Skip to main content

Drug Delivery by Polymer Nanoparticles: The Challenge of Controlled Release and Evaluation

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines

Abstract

The controlled release of the drugs at the site of action is a key issue for nanoparticulate carriers. The purpose of this chapter is to review the current strategies used to control the release profiles of polymer nanoparticles . Based on 12 representative drugs with hydrophobic or hydrophilic properties, the mechanisms controlling the drug release are described, the different ways to tune the release profile are analyzed, and the methods for evaluating drug release from nanoparticles are discussed. In conclusion, based on the physicochemical properties of the drugs, the types and characteristics of nanoformulations, and the route of administration, promising tracks for tuning release profiles can be proposed. Suggestions for choosing the most appropriate methods for studying drug release are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboubakar M, Puisieux F, Couvreur P, Vauthier C (1999) Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int J Pharm 183:63–66

    Article  CAS  PubMed  Google Scholar 

  • Acharya S, Sahoo SK (2011) Sustained targeting of Bcr-Abl + leukemia cells by synergistic action of dual drug loaded nanoparticles and its implication for leukemia therapy. Biomaterials 32:5643–5662

    Article  CAS  PubMed  Google Scholar 

  • Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, Irache JM (2009) Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 38:405–413

    Article  PubMed  CAS  Google Scholar 

  • Akbarzadeh A, Mikaeili H, Zarghami N, Mohammad R, Barkhordari A, Davaran S (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomedicine 7:511–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, Unlü N (2011) Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–294

    Article  CAS  PubMed  Google Scholar 

  • Alam N, Khare V, Dubey R, Saneja A, Kushwaha M, Singh G, Sharma N, Chandan B, Gupta PN (2014) Biodegradable polymeric system for cisplatin delivery: development, in vitro characterization and investigation of toxicity profile. Mater Sci Eng C Mater Biol Appl 38:85–93

    Article  CAS  PubMed  Google Scholar 

  • Alhareth K, Vauthier C, Bourasset F, Gueutin C, Ponchel G, Moussa F (2012) Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm 81:453–457

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Kalashnikova I, White MA, Sherman M, Rytting E (2013) Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 454:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anirudhan TS, Sandeep S (2012) Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J Mater Chem 22:12888–12899

    Article  CAS  Google Scholar 

  • Ankola DD, Battisti A, Solaro R, Kumar MNVR (2010) Nanoparticles made of multi-block copolymer of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups for oral delivery of cyclosporine A. J R Soc Interface 7(Suppl 4):S475–S481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikram M, West JL (2008) Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv 5:1077–1091

    Article  CAS  PubMed  Google Scholar 

  • Bisht S, Feldmann G, Koorstra J-BM, Mullendore M, Alvarez H, Karikari C, Rudek MA, Lee CK, Maitra A, Maitra A (2008) In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol Cancer Ther 7:3878–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisrat M, Anderberg EK, Barnett MI, Nyström C (1992) Physicochemical aspects of drug release. XV. Investigation of diffusional transport in dissolution of suspended, sparingly soluble drugs. Int J Pharm 80:191–201

    Article  CAS  Google Scholar 

  • Bonelli P, Tuccillo FM, Federico A, Napolitano M, Borrelli A, Melisi D, Rimoli MG, Palaia R, Arra C, Carinci F (2012) Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations. Int J Nanomedicine 7:5683–5691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broaders KE, Grandhe S, Fréchet JM (2011) A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc 133:756–758

    Article  CAS  PubMed  Google Scholar 

  • Burger KNJ, Staffhorst RWHM, de Vijlder HC, Velinova MJ, Bomans PH, Frederik PM, de Kruijff B (2002) Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med 8:81–84

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Luo J, Tu K, Wang L-Q, Jiang H (2014) Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B Biointerfaces 115:212–218

    Article  CAS  PubMed  Google Scholar 

  • Caron J, Maksimenko A, Wack S, Lepeltier E, Bourgaux C, Morvan E, Leblanc K, Couvreur P, Desmaële D (2013) Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. Adv Healthc Mater 2:172–185

    Article  CAS  PubMed  Google Scholar 

  • Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, Farokhzad OC (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhu Y (2012) Chitosan enclosed mesoporous silica nanoparticles as drug nanocarriers: sensitive response to narrow pH range. Microporous Mesoporous Mater 150:83–89

    Article  CAS  Google Scholar 

  • Chen Y, Yang W, Chang B, Hu H, Fang X, Sha X (2013) In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Eur J Pharm Biopharm 85:406–412

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    Article  CAS  PubMed  Google Scholar 

  • Cheng WP, Gray AI, Tetley L, Hang Tle B, Schätzlein AG, Uchegbu IF (2006) Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7:1509–1520

    Article  CAS  PubMed  Google Scholar 

  • Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf B 85:214–220

    Article  CAS  Google Scholar 

  • Cheow WS, Hadinoto K (2012) Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J Colloid Interface Sci 367:518–526

