J Proteomics 103:170–177

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Luo G, Zhang Z, Wang X, Ju Z, Qi C et al (2014) iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genomics 15:1

    Google Scholar 

  28. Long M, Zhao J, Li T, Tafalla C, Zhang Q, Wang X et al (2015) Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida. J Proteomics 122:41–54

    Article  CAS  PubMed  Google Scholar 

  29. Thingholm TE, Palmisano G, Kjeldsen F, Larsen MR (2010) Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J Proteome Res 9:4045–4052

    Article  CAS  PubMed  Google Scholar 

  30. Burkhart JM, Vaudel M, Zahedi RP, Martens L, Sickmann A (2011) iTRAQ protein quantification: a quality-controlled workflow. Proteomics 11:1125–1134

    Article  CAS  PubMed  Google Scholar 

  31. Jiang X, Zeng T, Zhang S, Zhang Y (2013) Comparative proteomic and bioinformatic analysis of the effects of a high-grain diet on the hepatic metabolism in lactating dairy goats. PLoS ONE 8:e80698

    Article  PubMed  PubMed Central  Google Scholar 

  32. Romao JM, He ML, Mcallister TA, Guan LL (2014) Effect of age on bovine subcutaneous fat proteome: molecular mechanisms of physiological variations during beef cattle growth. J Anim Sci 92:3316–3327

    Article  CAS  PubMed  Google Scholar 

  33. Phongpa-Ngan P, Grider A, Mulligan JH, Aggrey SE, Wicker L (2011) Proteomic analysis and differential expression in protein extracted from chicken with a varying growth rate and water-holding capacity. J Agric Food Chem 59:13181–13187

    Article  CAS  PubMed  Google Scholar 

  34. Doherty MK, Mclean L, Hayter JR, Pratt JM, Robertson DHL, El-Shafei A et al (2004) The proteome of chicken skeletal muscle: changes in soluble protein expression during growth in a layer strain. Proteomics 4:2082–2093

    Article  CAS  PubMed  Google Scholar 

  35. Teltathum T, Mekchay S (2009) Proteome changes in Thai indigenous chicken muscle during growth period. Int J Biol Sci 5:679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamy E, Da Costa G, Santos R, Capela ESF, Potes J, Pereira A et al (2009) Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiol Behav 98:393–401

    Article  CAS  PubMed  Google Scholar 

  37. Gutiérrez AM, Miller I, Hummel K, Nöbauer K, Martínez-Subiela S, Razzazi-Fazeli E et al (2011) Proteomic analysis of porcine saliva. Vet J 187:356–362

    Article  PubMed  CAS  Google Scholar 

  38. Ang CS, Binos S, Knight MI, Moate PJ, Cocks BG, Mcdonagh MB (2011) Global survey of the bovine salivary proteome: integrating multidimensional prefractionation, targeted, and glycocapture strategies. J Proteome Res 10:5059–5069

    Article  CAS  PubMed  Google Scholar 

  39. Lamy E, Da Costa G, Santos R, Capela E Silva F, Potes J, Pereira A et al (2011) Effect of condensed tannin ingestion in sheep and goat parotid saliva proteome. J Anim Physiol Anim Nutr 95:304–312

    Google Scholar 

  40. Mau M, Kaiser TM, Sudekum KH (2009) Evidence for the presence of carbonic anhydrase 29-kDa isoenzyme in salivary secretions of three ruminating species and the gelada baboon. Arch Oral Biol 54:354–360

    Article  CAS  PubMed  Google Scholar 

  41. Mau M, Kaiser TM, Sudekum KH (2010) Carbonic anhydrase II is secreted from bovine parotid glands. Histol Histopathol 25:321–329

    CAS  PubMed  Google Scholar 

  42. Martin SAM, Vilhelmsson O, Médale F, Watt P, Kaushik S, Houlihan DF (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochimica et Biophysica Acta (BBA) Proteins Proteomics 1651:17–29

    Google Scholar 

  43. Vilhelmsson OT, Martin SA, Médale F, Kaushik SJ, Houlihan DF (2004) Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br J Nutr 92:71–80

    Article  CAS  PubMed  Google Scholar 

  44. Brunt J, Hansen R, Jamieson DJ, Austin B (2008) Proteomic analysis of rainbow trout (Oncorhynchus mykiss, Walbaum) serum after administration of probiotics in diets. Vet Immunol Immunopathol 121:199–205

    Article  CAS  PubMed  Google Scholar 

  45. Sveinsdóttir H, Steinarsson A, Gudmundsdóttir Á (2009) Differential protein expression in early Atlantic cod larvae (Gadus morhua) in response to treatment with probiotic bacteria. Comp Biochem Physiol D Genomics Proteomics 4:249–254

    Article  PubMed  CAS  Google Scholar 

  46. Agrawal A, Karim S, Kumar R, Sahoo A, John P (2014) Sheep and goat production: basic differences, impact on climate and molecular tools for rumen microbiome study. Int J Curr Microbiol App Sci 3:684–706

    Google Scholar 

  47. Yang Y, Wang J, Yuan T, Bu D, Yang J, Sun P (2013) Proteome profile of bovine ruminal epithelial tissue based on GeLC–MS/MS. Biotechnol Lett 35:1831–1838

    Article  CAS  PubMed  Google Scholar 

  48. Hollmann M, Miller I, Hummel K, Sabitzer S, Metzler-Zebeli BU, Razzazi-Fazeli E et al (2013) Downregulation of cellular protective factors of Rumen Epithelium in goats fed high energy diet. PLoS ONE 8:e81602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Luo J, Zheng A, Meng K, Chang W, Bai Y, Li K et al (2013) Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. J Proteomics 91:226–241

    Article  CAS  PubMed  Google Scholar 

  50. Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L (2014) Metaproteomics analysis reveals the adaptation process for the Chicken Gut Microbiota. Appl Environ Microbiol 80:478–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Deusch S, Seifert J (2015) Catching the tip of the iceberg—evaluation of sample preparation protocols for metaproteomic studies of the rumen microbiota. Proteomics 15:3590–3595

    Article  CAS  PubMed  Google Scholar 

  52. Bouley J, Chambon C, Picard B (2004) Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4:1811–1824

    Article  CAS  PubMed  Google Scholar 

  53. Picard B, Berri C, Lefaucheur L, Molette C, Sayd T, Terlouw C (2010) Skeletal muscle proteomics in livestock production. Briefings Funct Genomics: elq005

    Google Scholar 

  54. Jia X, Ekman M, Grove H, Færgestad EM, Aass L, Hildrum KI et al (2007) Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. J Proteome Res 6:2720–2731

    Article  CAS  PubMed  Google Scholar 

  55. Ouali A, Gagaoua M, Boudida Y, Becila S, Boudjellal A, Herrera-Mendez CH et al (2013) Biomarkers of meat tenderness: present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci 95:854–870

    Article  CAS  PubMed  Google Scholar 

  56. Herrera-Mendez CH, Becila S, Boudjellal A, Ouali A (2006) Meat ageing: reconsideration of the current concept. Trends Food Sci Technol 17:394–405

    Article  CAS  Google Scholar 

  57. Kim NK, Cho S, Lee SH, Park HR, Lee CS, Cho YM et al (2008) Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci 80:1068–1073

    Article  CAS  PubMed  Google Scholar 

  58. Laville E, Sayd T, Morzel M, Blinet S, Chambon C, Lepetit J et al (2009) Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. J Agric Food Chem 57:10755–10764

    Article  CAS  PubMed  Google Scholar 

  59. Polati R, Menini M, Robotti E, Millioni R, Marengo E, Novelli E et al (2012) Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chem 135:2052–2069

    Article  CAS  PubMed  Google Scholar 

  60. Joseph P, Suman SP, Rentfrow G, Li S, Beach CM (2012) Proteomics of muscle-specific beef color stability. J Agric Food Chem 60:3196–3203

