Skip to main content

Unraveling the Chemical Interactions of Fungal Endophytes for Exploitation as Microbial Factories

  • Chapter
  • First Online:
Fungal Applications in Sustainable Environmental Biotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Endophytic fungi are a group of mutualistic fungi harbored in plant tissues that are known to provide a plethora of fitness benefits to host plants. It is now firmly established that fungal endophytes have a remarkable capability to produce bioactive secondary metabolites including valuable pharmaceutically relevant agents. Unfortunately, efforts to utilize endophytic fungi as sustainable microbial resources for industrial production of compounds have not yet been successful. Recent studies have revealed that endophytic fungi not only interact with their host plant but also engage in complex communication strategies with associated macro- and microorganisms in order to survive and function in their natural habitat. These multifaceted interactions are difficult to introduce and maintain in vitro under artificial fermentation conditions in the laboratory. Our emerging knowledge on the complex interaction between endophytic fungi and associated organisms as well as the host plants provides a silver lining toward industrial exploitation of endophytes. Herein, we highlight the importance of endophytes (particularly endophytic fungi) in plant-microbe associations and discuss future strategies that might be employed to investigate the chemical communication within endophytic microbial communities, which can lead the way toward sustainable industrial production of important compounds using endophytic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi—a review. Med Mycol 50:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabiodopsis Interactome Mapping Consortium (2011) Evidence for network evolution in an Arbidopsis interactome map. Science 333:601–607

    Article  Google Scholar 

  • Arkin AP, Schaffer DV (2011) Network news: innovations in 21st century systems biology. Cell 144:844–849

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J et al (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Bandara HMHN, Lam OLT, Jin LJ, Samaranayake L (2012) Microbial chemical signaling: a current perspective. Crit Rev Microbiol 38:217–249

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Schumpp O, Bohni N, Monod M, Gindro K, Wolfender JL (2013) De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. J Nat Prod 76:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  • Cano J, Guarro J, Gené J (2004) Molecular and morphological identification of Colletotrichum species of clinical interest. J Clin Microbiol 42:2450–2454

    Article  PubMed  PubMed Central  Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540

    Article  CAS  PubMed  Google Scholar 

  • Christian N, Whitaker BK, Clay K (2015) Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 6:869

    Article  PubMed  PubMed Central  Google Scholar 

  • Clay K, Cheplick GP (1989) Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). J Chem Ecol 15:169–182

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920

    Article  CAS  PubMed  Google Scholar 

  • Dandekar AA, Chugani S, Greenberg EP (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science 338:264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Wu J, Tao F, Zhang LH (2011) Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem Rev 111:160–173

    Article  CAS  PubMed  Google Scholar 

  • Dong L-H, Fan S-W, Ling Q-Z, Huang B-B, Wei Z-J (2014) Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J Microbiol Biotechnol 30:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195

    Article  CAS  PubMed  Google Scholar 

  • Eldar A (2011) Social conflict drives the evolutionary divergence of quorum sensing. Proc Natl Acad Sci 108:13635–13640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH (2014) Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J Nat Prod 77:193–199

    Article  CAS  PubMed  Google Scholar 

  • Esquenazi E, Yang YL, Watrous J, Gerwick WH, Dorrestein PC (2009) Imaging mass spectrometry of natural products. Nat Prod Rep 26:1521–1534

    Article  CAS  PubMed  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Al-Quntar A, Polacheck I, Friedman M, Steinberg D (2014) Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans. PLoS ONE 9:e93225

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: Advances and perspectives. J Antibiot (Tokyo) 63:460–467

    Article  CAS  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  CAS  PubMed  Google Scholar 

  • Goh CH, Vallejos DFV, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grice CM, Bertuzzi M, Bignell EM (2013) Receptor-mediated signaling in Aspergillus fumigatus. Front Microbiol 4:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Pan J, Zhu X (2013) Taxol producing fungi. Natural products. Springer, Berlin Heidelberg, pp 2797–2812

    Chapter  Google Scholar 

  • Howat S, Park B, Oh IS, Jin Y-W, Lee E-K, Loake GJ (2014) Paclitaxel: biosynthesis, production and future prospects. N Biotechnol 31:242–245

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorganic Med Chem 9:2237–2242

    Article  CAS  Google Scholar 

  • Huxtable RJ (1992) The pharmacology of extinction. J Ethnopharmacol 37:1–11

    Article  CAS  PubMed  Google Scholar 

  • Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau RB (2005) Coexpression in yeast of taxus cytochrome P450 reductase with cytochrome p450 oxygenases involved in taxol biosynthesis. Biotechnol Bioeng 89:588–598

    Article  CAS  PubMed  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kim G, LeBlanc ML, Wafula EK, DePamphilis CW, Westwood JH (2014) Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345:808–811

