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Abstract. Automated nuclear segmentation is essential in the analy-
sis of most microscopy images. This paper presents a novel concavity-
based method for the separation of clusters of nuclei in binary images.
A heuristic rule, based on object size, is used to infer the existence of
merged regions. Concavity extrema detected along the merged-cluster
boundary are used to guide the separation of overlapping regions. Inner
split contours of multiple concavities along the nuclear boundary are
estimated via a series of morphological procedures. The algorithm was
evaluated on images of H400 cells in monolayer cultures and compares
favourably with the state-of-art watershed method commonly used to
separate overlapping nuclei.

Keywords: Histological images · Nuclear segmentation · Concavity
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1 Introduction and Related Work

Automated nuclear segmentation plays an important role in computer-assisted
analysis of histopathological images. Improving the quality and accuracy of
nuclear segmentation has become an increasingly important topic, for which
numerous analytical procedures have been proposed. One main challenge is the
separation of clusters of overlapping nuclei. These often appear as irregular
shapes resulting from an overlap of the 3D extent of nuclei on 2D image pro-
jections. An additional complication is that the overlapping nucleus boundaries
are often indistinct and make the algorithmic separation a non-trivial challenge.
This is especially relevant for the diagnosis of many diseases, including can-
cer, where identifying and characterising cellular abnormalities play an impor-
tant role. There has been extensive, well-focused research by various groups on
the splitting of nuclear clusters; a review paper [1] addresses recent advances
and current challenges with respect to this problem. The well-known watershed
algorithm [2,3] has been used to address region separation by creating unique
‘basins’ where nuclei are defined by the ridges bounding the basins. Although this
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can result in successful separation in some images, there are well-documented
problems with over- and under-segmentation in cells/nuclei that overlap, par-
ticularly when the boundary gradients at the overlaps are weak. Other methods
use measures of concavity of the cluster contour to find the nuclei [4–6] or use
ellipse-fitting to infer the overlapping nuclei, one drawback being that the perfor-
mance tends to be sensitive to fluctuations of the contours. Also, most methods
detect but do not split clusters into individual nuclei segments in the 2D image.
While it might not be possible to resolve this in all cases, such splittings are
often necessary for extracting additional features (object counting, computing
spatial relations) which are operationally useful even when derived from seg-
mentations that include some mis-assigned pixels. Other methods [7–9] employ
iterative split-line algorithms to generate inner edges, and use concavity points
to construct edge-path graphs. From these, the possible combinations of lines
linking every pair of concavity points are computed and the shortest set of lines
satisfying certain conditions is generated at the final splitting step. The split-
lines are generated subject to the conditions that they yield sub-contours with
acceptable nuclear sizes and do not intersect with other lines. While this can pro-
duce reasonable results in simple cases, it often fails in complex configurations,
for a number of reasons: (a) from all the possible combinations of split-lines it
is difficult to identify which point pairs to link; (b) the number of split combi-
nations increases dramatically with the number of concavity points, becoming
computationally costly and slow; (c) object separation uses straight lines along
the inferred boundaries, while real nuclear boundaries are curved; (d) iterative
separation usually leads to over-segmentation, as illustrated later.

Here we propose a new method for the detection and separation of individual
nuclei in clusters based on the geometrical characteristics of the cluster bound-
ary, particularly contour curvature; this approach overcomes several limitations
mentioned earlier. The expected positions and shapes of individual candidate
nuclei are estimated and followed by a series of morphological operations that
separate the cluster into individual nuclear regions. The validity and effective-
ness of the proposed framework was assessed through a series of experiments on
images of clumped nuclei.

2 The Proposed Algorithm

We investigated cluster separation on images of monolayers of H400 cells (an oral
cancer cell line) grown on glass and captured at ×20 magnification (inter-pixel
distance is 0.34µm) stained with Haematoxylin. These are typical conditions
used in a variety of gene expression analyses. The haematoxylin (blue/violet)
dye is primarily taken up by nucleic acids (therefore highlighting nuclei). Often
eosin (pink dye) is used as a counter-stain, staining proteins in the intra- and
extra-cellular compartments. A typical analysis of these cultures starts with a
standard image pre-processing step such as colour deconvolution to unmix the
dyes (if more than one is used) in order to facilitate extraction of the objects of
interest. Nucleus segmentation is best performed on the Haematoxylin channel
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image owing to its aforementioned affinity to nucleic acids. Following this, a
global thresholding method is applied to obtain a binary image of the nuclei
where any clustered groups of nuclei would require separation. In the experiments
described later, however, we work on a manually segmented ‘gold standard’ set
of nuclear images. All imaging procedures were implemented on the popular
ImageJ platform [10].