    Article  CAS  PubMed  Google Scholar 

  61. Sayd T, Morzel M, Chambon C, Franck M, Figwer P, Larzul C et al (2006) Proteome analysis of the sarcoplasmic fraction of pig semimembranosus muscle: implications on meat color development. J Agric Food Chem 54:2732–2737

    Article  CAS  PubMed  Google Scholar 

  62. Kim N-K, Lee S-H, Cho Y-M, Son E-S, Kim K-Y, Lee C-S et al (2009) Proteome analysis of the m. longissimus dorsi between fattening stages in Hanwoo steer. BMB Rep 42:433–438

    Article  CAS  PubMed  Google Scholar 

  63. De Liu X, Jayasena DD, Jung Y, Jung S, Kang BS, Heo KN et al (2012) Differential proteome analysis of breast and thigh muscles between korean native chickens and commercial broilers. Asian-Australas J Anim Sci 25:895–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zanetti E, Molette C, Chambon C, Pinguet J, Rémignon H, Cassandro M (2011) Using 2-DE for the differentiation of local chicken breeds. Proteomics 11:2613–2619

    Article  CAS  PubMed  Google Scholar 

  65. Sentandreu MA, Fraser PD, Halket J, Patel R, Bramley PM (2010) A proteomic-based approach for detection of chicken in meat mixes. J Proteome Res 9:3374–3383

    Article  CAS  PubMed  Google Scholar 

  66. Kinkead R, Elliott C, Cannizzo F, Biolatti B, Mooney M (2015) Proteomic identification of plasma proteins as markers of growth promoter abuse in cattle. Anal Bioanal Chem 407:4495–4507

    Article  CAS  PubMed  Google Scholar 

  67. Affolter M, Grass L, Vanrobaeys F, Casado B, Kussmann M (2010) Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. J Proteomics 73:1079–1088

    Article  CAS  PubMed  Google Scholar 

  68. Tacoma R, Fields J, Ebenstein DB et al (2015) Characterization of the bovine milk proteome in early-lactation Holstein and Jersey breeds of dairy cows. J Proteomics 130:200–210

    Google Scholar 

  69. Roncada P, Piras C, Soggiu A, Turk R, Urbani A, Bonizzi L (2012) Farm animal milk proteomics. J Proteomics 75:4259–4274

    Article  CAS  PubMed  Google Scholar 

  70. Sui S, Zhao J, Wang J et al (2014) Comparative proteomics of milk fat globule membrane proteins from transgenic cloned cattle. PLoS ONE 9:1–12

    Google Scholar 

  71. Abd El-Salam MH (2014) Application of proteomics to the areas of milk production, processing and quality control—a review. Int J Dairy Technol 67:153–166

    Article  CAS  Google Scholar 

  72. Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics—a review. J Proteomics 74:282–293

    Article  CAS  PubMed  Google Scholar 

  73. Caroli A, Rizzi R, Lühken G, Erhardt G (2010) Short communication: milk protein genetic variation and casein haplotype structure in the original Pinzgauer cattle. J Dairy Sci 93:1260–1265

    Article  CAS  PubMed  Google Scholar 

  74. Singh K, Erdman RA, Swanson KM, Molenaar AJ, Maqbool NJ, Wheeler TT et al (2010) Epigenetic regulation of milk production in dairy cows. J Mammary Gland Biol Neoplasia 15:101–112

    Article  PubMed  Google Scholar 

  75. Lu J, Antunes Fernandes E, Páez Cano AE, Vinitwatanakhun J, Boeren S, Van Hooijdonk T et al (2013) Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. J Proteome Res 12:3288–3296

    Article  CAS  PubMed  Google Scholar 

  76. Raemy A, Meylan M, Casati S, Gaia V, Berchtold B, Boss R et al (2013) Phenotypic and genotypic identification of streptococci and related bacteria isolated from bovine intramammary infections. Acta Vet Scand 55:53

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sospedra I, Soler C, Mañes J, Soriano JM (2011) Analysis of staphylococcal enterotoxin A in milk by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Anal Bioanal Chem 400:1525–1531

