Skip to main content

DNA Damage, Response, and Repair in Plants Under Genotoxic Stress

  • Chapter
  • First Online:
Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2

Abstract

Several environmental and endogenous factors create a variety of lesions in the genome of an organism. These lesions could potentially be genotoxic and might lead to mutations, which could be lethal. All organisms exhibit a prompt response against DNA damage, which is referred to as the DNA damage response. The existence of elaborate, evolutionarily conserved systems to repair the damage, mostly at the expense of huge amount of energy, points to the importance of safeguarding the integrity of DNA. Most of the current understanding about DNA damage response and repair pathways has been distilled through decades of research on prokaryotes, yeast, and mammalian systems. The response to genotoxic stresses and the repair mechanisms involved in plants has only recently begun to be investigated. Herein, we present a comprehensive account of the types of DNA damage, the DNA damage response, and the repair pathways with reference to the recent insights gained from the plants. Although, the underlying common theme runs through to the plants, the mechanisms in plants demonstrate some unique features. Also, there are several missing links that need to be unravelled for inferring a complete picture. A thorough understanding of the mechanisms involved would aid in devising strategies to help plants avoid irreparable damages to their genome upon exposure to genotoxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akutsu N, Iijima K, Hinata T, Tauchi H (2007) Characterization of the plant homolog of Nijmegen breakage syndrome 1: involvement in DNA repair and recombination. Biochem Biophys Res Commun 353:394–398

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Amiard S, Charbonnel C, Allain E, Depeiges A, White CI, Gallego ME (2010) Distinct roles of the ATR kinase and the MRE11-RAD50-NBS1 complex in the maintenance of chromosomal stability in Arabidopsis. Plant Cell 22:3020–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  CAS  PubMed  Google Scholar 

  • Ball HL, Cortez D (2005) AtRIP oligomerization is required for ATR-dependent checkpoint signaling. J Biol Chem 280:31390–31396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belli M, Sapora O, Tabocchini MA (2002) Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J Radiat Res 43:S13-9

    Google Scholar 

  • Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, Sancar A (2003) Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRAD17-replication factor C complex in vitro. Proc Natl Acad Sci U S A 100:1633–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedermann S, Mooney S, Hellmann H (2011) Recognition and repair pathways of damaged DNA in higher plants. In: Chen C (ed) Selected topics in DNA repair. InTech, Rijeka, pp 201–236

    Google Scholar 

  • Britt A (1999) Molecular genetics of DNA repair in higher plants. Trends Plant Biol 4:20–25

    Article  CAS  Google Scholar 

  • Christians FC, Hanawalt PC (1993) Lack of transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry 32:10512–10518

    Article  CAS  PubMed  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimprich KA, Cortez D (2008) Atr: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citterio E, van den Boom V, Schnitzler G, Kanaar R, Bonte E, Kingston RE, Hoeijmakers JHJ (2000) RNA polymerase II elongation complexes containing the Cockayne’s syndrome group B protein interacts with a molecular complex containing the transcription factor IIH component Xeroderma pigmentosum B and p62. Mol Cell Biol 20:7643–7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coin F, Bergmann E, Bravard AT, Egly JM (1999) Mutations in XPB and XPD helicases found in Xeroderma pigmentosum patients impair the transcription function of TFII-H. EMBO J 18:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RM, Morgante PG, Berra CM, Nakabashi M, Bruneau D, Bouchez D, Sweder KS, Van Sluys MA, Menck CF (2001) The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J 28:385–395

    Article  CAS  PubMed  Google Scholar 

  • Costa RMA, Chigancas V, Galhardo RS, Carvalho H, Menck CFM (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85:1083–1099

    Article  CAS  PubMed  Google Scholar 

  • Coverley D, Kenny MK, Lane DP, Wood RD (1992) A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res 20:3873–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culligan K, Tissier A, Britt A (2004) ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16:1091–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB (2006) ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J 48:947–961

    Article  CAS  PubMed  Google Scholar 

  • Dany AL, Tissier A (2001) A functional OGG1 homologue from Arabidopsis thaliana. Mol Genet Genom 265:293–301

    Article  CAS  Google Scholar 

  • Davis CD, Uthus EO, Finley JW (2000) Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr 130:2903–2909

    CAS  PubMed  Google Scholar 

  • de Schutter K, Joubes J, Cools T, Verkest A, Corellou F, Babiychuk E, van Der Schueren E, Beeckman T, Kushnir S, Inze D et al (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demple B, Harrison L (1994) Repair of oxidative damage to DNA—enzymology and biology. Annu Rev Biochem 63:915–948

    Article  CAS  PubMed  Google Scholar 

  • Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM (2009) H2AX: functional roles and potential applications. Chromosoma 118:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubest S, Gallego ME, White CI (2004) Roles of the AtErcc1 protein in recombination. Plant J 39:334–342

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Fellows J, Coffer A, Wood RD (1997) Open complex formation around the lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J 16:625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortini P, Pascucci B, Parlanti E, Sobol RW, Wilson SH, Dogliotti E (1998) Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37:3575–3580

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM Press, Washington, DC

    Google Scholar 

  • Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and rad3-related. Mol Biol Cell 16:2566–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromme JC, Banerjee A, Verdine GL (2004) DNA glycosylase recognition and catalysis. Curr Opin Struct Biol 14:43–49

    Article  CAS  PubMed  Google Scholar 

  • Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci U S A 106:20984–20988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuss JO, Cooper PK (2006) DNA repair: dynamic defenders against cancer and aging. PLoS Biol 4:e203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallego ME, White CI (2001) Rad50 function is essential for telomere maintenance in Arabidopsis. Proc Natl Acad Sci U S A 98:1711–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A (2003) AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia V, Furuya K, Carr AM (2005) Identification and functional analysis of TOBP1 and its homologs. DNA Repair 4:1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ortiz MV, Ariza RR, Roldan-Arjona T (2001) An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol Biol 47:795–804

    Article  CAS  PubMed  Google Scholar 

  • Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J et al (2003) Ataxia-telangiectasia-mutated (atm) and nbs1-dependent phosphorylation of CHK1 on Ser-317 in response to ionizing radiation. J Biol Chem 278:14806–14811

    Article  CAS  PubMed  Google Scholar 

  • Gentil A, Margot A, Sarasin A (1984) Apurinic sites cause mutations in simian virus 40. Mutat Res 129:141–147

    Article  CAS  PubMed  Google Scholar 

  • Hartung HPF (1999) Isolation of the complete cDNA of the Mre11 homolog of Arabidopsis (accession no. Aj243822) indicates conservation of DNA recombination mechanisms between plants and other eucaryotes. Plant Physiol 121:312

    Google Scholar 

  • Heitzeberg F, Chen IP, Hartung F, Orel N, Angelis KJ, Puchta H (2004) The RAD17 homologue of Arabidopsis is involved in the regulation of DNA damage repair and homologous recombination. Plant J Cell Mol Biol 38:954–968

    Article  CAS  Google Scholar 

  • Helton ES, Chen X (2007) p53 modulation of the DNA damage response. J Cell Biochem 100:883–896

    Article  CAS  PubMed  Google Scholar 

  • Henner WD, Grunberg SM, Haseltine WA (1983) Enzyme action at 3′ termini of ionizing radiation-induced DNA strand breaks. J Biol Chem 258:15198–15205

    CAS  PubMed  Google Scholar 

  • Hidemal J, Kumagai T, Sutherland BM (2000) UV radiation-sensitive Norin 1 rice contains defective cyclobutane pyrimidine dimer photolyase. Plant Cell 12:1569–1578

    Article  Google Scholar 

  • Hidemal J, Taguchil T, Onol T, Teranishil M, Yamamoto K, Kumagai T (2007) Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation. Plant J 50:70–79

    Article  CAS  Google Scholar 

  • Hunting DJ, Gowans BJ, Dresler SL (1991) DNA polymerase delta mediate excision repair in growing cells damaged with ultraviolet radiation. Biochem Cell Biol 69:303–308

    Article  CAS  PubMed  Google Scholar 

  • Huang X-D, Dixon DG, Greenberg BM (1993) Impacts of UV radiation and photomodification on the toxicity of pahs to the higher plant Lemna gibba (duckweed). Environ Toxicol Chem 12:1067–1077

    Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Inze D, de Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  CAS  PubMed  Google Scholar 