2.1 Identifying Potential Nuclei Clusters

This initial step extracts the boundaries of potential nuclear clusters R in the
binary image I1 representing the nuclei when the area of R is larger than some
empirically determined value. This is followed by a concavity analysis (explained
in the next section), where identified concavity points S serve as the input to
the following region-splitting algorithm. Large regions with no concavity points
imply lack of overlap, in which case region-splitting is not required; whereas
the presence of one or more concavity points indicates contours that potentially
enclose two or more nuclei.

2.2 Concavity Point Detection

This step detects the most dominant set of concavity points in a region boundary.
Concavity points represent junctions where overlapping occurs and they are used
here to guide the subsequent separation steps. A closed region R is defined by
an ordered set of N boundary points, say R = {pi|i ∈ {1...N}}. A point pi cor-
responds to the ith boundary point and pi+1 and pi−1 are the next and previous
boundary points, respectively. Determining concavity/convexity in a boundary
relies on the mathematical property of two dimensional vectors defined along the
periphery of the closed-loop region R. A two-dimensional vector V1 is defined
between points pi−1 and pi, and a second one, V2, is defined between points
pi+1 and pi. The cross product V1 × V2 characterizes the boundary curvature. If
the boundary points are ordered in the clockwise direction, then a point pi ∈ R
belongs to a concave segment if V1 × V2 ≤ 0. To reduce the sensitivity of the
algorithm to small fluctuations and noise, a tolerance value gap representing the
length of the vectors is introduced. Similarly to the approach in [7], the most
dominant concavity point is then selected from each detected concave segment,
based on the angle between contour points. The selected point s corresponds to
the deepest indentation between two overlapping nuclei, minimising the angle
Angle(pi) = π − arccos

(
(pi−pi−gap)·(pi+gap−pi)
‖pi−pi−gap‖‖pi+gap−pi‖

)
between the vectors. The final

list of concavity points, S, is passed as an input to the following splitting algo-
rithm.

2.3 Region-Splitting Algorithm

The presence of a single concavity point (s1 ∈ S) in the cluster boundary
indicates a potential overlap of two individual nuclei. In this special case,
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the algorithm creates a 4-connected1 split-line that links s1 to the midpoint,
pi, where i corresponds to the middle position of the opposite convex boundary.
It is worthwhile mentioning that other splitting procedures such as the watershed
separation would fail to produce split-lines in these cases.

On the other hand, two or more concavity points along the boundary imply
potential overlap between multiple nuclei. The proposed model takes as input
a region of clustered nuclei with multiple detected concavity points and returns
the optimal inner separating boundaries. The whole process is summarized in
Fig. 1 (using a synthetic cluster region)2 and it consists of the following steps:

Fig. 1. Illustration of our method from (a) to (f) for splitting nuclei clusters with
multiple concavity points. Figures (g) and (h) show the results of the watershed [2,3]
and split-line methods [7–9], respectively.

1. Convex Contour Extraction. This step extracts the coordinates and num-
ber of pixels located on convex segments between each consecutive pair of con-
cavity points (see Fig. 1(b)). For robustness, the algorithm only considers convex
segments that are large enough to fit a candidate cell. A given value θ1 serves
as a threshold for detecting effective convex regions.

2. Circle Fitting. Least-squares fitting [11] is used to compute the best fitting
circles to the set of points in each of the convex segments, and each circle corre-
sponds now to a candidate individual nucleus, as shown in Fig. 1(c). With each
circle crl with centre c ∈ Č and radius rad is associated a pair of consecutive
concavity points, sn, sn+1 ∈ S, located on the cluster boundary. The circles are
inspected and modified before nuclear separation takes place, as follows. The
algorithm constrains the radii to be less than an empirically determined thresh-
old θ2, estimated in advance, which corresponds to the maximum radius of a
real nucleus, then it replaces radii larger than this with this threshold value.
As for circle centres in Č, on rare occasions they might be located outside the
clustered nuclear region R. The algorithm corrects this by recursively shifting
the circle centre coordinates, in small increments, towards their corresponding
convex segments until it is repositioned inside R. To do this, the recursive shift
checks the intensity value of a centre point in image I1.