    Article  CAS  PubMed  Google Scholar 

  78. Dušková M, Šedo O, Kšicová K, Zdráhal Z, Karpíšková R (2012) Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int J Food Microbiol 159:107–114

    Article  PubMed  CAS  Google Scholar 

  79. Jadhav S, Sevior D, Bhave M, Palombo EA (2014) Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF mass spectrometry. J Proteomics 97:100–106

    Article  CAS  PubMed  Google Scholar 

  80. Jadhav S, Gulati V, Fox EM, Karpe A, Beale DJ, Sevior D et al (2015) Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry. Int J Food Microbiol 202:1–9

    Article  CAS  PubMed  Google Scholar 

  81. Halasa T, Huijps K, Østerås O, Hogeveen H (2007) Economic effects of bovine mastitis and mastitis management: a review. Vet Q 29:18–31

    Article  CAS  PubMed  Google Scholar 

  82. Miller G, Bartlett P, Lance S, Anderson J, Heider LE (1993) Costs of clinical mastitis and mastitis prevention in dairy herds. J Am Vet Med Assoc 202:1230–1236

    CAS  PubMed  Google Scholar 

  83. De Mol R, Ouweltjes W (2001) Detection model for mastitis in cows milked in an automatic milking system. Prev Vet Med 49:71–82

    Article  PubMed  Google Scholar 

  84. Kamphuis C, Sherlock R, Jago J, Mein G, Hogeveen H (2008) Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count. J Dairy Sci 91:4560–4570

    Article  CAS  PubMed  Google Scholar 

  85. Chagunda M, Friggens N, Rasmussen MD, Larsen T (2006) A model for detection of individual cow mastitis based on an indicator measured in milk. J Dairy Sci 89:2980–2998

    Article  CAS  PubMed  Google Scholar 

  86. Ibeagha-Awemu EM, Ibeagha AE, Messier S, Zhao X (2010) Proteomics, genomics, and pathway analyses of Escherichia coli and Staphylococcus aureus infected milk whey reveal molecular pathways and networks involved in mastitis. J Proteome Res 9:4604–4619

    Article  CAS  PubMed  Google Scholar 

  87. Larsen L, Hinz K, Jørgensen A, Møller H, Wellnitz O, Bruckmaier R et al (2010) Proteomic and peptidomic study of proteolysis in quarter milk after infusion with lipoteichoic acid from Staphylococcus aureus. J Dairy Sci 93:5613–5626

    Article  CAS  PubMed  Google Scholar 

  88. Anton M, Nau F, Nys Y (2006) Bioactive egg components and their potential uses. World’s Poult Sci J 62:429–438

    Article  Google Scholar 

  89. Mine Y, Kovacs-Nolan J (2006) New insights in biologically active proteins and peptides derived from hen egg. World’s Poult Sci J 62:87–96

    Article  Google Scholar 

  90. Mine Y (2007) Egg proteins and peptides in human health-chemistry, bioactivity and production. Curr Pharm Des 13:875–884

    Article  CAS  PubMed  Google Scholar 

  91. Mann K, Mann M (2008) The chicken egg yolk plasma and granule proteomes. Proteomics 8:178–191

    Article  CAS  PubMed  Google Scholar 

  92. Farinazzo A, Restuccia U, Bachi A, Guerrier L, Fortis F, Boschetti E et al (2009) Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. J Chromatogr A 1216:1241–1252

    Article  CAS  PubMed  Google Scholar 

  93. Guérin-Dubiard C, Pasco M, Mollé D, Désert C, Croguennec T, Nau F (2006) Proteomic analysis of hen egg white. J Agric Food Chem 54:3901–3910

    Article  PubMed  CAS  Google Scholar 

  94. Mann K, Mann M (2011) In-depth analysis of the chicken egg white proteome using an LTQ orbitrap velos. Proteome Sci 9:1–6

    Article  CAS  Google Scholar 

  95. Omana DA, Liang Y, Kav NNV, Wu J (2011) Proteomic analysis of egg white proteins during storage. Proteomics 11:144–153

    Article  CAS  PubMed  Google Scholar 

  96. Qiu N, Ma M, Zhao L, Liu W, Li Y, Mine Y (2012) Comparative proteomic analysis of egg white proteins under various storage temperatures. J Agric Food Chem 60:7746–7753

    Article  CAS  PubMed  Google Scholar 

  97. Mikšík I, Sedláková P, Lacinová K, Pataridis S, Eckhardt A (2010) Determination of insoluble avian eggshell matrix proteins. Anal Bioanal Chem 397:205–214

    Article  PubMed  CAS  Google Scholar 

  98. Rose-Martel M, Du J, Hincke MT (2012) Proteomic analysis provides new insight into the chicken eggshell cuticle. J Proteomics 75:2697–2706

    Article  CAS  PubMed  Google Scholar 

  99. Marco-Ramell A, De Almeida A, Cristobal S et al (2016) Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. Mol BioSyst 12:2024–2035

    Google Scholar 

  100. Bonizzi L, Roncada P (2007) Welfare and immune response. Vet Res Commun 31:97–102

    Article  PubMed  Google Scholar 

  101. Mackenzie S (2013) Behaviour, individual variation and immunity. Fish Shellfish Immunol 6:1663

    Article  Google Scholar 

  102. Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243–251

    Article  CAS  PubMed  Google Scholar 

  103. Christensen L, Ertbjerg P, Løje H, Risbo J, Van Den Berg FW, Christensen M (2013) Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low temperatures for prolonged times. Meat Sci 93:787–795

    Article  PubMed  Google Scholar 

  104. Aguayo-Ulloa L, Pascual-Alonso M, Campo M, Olleta J, Villarroel M, Pizarro D et al (2014) Effects of an enriched housing environment on sensory aspects and fatty-acid composition of the longissimus muscle of light-weight finished lambs. Meat Sci 97:490–496

    Article  CAS  PubMed  Google Scholar 

  105. Mormède P, Andanson S, Aupérin B, Beerda B, Guémené D, Malmkvist J et al (2007) Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol Behav 92:317–339

    Article  PubMed  CAS  Google Scholar 

  106. Marco-Ramell A, Pato R, Peña R, Saco Y, Manteca X, Ruiz De La Torre JL et al (2011) Identification of serum stress biomarkers in pigs housed at different stocking densities. Vet J 190:e66–e71

    Article  CAS  PubMed  Google Scholar 

  107. Cordeiro OD, Silva TS, Alves RN, Costas B, Wulff T, Richard N et al (2012) Changes in liver proteome expression of Senegalese sole (Solea senegalensis) in response to repeated handling stress. Mar Biotechnol 14:714–729

    Article  CAS  PubMed  Google Scholar 

  108. Cruzen S, Pearce S, Baumgard L, Gabler N, Huff-Lonergan E, Lonergan S (2015) Proteomic changes to the sarcoplasmic fraction of predominantly red or white muscle following acute heat stress. J Proteomics 128:141–153

    Article  CAS  PubMed  Google Scholar 

  109. Marco-Ramell A, Arroyo L, Saco Y, García-Heredia A, Camps J, Fina M et al (2012) Proteomic analysis reveals oxidative stress response as the main adaptative physiological mechanism in cows under different production systems. J Proteomics 75:4399–4411

    Article  CAS  PubMed  Google Scholar 

  110. Ibarz A, Martín-Pérez M, Blasco J, Bellido D, De Oliveira E, Fernández-Borràs J (2010) Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 10:963–975

    CAS  PubMed  Google Scholar 

  111. Alves RN, Cordeiro O, Silva TS, Richard N, De Vareilles M, Marino G et al (2010) Metabolic molecular indicators of chronic stress in gilthead seabream (Sparus aurata) using comparative proteomics. Aquaculture 299:57–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Oskoueian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oskoueian, E., Mullen, W., Albalat, A. (2016). Proteomic Applications for Farm Animal Management. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-43275-5_9

Download citation

Publish with us

Policies and ethics