    Article  CAS  PubMed  Google Scholar 

  • Cournarie F, Chéron M, Besnard M, Vauthier C (2004) Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur J Pharm Biopharm 57:171–179

    Article  CAS  PubMed  Google Scholar 

  • Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, Wickline SA, Lanza GM (2008) Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol 28:820–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damgé C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251

    Article  PubMed  Google Scholar 

  • De la Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64:967–978

    Article  PubMed  CAS  Google Scholar 

  • De Martimprey H, Bertrand J-R, Malvy C, Couvreur P, Vauthier C (2010) New core-shell nanoparticules for the intravenous delivery of siRNA to experimental thyroid papillary carcinoma. Pharm Res 27:498–509

    Article  PubMed  CAS  Google Scholar 

  • De Matos MBC, Piedade AP, Alvarez-Lorenzo C, Concheiro A, Braga MEM, de Sousa HC (2013) Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Int J Pharm 456:269–281

    Article  PubMed  CAS  Google Scholar 

  • De Verdière AC, Dubernet C, Némati F, Soma E, Appel M, Ferté J, Bernard S, Puisieux F, Couvreur P (1997) Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer 76:198–205

    Article  PubMed  Google Scholar 

  • Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, Huang X, Guo Z, Quan G, Shi X, Chen B, Li G, Wu C (2013) Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine 8:845–854

    PubMed  PubMed Central  Google Scholar 

  • Felber AE, Dufresne MH, Leroux JC (2012) pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 64:979–992

    Article  CAS  PubMed  Google Scholar 

  • Ferrara KW (2008) Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 60:1097–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fratoddi I, Venditti I, Cametti C, Palocci C, Chronopoulou L, Marino M, Acconcia F, Russo MV (2012) Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf B Biointerfaces 93:59–66

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H (2005) Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 25:357–367

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    CAS  PubMed  Google Scholar 

  • Gide PS, Gidwani SK, Kothule KU (2013) Enhancement of transdermal penetration and bioavailability of poorly soluble acyclovir using solid lipid nanoparticles incorporated in gel cream. Indian J Pharm Sci 75:138–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gökçe EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T, Caramella C (2008) Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm 364:76–86

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Su S, Zhu M, Li Y, Zhao W, Duan Y, Shi J (2012) Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Microporous Mesoporous Mater 161:160–167

    Article  CAS  Google Scholar 

  • Guo H, Lai Q, Wang W, Wu Y, Zhang C, Liu Y, Yuan Z (2013a) Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm 451:1–11

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Zhang D, Li C, Jia L, Liu G, Hao L, Zheng D, Shen J, Li T, Guo Y, Zhang Q (2013b) Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm 458:31–38

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Wang Y, Miao L, Xu Z, Lin CM, Zhang Y, Huang L (2013c) Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 7:9896–9904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddadi A, Elamanchili P, Lavasanifar A, Das S, Shapiro J, Samuel J (2008) Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A 84:885–898

    Article  PubMed  CAS  Google Scholar 

  • Haroun AA, El-Halawany NR, Loira-Pastoriza C, Maincent P (2012) Synthesis and in vitro release study of ibuprofen-loaded gelatin graft copolymer nanoparticles. Drug Dev Ind Pharm 40:61–65

    Article  PubMed  CAS  Google Scholar 

  • Hasanovic A, Zehl M, Reznicek G, Valenta C (2009) Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol 61:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • He C, Yin L, Tang C, Yin C (2013) Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials 34:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • He X, Hai L, Su J, Wang K, Wu X (2011) One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells. Nanoscale 3:2936–2942

    Article  CAS  PubMed  Google Scholar 

  • Hermans K, Van den Plas D, Everaert A, Weyenberg W, Ludwig A (2012) Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur J Pharm Biopharm 82:27–35

    Article  CAS  PubMed  Google Scholar 

  • Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua MY, Yang HW, Chuang CK, Tsai RY, Chen WJ, Chuang KL, Chang YH, Chuang HC, Pang ST (2010) Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31:7355–7363

    Article  CAS  PubMed  Google Scholar 

  • Jäger A, Gromadzki D, Jäger E, Giacomelli FC, Kozlowska A, Kobera L, Brus J, Říhová B, Fray ME, Ulbrich K, Štĕpánek P (2012) Novel “soft” biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system. Soft Matter 8:4343–4354

    Article  CAS  Google Scholar 

  • Jäger E, Venturini CG, Poletto FS, Colomé LM, Pohlmann JP, Bernardi A, Battastini AM, Guterres SS, Pohlmann AR (2009) Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol 5:130–140

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Hu L, Gao C, Shen J (2005) Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm 304:220–230

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Xin H, Sha X, Gu J, Jiang Y, Law K, Chen Y, Chen L, Wang X, Fang X (2011) PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Int J Pharm 420:385–394

    Article  CAS  PubMed  Google Scholar 

  • Jung SH, Lim DH, Jung SH, Lee JE, Jeong K-S, Seong H, Shin BC (2009) Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 37:313–320

    Article  CAS  PubMed  Google Scholar 

  • Kamel AO, Awad GAS, Geneidi AS, Mortada ND (2009) Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech 10:1427–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Trondoli AC, Zhu G, Chen Y, Chang YJ, Liu H, Huang YF, Zhang X, Tan W (2011) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5:5094–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karavana SY, Gökçe EH, Rençber S, Özbal S, Pekçetin C, Güneri P, Ertan G (2012) A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomedicine 7:5693–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon NJ, Bratt JM, Lee J, Luo J, Franzi LM, Zeki AA, Lam KS (2013) Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS ONE. doi:10.1371/journal.pone.0077730

    Google Scholar 

  • Kim MS, Kim JS, Park HJ, Cho WK, Cha KH, Hwang SJ (2011) Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomedicine 6:2997–3009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai J, Lu Y, Yin Z, Hu F, Wu W (2010) Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int J Nanomedicine 5:13–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Yun KS, Ban HS, Choe W, Lee SK, Lee KY (2009) Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release 139:146–152

    Article  CAS  PubMed  Google Scholar 

  • Lee KD, Jeong YI, Kim DH, Lim GT, Choi KC (2013) Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer. Int J Nanomedicine 8:2835–2845

    PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Hong G-Y, Jeong Y-I, Kang M-S, Oh J-S, Song C-E, Lee HC (2012) Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 433:121–128

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Park J, Yang EH, Suh H, Kim SH, Chung DS, Choi K, Yang CW, Park J (2002) Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J Control Release 84:115–123

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Graeser R, Kratz F, Geckeler KE (2011) Paclitaxel-loaded polymer nanoparticles for the reversal of multidrug resistance in breast cancer cells. Adv Funct Mater 21:4211–4218

    Article  CAS  Google Scholar 

  • Legrand P, Chéron M, Leroy L, Bolard J (1997) Release of amphotericin B from delivery systems and its action against fungal and mammalian cells. J Drug Target 4:311–319

    Article  CAS  PubMed  Google Scholar 

  • Lehtovaara BC, Verma MS, Gu FX (2012) Synthesis of curdlan-graft-poly(ethylene glycol) and formulation of doxorubicin-loaded core–shell nanoparticles. J Bioact Compat Polym 27:3–17

    Article  CAS  Google Scholar 

  • Leobandung W, Ichikawa H, Fukumori Y, Peppas NA (2002) Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 80:357–363

    Article  CAS  PubMed  Google Scholar 

  • Li F, Sun J, Zhu H, Wen X, Lin C, Shi D (2011) Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces 88:58–62

    Article  CAS  PubMed  Google Scholar 

  • Li L, Bai Z, Levkin PA (2013a) Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Biomaterials 34:8504–8510

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H (2013b) A mesoporous silica nanoparticle–PEI–Fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials 34:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Li X, Deng X, Huang Z (2001) In vitro protein release and degradation of poly-dl-lactide-poly(ethylene glycol) microspheres with entrapped human serum albumin: quantitative evaluation of the factors involved in protein release phases. Pharm Res 18:117–124

    Article  PubMed  Google Scholar 

  • Lodha A, Lodha M, Patel A, Chaudhuri J, Dalal J, Edwards M, Douroumis D (2012) Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A. J Pharm Bioallied Sci 4:S92–S94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv P-P, Wei W, Yue H, Yang T-Y, Wang L-Y, Ma G-H (2011) Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 12:4230–4239

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Li M, Tang Z, Song W, Sun H, Liu H, Chen X (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Tomaro-Duchesneau C, Prakash S (2013) Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 34:1270–1280

    Article  CAS  PubMed  Google Scholar 

  • Mansouri M, Pouretedal HR, Vosoughi V (2011) Preparation and characterization of ibuprofen nanoparticles by using solvent/antisolvent precipitation. Open Conf Proc J 2:88–94

    Article  CAS  Google Scholar 

  • Michel C, Aprahamian M, Defontaine L, Couvreur P, Damgé C (1991) The effect of site of administration in the gastrointestinal tract on the absorption of insulin from nanocapsules in diabetic rats. J Pharm Pharmacol 43:1–5

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity, evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine 4:252–261

    CAS  PubMed  Google Scholar 

  • Nakarani M, Patel P, Patel J, Patel P, Murthy RSR, Vaghani SS (2010) Cyclosporine A-nanosuspension: formulation, characterization and in vivo comparison with a marketed formulation. Sci Pharm 78:345–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K, Menon D (2014) Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater 10:2112–2124

    Article  CAS  PubMed  Google Scholar 

  • Park M-J, Balakrishnan P, Yang S-G (2013) Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral absorption of cyclosporine. Int J Pharm 441:757–764

    Article  CAS  PubMed  Google Scholar 

  • Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16:108–123

    Article  CAS  PubMed  Google Scholar 

  • Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383

    Article  CAS  PubMed  Google Scholar 

  • Patel PA, Patravale VB (2011) AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol 7:632–639

    Article  CAS  PubMed  Google Scholar 

  • Pilapong C, Keereeta Y, Munkhetkorn S, Thongtem S, