Skip to main content

Lipid-Based Formulations

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Abstract

The understanding in design, classification, and characterization of Lipid-Based Formulations (LBFs) has evolved greatly over the last two decades. LBFs include simple lipid solutions, self-emulsifying and self-microemulsifying drug delivery systems (SEDDS and SMEDDS), and surfactant-cosolvent solutions, designated as Type I to IV systems depending on their composition and properties. Notably, this chapter details several mechanistic studies that have helped to elucidate the pathways involved for increased absorption of poorly soluble drugs, which have aided in the design and standardization of LBF in vitro characterization methods. Much of this work has evolved through the recent Lipid Formulations Classification System Consortium, an academic-industrial group of experts and stakeholders that have worked to advance the state of the art. The role of sustained supersaturation, triggered by LBF dilution and digestion, in enhancing drug absorption is discussed along with formulation variables intended for this purpose. Finally, a short review is provided on solidification of LBFs and the benefits and challenges associated with the techniques involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal V, Siddiqui A, Ali H, Nazzal S (2009) Dissolution and powder flow characterization of solid self-emulsified drug delivery system (SEDDS). Int J Pharm 366(1–2):44–52. doi:10.1016/j.ijpharm.2008.08.046

    Article  CAS  PubMed  Google Scholar 

  • Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, Porter CJ (2012) Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm 9(7):2063–2079. doi:10.1021/mp300164u

    Article  CAS  PubMed  Google Scholar 

  • Bakala-N’Goma JC, Williams HD, Sassene PJ, Kleberg K, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Mullertz A, Pouton CW, Porter CJ, Carriere F (2015) Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. Lipolysis of representative formulations by gastric lipase. Pharm Res 32(4):1279–1287. doi:10.1007/s11095-014-1532-y

    Article  PubMed  Google Scholar 

  • Carriere F, Barrowman JA, Verger R, Laugier R (1993) Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105(3):876–888

    Article  CAS  PubMed  Google Scholar 

  • Constantinides PP, Wasan KM (2007) Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J Pharm Sci 96(2):235–248. doi:10.1002/jps.20780

    Article  CAS  PubMed  Google Scholar 

  • Dahan A, Hoffman A (2007) The effect of different lipid based formulations on the oral absorption of lipophilic drugs: the ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm 67(1):96–105. doi:10.1016/j.ejpb.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  • Dahan A, Hoffman A (2008) Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Controlled Release 129(1):1–10. doi:10.1016/j.jconrel.2008.03.021

    Article  CAS  Google Scholar 

  • Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL (2010) The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci 99(6):2739–2749. doi:10.1002/jps.22033

    Article  CAS  PubMed  Google Scholar 

  • Dening TJ, Rao S, Thomas N, Prestidge CA (2015) Novel nanostructured solid materials for modulating oral drug delivery from solid-state lipid-based drug delivery systems. AAPS J. doi:10.1208/s12248-015-9824-7

    PubMed  PubMed Central  Google Scholar 

  • Devraj R, Williams HD, Warren DB, Mohsin K, Porter CJ, Pouton CW (2013) In vitro assessment of drug-free and fenofibrate-containing lipid formulations using dispersion and digestion testing gives detailed insights into the likely fate of formulations in the intestine. Eur J Pharm Sci 49(4):748–760. doi:10.1016/j.ejps.2013.04.036

    Article  CAS  PubMed  Google Scholar 

  • Devraj R, Williams HD, Warren DB, Porter CJ, Pouton CW (2014) Choice of nonionic surfactant used to formulate type IIIA self-emulsifying drug delivery systems and the physicochemical properties of the drug have a pronounced influence on the degree of drug supersaturation that develops during in vitro digestion. J Pharm Sci 103(4):1050–1063. doi:10.1002/jps.23856

    Article  CAS  PubMed  Google Scholar 

  • Fernandez S, Jannin V, Rodier JD, Ritter N, Mahler B, Carriere F (2007) Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol, medium chain glycerides and PEG esters. Biochim Biophys Acta 1771(5):633–640. doi:10.1016/j.bbalip.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Morozowich W (2006) Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Delivery 3(1):97–110. doi:10.1517/17425247.3.1.97

    Article  CAS  Google Scholar 

  • Gao P, Morozowich W (2007) Case studies: rational development of self-emulsifying formulations for improving the oral bioavailability of poorly soluble, lipophilic drugs. Drugs Pharm Sci 170:273

    CAS  Google Scholar 

  • Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, Kuo MS, Hageman MJ (2003) Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci 92(12):2386–2398. doi:10.1002/jps.10511

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Guyton ME, Huang T, Bauer JM, Stefanski KJ, Lu Q (2004) Enhanced oral bioavailability of a poorly water soluble drug PNU-91325 by supersaturatable formulations. Drug Dev Ind Pharm 30(2):221–229. doi:10.1081/DDC-120028718

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Akrami A, Alvarez F, Hu J, Li L, Ma C, Surapaneni S (2009) Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. J Pharm Sci 98(2):516–528. doi:10.1002/jps.21451

    Article  CAS  PubMed  Google Scholar 

  • Gibson L (2007) Lipid-based excipients for oral drug delivery. Drugs Pharm Sci 170:33

    CAS  Google Scholar 

  • Goole J, Lindley DJ, Roth W, Carl SM, Amighi K, Kauffmann JM, Knipp GT (2010) The effects of excipients on transporter mediated absorption. Int J Pharm 393(1–2):17–31. doi:10.1016/j.ijpharm.2010.04.019

    Article  CAS  PubMed  Google Scholar 

  • Griffin BT, Kuentz M, Vertzoni M, Kostewicz ES, Fei Y, Faisal W, Stillhart C, O’Driscoll CM, Reppas C, Dressman JB (2014) Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipid-based formulations: case studies with fenofibrate. Eur J Pharm Biopharm 86(3):427–437. doi:10.1016/j.ejpb.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  • Gursoy RN, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58(3):173–182. doi:10.1016/j.biopha.2004.02.001

    Article  PubMed  Google Scholar 

  • Hansen T, Holm P, Schultz K (2004) Process characteristics and compaction of spray-dried emulsions containing a drug dissolved in lipid. Int J Pharm 287(1–2):55–66. doi:10.1016/j.ijpharm.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  • Jannin V, Musakhanian J, Marchaud D (2008) Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev 60(6):734–746. doi:10.1016/j.addr.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Handa T, Alonzo DE, Taylor LS (2008) Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 70(2):493–499. doi:10.1016/j.ejpb.2008.05.023

    Article  CAS  PubMed  Google Scholar 

  • Lengsfeld H, Beaumier-Gallon G, Chahinian H, De Caro A, Verger R, Laugier R, Carrière F (2006) Physiology of gastrointestinal lipolysis and therapeutical use of lipases and digestive lipase inhibitors. Lipases and phospholipases in drug development: from biochemistry to molecular pharmacology

    Google Scholar 

  • Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, Amidon GL, Dahan A (2011) The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm 8(5):1848–1856. doi:10.1021/mp200181v

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Beig A, Carr RA, Webster GK, Dahan A (2012) The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm 9(3):581–590. doi:10.1021/mp200460u

    Article  CAS  PubMed  Google Scholar 

  • O’Driscoll CM (2002) Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci 15(5):405–415

    Article  PubMed  Google Scholar 

  • Patel JP, Brocks DR (2009) The effect of oral lipids and circulating lipoproteins on the metabolism of drugs. Expert Opin Drug Metab Toxicol 5(11):1385–1398. doi:10.1517/17425250903176439

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW (2000) Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 11(Suppl 2):S93–S98

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29(3–4):278–287. doi:10.1016/j.ejps.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  • Sassene P, Kleberg K, Williams HD, Bakala-N’Goma JC, Carriere F, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Porter CJ, Pouton CW, Mullertz A (2014) Toward the establishment of standardized in vitro tests for lipid-based formulations, part 6: effects of varying pancreatin and calcium levels. AAPS J 16(6):1344–1357. doi:10.1208/s12248-014-9672-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sek L, Porter CJ, Kaukonen AM, Charman WN (2002) Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol 54(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Shah AV, Serajuddin AT (2012) Development of solid self-emulsifying drug delivery system (SEDDS) I: use of poloxamer 188 as both solidifying and emulsifying agent for lipids. Pharm Res 29(10):2817–2832. doi:10.1007/s11095-012-0704-x

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Gao P, Gong Y, Ping H (2010) Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm 7(5):1458–1465. doi:10.1021/mp100114a