  • Iovine B, Nino M, Irace C, Bevilacqua MA, Monfrecola G (2009) Ultraviolet B and A irradiation induces fibromodulin expression in human fibroblasts in vitro. Biochimie 91:364–372

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Inoue S, Yamamoto K, Kawanishi S (1993) 8-Hydroxydeoxyguanosine formation at the 5′ site of 5′-GG-3′ sequences in double-stranded DNA by UV radiation with riboflavin. J Biol Chem 268:13221–13227

    CAS  PubMed  Google Scholar 

  • Jiang CZ, Yee J, Mitchell D, Britt A (1997) Photorepair mutants of Arabidopsis. Proc Natl Acad Sci U S A 94:7441–7445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser G, Kleiner O, Beisswenger C, Batschauer A (2009) Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. Planta 230:505–515

    Article  CAS  PubMed  Google Scholar 

  • Kalbina I, Strid Å (2006) Supplementary ultraviolet-B irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes. Plant Cell Environ 29:754–763

    Article  CAS  PubMed  Google Scholar 

  • Karlsson-Rosenthal C, Millar JB (2006) Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol 16:285–292

    Article  CAS  PubMed  Google Scholar 

  • Kim MA, Kim HJ, Brown AL, Lee MY, Bae YS, Park JI, Kwak JY, Chung JH, Yun J (2007) Identification of novel substrates for human checkpoint kinase CHK1 and CHK2 through genome-wide screening using a consensus CHK phosphorylation motif. Exp Mol Med 39:205–212

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Furukawa T, Kasai N, Mori Y, Kitamoto HK, Sugawara F, Hashimoto J, Sakaguchi K (2003) Functional characterization of two flap endonuclease-1 homologues in rice. Gene 314:63–71

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T, Hashimoto J, Sakaguchi K (2004) DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 32:2760–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klungland A, Lindahl T (1997) Second pathway for completion of human DNA base excision-repair; reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16:3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai A, Kim SM, Dunphy WG (2004) Claspin and the activated form of ATR-ATRIP collaborate in the activation of CHK1. J Biol Chem 279:49599–49608

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto R, Masutani C, Sugasava K, Iwai S, Araki M, Uchida A, Mizukoshi T, Hanaoka F (2001) Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat Res 485:219–227

    Article  CAS  PubMed  Google Scholar 

  • Lafarge S (2003) Characterization of Arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1, strongly induced by gamma rays. Nucleic Acids Res 31:1148–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E, Zhang Y (2012) Regulating the reapers: activating metacaspases for programmed cell death. Trends Plant Sci 17:487–494

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286:1897–1905

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Hong SW, Escobar M, Vierling E, Mitchell DL, Mount DW, Hall JD (2003) Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth. Plant Physiol 132:1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maki H, Sekiguchi M (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355:273–275

    Article  CAS  PubMed  Google Scholar 

  • Manke IA, Lowery D, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639

    Article  CAS  PubMed  Google Scholar 

  • Mannuss A, Trapp O, Puchta H (2012) Gene regulation in response to DNA damage. Biochim Biophys Acta 1819:154–165

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Macías MI, Córdoba-Cañero D, Ariza RR, Roldán-Arjona T (2013) The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation (5-meC) excision, gap tailoring, and DNA ligation. J Biol Chem 288:5496–5505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathilde G, Ghislaine G, Daniel V, Georges P (2003) The Arabidopsis ME1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs. Plant J 35:465–475

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269:699–702

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates CHK2 in vivo and in vitro. Proc Natl Acad Sci U S A 97:10389–10394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan CH, Russell P (1995) Cell cycle regulation of human WEE1. EMBO J 14:2166–2175

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor WG (1999) DNA repair, DNA replication, and UV mutagenesis. J Invest Dermatol Symp Proc 4:1–5

    Article  CAS  Google Scholar 

  • Missura M, Buterin T, Hindges R, Hubscher U, Kasparkova J, Brabec V, Naegeli H (2001) Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J 20:3554–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell DL, Nairn RS (1989) The biology of the (6-4) photoproduct. Photochem Photobiol 49:805–819

    Article  CAS  PubMed  Google Scholar 

  • Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I (1995) Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80:1–20

    Article  Google Scholar 

  • Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A 103:13765–13770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy TM, Gao MJ (2001) Multiple forms of formamidopyrimidine-DNA glycosylase produced by alternative splicing in Arabidopsis thaliana. J Photochem Photobiol B 61:87–93

    Article  CAS  PubMed  Google Scholar 

  • Pang Q, Hays JB (1991) UV‐B‐inducible and temperature‐sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol 95:536–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28:128–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy R, Adamczewski JP, Seroz T, Vermeulen W, Tassan JP, Schaeffer L, Nigg EA, Hoeijmakers JH, Egly JM (1994) The M015 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Rupnik A, Lowndes NF, Grenon M (2010) Mrn and the race to the break. Chromosoma 119:115–135

    Article  PubMed  Google Scholar 

  • Sakamoto AN, Lan VT, Puripunyavanich V, Hase Y, Yokota Y, Shikazono N, Nakagawa M, Narumi I, Tanaka AA (2009) UVB-hypersensitive mutant in Arabidopsis thaliana is defective in the DNA damage response. Plant J Cell Mol Biol 60:509–517

    Article  CAS  Google Scholar 

  • Sancar A (2003) Structure and function of DNA photolyase and cryptochrome bluelight photoreceptors. Chem Rev 103:2203–2237

    Article  CAS  PubMed  Google Scholar 

  • Santerre A, Britt AB (1994) Cloning of a 3-methyladenine-DNA glycosylase from Arabidopsis thaliana. Proc Natl Acad Sci U S A 91:2240–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M, Sarasin A, Weeda G, Hoeijmakers JH, Egly JM (1994) The ERCC2/DNA repair protein is associated with class II BTF2/TFIIH transcription factor. EMBO J 13:2388–2392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz TF, Quatrano RS (1997) Characterization and expression of a rice RAD23 gene. Plant Mol Biol 34:557–562

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by mdm2. Cell 91:325–334

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Roy S, Choudhury SR, Sengupta DN (2010) DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice. BMC Genomics 11:443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sirbu BM, Cortez D (2013) DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 5(8):a012724. doi:10.1101/cshperspect.a012724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorensen CS, Syljuasen RG (2012) Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 40:477–486

    Article  CAS  PubMed  Google Scholar 

  • Spadafora ND, Doonan JH, Herbert RJ, Bitonti MB, Wallace E, Rogers HJ, Francis D (2011) Arabidopsis T-DNA insertional lines for cdc25 are hypersensitive to hydroxyurea but not to zeocin or salt stress. Ann Bot 107:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Stapleton AE, Thornber CS, Walbot V (1997) UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair. Plant Cell Environ 20:279–290

    Article  CAS  Google Scholar 

  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) Mdc1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966

    Article  CAS  PubMed  Google Scholar 

  • Stucki M, Jackson SP (2004) Mdc1/nfbd1: a key regulator of the DNA damage response in higher eukaryotes. DNA Rep 3:953–957

    Article  CAS  Google Scholar 

  • Sturm A, Lienhard S (1998) Two isoforms of plant Rad23 complement a UV-sensitive rad23 mutant in yeast. Plant J 13:815–821

    Article  CAS  PubMed  Google Scholar 

  • Sutherland BM, Takayanagi S, Sullivan JH, Sutherland JC (1996) Plant responses to changing environmental stress: cyclobutyl pyrimidine dimer repair in soybean leaves. Photochem Photobiol 64:464–468

    Article  CAS  Google Scholar 

  • Sweeney PR, Britt AB, Culligan KM (2009) The Arabidopsis ATRIP ortholog is required for a programmed response to replication inhibitors. Plant J Cell Mol Biol 60:518–526

    Article  CAS  Google Scholar 

  • Taira N, Yoshida K (2012) Post-translational modifications of p53 tumor suppressor: determinants of its functional targets. Histol Histopathol 27:437–443

    CAS  PubMed  Google Scholar 

  • Takahashi S, Nakajima N, Saji H, Kondo N (2002) Diurnal change of cucumber CPD photolyase gene (CsPHR) expression and its physiological role in growth under UV-B irradiation. Plant Cell Physiol 43:342–349

    Article  CAS  PubMed  Google Scholar 

  • Takashi Y, Kobayashi Y, Tanaka K, Tamura K (2009) Arabidopsis replication protein a 70a is required for DNA damage response and telomere length homeostasis. Plant Cell Physiol 50:1965–1976

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Murakami M, Nakajima N, Kondo N, Nikaido O, Takeuchi Y (1996) The photorepair of photoisomerization of DNA lesions in etiolated cucumber cotyledons after irradiation by UV-B depends on wavelength. Plant Cell Physiol 39:745–750

    Article  Google Scholar 

  • Taylor RM, Hamer MJ, Rosamond J, Bray CM (1998) Molecular cloning and functional analysis of the Arabidopsis thaliana DNA ligase I homologue. Plant J 14:75–81

    Google Scholar 

  • Teranishi M, Iwamatsu Y, Hidema J, Kumagai T (2004) Ultraviolet-B sensitivities in Japanese lowland rice cultivars: cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol 45:1848–1856

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Todo T (1999) Functional diversity of the DNA photolyase/blue light receptor family. Mutat Res 434:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tomkinson AE, Levin DS (1997) Mammalian DNA ligases. Bioeassays 19:893–901

    Article  CAS  Google Scholar 

  • Tuteja N, Tuteja R (2001) Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect. Crit Rev Biochem Mol Biol 36:261–290

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama Y, Hatanaka M, Kimura S, Ishibashi T, Ueda T, Sakakibara Y, Matsumoto T, Furukawa T, Hashimoto J, Sakaguchi K (2002) Characterization of DNA polymerase delta from a higher plant, rice (Oryza sativa L.). Gene 295:19–26

    Article  CAS  PubMed  Google Scholar 

  • Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in malt lymphoma. Mol Cell 6:961–967

    CAS  PubMed  Google Scholar 

  • Vespa L, Couvillion M, Spangler E, Shippen DE (2005) ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes Dev 19:2111–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volker M, Mone MJ, Karamakar P, van Hoffen A, Schul W, Vermuelen W, Hooeijmakers JHJ, van Driel R, van Zeeland A, Mullenders LHF (2001) Sequential assembly of nucleotide excision repair factors in vivo. Moll Cell 8:213–224

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  • Ward JF (1975) Molecular mechanisms of radiation-induced damage to nucleic acids. Adv Radiat Biol 5:181–239

    Article  CAS  Google Scholar 

  • Warmerdam DO, Kanaar R, Smits VA (2010) Differential dynamics of ATR-mediated checkpoint regulators. J Nucleic Acids 319142:1–16

    Article  CAS  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2013) Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess 185:2585–2593

    Article  PubMed  Google Scholar 

  • Winkler GS, Vermeulen W, Coin F, Egly JM, Hoeijmakers JH, Weeda G (1998) Affinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged Xeroderma pigmentosum B protein. J Biol Chem 273:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood RD, Shivij MKK (1997) Which DNA polymerase are used for DNA repair in eucaryotes? Carcinogenesis 18:605–610

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Li J, Li X, Hsieh CL, Burgers PM, Lieber MR (1996) Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res 24:2036–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP (2004) Mdm2-mediated nedd8 conjugation of p53 inhibits its transcriptional activity. Cell 118:83–97

    Article  CAS  PubMed  Google Scholar 

  • Yang ZG, Liu Y, Mao LY, Zhang JT, Zhou Y (2002) Dimerization of human XPA and formation of XPA-RPA protein complex. Biochemistry 41:13012–13020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui A, Eker APM (1998) DNA photolyases. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, vol II. Humana Press, Totowa, pp 9–32

    Google Scholar 

  • Yoshiyama K, Conklin PA, Huefner ND, Britt AB (2009) Suppressor of gamma response 1 (sog1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci U S A 106:12843–12848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiyama KO, Sakaguchi K, Kimura S (2013) DNA damage response in plants: conserved and variable response compared to animals. Biology 2:1338–1356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Piwnica-Worms H (2001) Atr-mediated checkpoint pathways regulate phosphorylation and activation of human CHK1. Mol Cell Biol 21:4129–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through AtRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saheem Ahmad or Mohd. Aslam Yusuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fatima, U., Khan, M.F., e Fatima, J., Shahab, U., Ahmad, S., Yusuf, M.A. (2017). DNA Damage, Response, and Repair in Plants Under Genotoxic Stress. In: Sarwat, M., Ahmad, A., Abdin, M., Ibrahim, M. (eds) Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-42183-4_7

Download citation

Publish with us

Policies and ethics