    Article  CAS  PubMed  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8:e71805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zühlke S, KoÅ¡uth J, ÄŒellárová E, Spiteller M (2009a) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009b) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshöft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamshöft M, Kusari P, Gottfried S, Zühlke S, Louven K et al (2014a) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014b) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014c) Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311

    Article  CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99:5383–5390

    Article  CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Eckelmann D, Zühlke S, Kayser O, Spiteller M (2016) Cross-species biosynthesis of maytansine in Maytenus serrata. RSC Adv 6:10011–10016

    Article  CAS  Google Scholar 

  • Lahrmann U, Zuccaro A (2012) Opprimo ergo sum–evasion and suppression in the root endophytic fungus Piriformospora indica. Mol Plant Microbe Interact 25:727–737

    Article  CAS  PubMed  Google Scholar 

  • Li SM (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78

    Article  PubMed  Google Scholar 

  • Li YF, Tsai KJS, Harvey CJB, Li JJ, Ary BE, Berlew EE et al (2016) Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol. doi:10.1016/j.fgb.2016.01.012

    Article  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  Google Scholar 

  • Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B et al (2015) Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 44:5265–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons PC, Plattner RD, Bacon CW (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 232:487–489

    Article  CAS  PubMed  Google Scholar 

  • Mallick EM, Bennett RJ (2013) Sensing of the microbial neighborhood by Candida albicans. PLoS Pathog 9:e1003661

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  • Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    Article  CAS  PubMed  Google Scholar 

  • Nongkhlaw FMW, Joshi SR (2016) Horizontal gene transfer of the non-ribosomal peptide synthetase gene among endophytic and epiphytic bacteria associated with ethnomedicinal plants. Curr Microbiol 72:1–11

    Article  CAS  PubMed  Google Scholar 

  • Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy R, Sathiyabama M (2014) Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br. Appl Biochem Biotechnol 172:3141–3152

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133

    Google Scholar 

  • Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  CAS  PubMed  Google Scholar 

  • Puri SG, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Ranson JC, Rodriguez RJ (1999) Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol Plant-Microbe Interact 12:969–975

    Article  CAS  Google Scholar 

  • Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Micro 44:203–209

    Article  CAS  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968

    Article  CAS  PubMed  Google Scholar 

  • Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci 112:E5013–E5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599

    Article  CAS  PubMed  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Zhao X, Wang W, Zhang G, Cosoveanu A, Ahn Y et al (2014) Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30:3101–3109

    Article  CAS  PubMed  Google Scholar 

  • Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342

    Article  CAS  PubMed  Google Scholar 

  • Soen Y (2014) Environmental disruption of host-microbe co-adaptation as a potential driving force in evolution. Front Genet 5:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Su J, Yang M (2015) Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Nat Prod Res 29:1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568

    Article  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Takemoto D, Chujo T, Scott B (2012) Fungal endophytes of grasses. Curr Opin Plant Biol 15:462–468

    Article  CAS  PubMed  Google Scholar 

  • von Maltzahn G, Flavell RB, Toledo GV, Leff JW, Samayoa P, Marquez LM et al. (2016) Endophytes, associated compositions, and methods of use thereof. United States Patent Application 20160021891

    Google Scholar 

  • Wada-Katsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang A, Schal C (2015) Gut bacteria mediate aggregation in the German cockroach. Proc Natl Acad Sci 112:15678–15683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011) Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68:336–341

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Kusari S, Sezgin S, Lamshöft M, Kusari P, Kayser O et al (2015) Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl Microbiol Biotechnol 99:7651–7662

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Kusari S, Laatsch H, Golz C, Kusari P, Strohmann C et al (2016) Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J Nat Prod 79:704–710

    Google Scholar 

  • Wever WJ, Bogart JW, Baccile JA, Chan AN, Schroeder FC, Bowers AA (2015) Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4 + 2] cycloaddition. J Am Chem Soc 137:3494–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew. Taxus x media. BMC Microbiol 13:71

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J et al (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YL, Xu Y, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youk H, Lim WA (2014) Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 343:1242782

    Article  PubMed  PubMed Central  Google Scholar 

  • Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT et al (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wei X, Wang J (2012) Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 83:1500–1505

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wang W, Zhang X, Xia Q, Zhao X, Ahn Y et al (2015) De Novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A. PLoS ONE 10:e0120809

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XM, Wang ZQ, Shu SH, Wang WJ, Xu HJ, Ahn YJ et al (2013) Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PLoS ONE 8:e61777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuck KM, Shipley S, Newman DJ (2011) Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat Prod 74:1653–1657

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Souvik Kusari or Michael Spiteller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, WX., Kusari, S., Spiteller, M. (2016). Unraveling the Chemical Interactions of Fungal Endophytes for Exploitation as Microbial Factories. In: Purchase, D. (eds) Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9_14

Download citation

Publish with us

Policies and ethics