    Article  CAS  PubMed  Google Scholar 

  • Strickley RG (2004) Solubilizing excipients in oral and injectable formulations. Pharm Res 21(2):201–230

    Article  CAS  PubMed  Google Scholar 

  • Tan A, Rao S, Prestidge CA (2013) Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res 30(12):2993–3017. doi:10.1007/s11095-013-1107-3

    Article  CAS  PubMed  Google Scholar 

  • Tran PH, Tran TT, Piao ZZ, Vo TV, Park JB, Lim J, Oh KT, Rhee YS, Lee BJ (2013) Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion. Int J Pharm 450(1–2):79–86. doi:10.1016/j.ijpharm.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  • Trevaskis NL, Porter CJ, Charman WN (2006) An examination of the interplay between enterocyte-based metabolism and lymphatic drug transport in the rat. Drug Metab Dispos 34(5):729–733. doi:10.1124/dmd.105.008102

    Article  CAS  PubMed  Google Scholar 

  • Trevaskis NL, Charman WN, Porter CJ (2008) Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 60(6):702–716. doi:10.1016/j.addr.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Higashi K, Yamamoto K, Moribe K (2013) Inhibitory effect of hydroxypropyl methylcellulose acetate succinate on drug recrystallization from a supersaturated solution assessed using nuclear magnetic resonance measurements. Mol Pharm 10(10):3801–3811. doi:10.1021/mp400278j

    Article  CAS  PubMed  Google Scholar 

  • Van Speybroeck M, Williams HD, Nguyen TH, Anby MU, Porter CJ, Augustijns P (2012) Incomplete desorption of liquid excipients reduces the in vitro and in vivo performance of self-emulsifying drug delivery systems solidified by adsorption onto an inorganic mesoporous carrier. Mol Pharm 9(9):2750–2760. doi:10.1021/mp300298z

    Article  PubMed  Google Scholar 

  • Warren DB, Benameur H, Porter CJ, Pouton CW (2010) Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target 18(10):704–731

    Article  CAS  PubMed  Google Scholar 

  • Williams HD, Anby MU, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Carriere F, Mullertz A, Pouton CW, Porter CJ (2012a) Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion. Mol Pharm 9(11):3286–3300. doi:10.1021/mp300331z

    Article  CAS  PubMed  Google Scholar 

  • Williams HD, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Carriere F, Mullertz A, Porter CJ, Pouton CW (2012b) Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci 101(9):3360–3380. doi:10.1002/jps.23205

    Article  CAS  PubMed  Google Scholar 

  • Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, Vertommen J, Blundell R, Benameur H, Mullertz A, Pouton CW, Porter CJ, Consortium L (2013a) Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res 30(12):3059–3076. doi:10.1007/s11095-013-1038-z

    Article  CAS  PubMed  Google Scholar 

  • Williams HD, Trevaskis NL, Yeap YY, Anby MU, Pouton CW, Porter CJ (2013b) Lipid-based formulations and drug supersaturation: harnessing the unique benefits of the lipid digestion/absorption pathway. Pharm Res 30(12):2976–2992. doi:10.1007/s11095-013-1126-0

    Article  CAS  PubMed  Google Scholar 

  • Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, Vertommen J, Blundell R, Benameur H, Mullertz A, Porter CJ, Pouton CW, Communicated on Behalf of the LC (2014a) Toward the establishment of standardized in vitro tests for lipid-based formulations, part 4: proposing a new lipid formulation performance classification system. J Pharm Sci 103(8):2441–2455. doi:10.1002/jps.24067

    Article  CAS  PubMed  Google Scholar 

  • Williams HD, Van Speybroeck M, Augustijns P, Porter CJ (2014b) Lipid-based formulations solidified via adsorption onto the mesoporous carrier Neusilin(R) US2: effect of drug type and formulation composition on in vitro pharmaceutical performance. J Pharm Sci 103(6):1734–1746. doi:10.1002/jps.23970

    Article  CAS  PubMed  Google Scholar 

  • Yeap YY, Trevaskis NL, Quach T, Tso P, Charman WN, Porter CJ (2013) Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation. Mol Pharm 10(5):1874–1889. doi:10.1021/mp3006566

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin LaFountaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

LaFountaine, J., Gao, P., Williams, R.O. (2016). Lipid-Based Formulations. In: Williams III, R., Watts, A., Miller, D. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-42609-9_7

Download citation

Publish with us

Policies and ethics