3. Estimating Candidate Nuclei. The circle centres provide an a priori esti-
mation of the expected position of the nuclei in the cluster. We noted that
1 Our binary image objects are 8-connected in a 4-connected background.
2 Boundaries in Fig. 1(b) are thickened for display purposes.
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clusters are likely to have regions with two closely opposing convex segments.
The procedure described so far would yield two partially overlapping circular
zones with adjacent centres, see Fig. 1(c). Intuitively, however, an observer with
a range of possible nuclear sizes and shapes in mind would conclude that oppos-
ing segments are likely to correspond to only one rounded object, not two. To
resolve this, the algorithm checks the pairwise distance between all the assigned
centres. Consider a circle crla, with centre ca, radius rada and concavity points
(sa, sa+1). To find whether another centre cb (located in circle crlb with radius
radb and concavity points (sb, sb+1)) is inside the circle crla, we measure the
Euclidean distance Ď between ca and cb. Point cb is inside crla if Ď ≤ rada.
Accordingly, the status of centre cb with respect to ca is set to Binary Centres
(BC) if (Ď ≤ rada and (sa, sa+1) �= (sb, sb+1)), implying their close proximity,
representing a single candidate object. This is shown in Fig. 1(c) in blob pairs
[L,C] and [J,E].

It might be argued, however, that nuclear boundaries often take the form
of ellipses rather than circles, while the procedure above aims to detect near-
by centres of overlapping circles. In other words, the distance between the two
centres ca and cb might be larger than the radius rada in the case of elliptical
candidate nuclei. This situation, illustrated in blob pair [K, D] in Fig. 1(c), is
not detected by our algorithm so far, and would lead to an incorrect separation
into two assumed circular objects instead of a single elliptical object. To provide
a viable segmentation of overlapping elliptical objects, the algorithm introduces
a correction factor, namely Ǒ, that is multiplied by the radius rada. This factor
increases the distance span that is to be compared with Ď, thereby allowing
for the detection of elliptical objects. Accordingly, ∀(ca, cb) ∈ Č, the status of
centre cb with respect to ca is assigned as BC if (Ď ≤ rada×Ǒ and (sa, sa+1) �=
(sb, sb+1)), otherwise, it is assigned as SC (Single Centre), as shown in blobs
M, A, B, F, G, H, I in Fig. 1(c). Note that, if the status of cb is deemed to be
BC with respect to ca, then the algorithm imposes the same BC relation on
ca, and saves the concavity information of both centres.

4. Morphological Operations for Cluster Splitting. This step produces the
final inner edges to separate the overlapping nuclei by means of a series of math-
ematical morphology operations [12]. The idea revolves around geodesic dila-
tions, without merging, of seeds representing single regions belonging uniquely
to each candidate object. This principle is similar to the well-known watershed
separation method (natively available in ImageJ [10]), but while that method
uses the ultimate eroded points as seeds (often leading to over-segmentation)
our approach uses much larger seeds derived from the regions containing convex
segments and estimated centres of regions. This avoids the over-segmentation
typical of the watershed method. The seed image is created as follows. On a
new blank binary image I2, a preliminary set of line segments is drawn. Their
positions depend on the status of the candidate object centres (each of which
is located between a pair of concavity points as described earlier). If a centre
is labelled as BC with respect to another (i.e., together representing a single
candidate nucleus), the algorithm retrieves the concavity information relative to
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both centres and draws two lines, each linking one of the two pairs of associated
concavity points from the opposite sides of the boundary. The order of linking
these is given by the encoding order in the cluster boundary. Furthermore, if a
centre is labelled as SC (i.e., representing a single candidate object) then two
lines are drawn, linking the circle centre to each of the surrounding concavity
points. Some of the resulting lines, as illustrated in Fig. 1(d), might create closed
polygons, which are then filled. This is followed by subtracting the image I2 from
the original image I1, yielding a seed image I3, which retains some parts of the
original cluster, as seen in Fig. 1(e). Since each segmented sub-region (seed) is
now unique to a detected object in the cluster, these can then be condition-
ally dilated to form individual nuclear objects by means of a geodesic dilation
operation, without merging, of the seed image I3, inside the original image I1
which acts as a mask. The dilation progresses with two restrictions, one being
the mask extent of the original cluster and the other a logical operation that
prevents pixels connected to different seeds from merging. The geodesic dilation
of seed I3 with respect to the mask I1 is defined as D(I1)(I3) = (I3 ⊕ B) ∩ I1,
where ⊕ denotes the dilation of I3 with the structure element B, and ∩ per-
forms a pixel-wise logical AND (intersection) between the dilated image and the
mask I1. The final segmentation result is depicted in Fig. 1(f). The separation
results of the watershed [2,3] and iterative split-line methods [7–9] are shown in
Fig. 1(g) and (h), yielding under- and over- segmentation, respectively.

3 Experiments and Evaluation

Our proposed method was tested using four large monolayer images of H400
cells. A total of 2610 nuclei were hand-drawn by one of us to produce a gold-
standard set, which was used to obtain another set of binary images.3 Among
these, a total of 497 nuclei formed 203 clusters with various degrees of complexity
in their fused boundaries. Potential clusters were processed when their area was
larger than 1600 pixels2 and contained concavity points. The optimal range of
parameter values were initially chosen before applying to the tested images. The
optimal values of gap and Ǒ depended on the geometry and size of the cluster, so
they were tested at values of {5, 10, 15} and {2, 3}, respectively. Those were the
values that generated regions with the highest circularity and within the opti-
mal nuclear area. The thresholds θ1 and θ2 were constrained to be larger than
20 and less than 20 pixels, respectively. The qualitative results shown in Fig. 2
(upper row) demonstrate the ability of our algorithm to resolve complex clusters
(with four or more overlapping nuclei) while avoiding over- and under-
segmentation. The procedure can generate contours close to actual nucleus
boundaries. The lower rows of Fig. 2 show the superiority of our approach
over the watershed separation, which generates spurious edges in some simple
configurations.
3 Hand-segmented nuclei regions were filled in white and the background in black. As
a result, nuclei with overlapping boundaries will appear in clusters and the ones with
separated boundaries will appear individually.
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Fig. 2. First row: image pairs correspond to the gold-standard and the result of our
splitting method. Second and third rows: triplets (left to right) show the gold-standard,
our splitting method result and the watershed result.

Quantitative results (summarized in Table 1) were obtained using three dif-
ferent measures. Our segmentation result was compared visually with the gold-
standard to estimate the True Positive Rate TPR = TP

TP+FN and the Positive
Predictive Value PPV = TP

TP+FP , where the True Positives (TP ), False Positives
(FP ), and False Negatives (FN) are the numbers of correctly detected nuclei,
incorrectly detected nuclei, and undetected nuclei, respectively. The third mea-
sure was given by the Jaccard Index (JI), which is defined as the ratio JI = |Ǧ∩I|

|Ǧ∪I|
between the pixel-counts of the intersection and union of the gold-standard seg-
mented image Ǧ and the test segmentation I. The JI ranges from 0 (no overlap
between the images) to 1 (complete congruence). Note that the line-of-sight
2D projections of the gold-standard images show inferred overlapping nuclear
boundaries which cannot be separated and represented in a single binary image.
The JI match of Ǧ and I is measured as follows. Using standard morphologi-
cal operations we (i) extract the symmetric difference of the filled overlapping
regions with respect to their filled intersections (‘lenses’) to generate a set of
‘lunes’; (ii) separate the lunes into their component parts by a morphological
erosion, (iii) apply a binary dilation without merging operation to the separated
lune parts within a mask image (the merged filled nuclear profiles). The split-line
generated in each of the lens-like regions approximates their medial-axis trans-
form. Overall, the proposed method outperforms the classical watershed in terms
of TPR, PPV and JI. During the experiments, we observed that the algorithm
preserves the ellipticity of the reconstructed nuclear regions, and in particular it
outperforms watershed segmentation in clusters that lack prominent ‘necks’; it
is, however, sensitive to the gap and Ǒ parameters.

Table 1.Quantitative results: performance evaluation of the proposed splitting method
compared to the watershed method in terms of TPR, PPV and JI.

Segmentation algorithm TPR PPV JI

The proposed model 0.98 0.98 0.74

The watershed model 0.95 0.97 0.69
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4 Conclusion

We presented a novel mathematical morphology-based algorithm for separat-
ing clustered binary nuclear profiles. Concavity features of the cluster bound-
ary are extracted and guide the subsequent region-splitting steps. Optimal split
boundaries are computed using a series of morphological operations. Unlike in
iterative split-line models, our non-iterative algorithm provides separation while
avoiding over-segmentation. Qualitative and quantitative results tested on hand-
segmented datasets of images of H400 cells verify that the segmentation accuracy
of the proposed method outperforms the watershed separation approach.
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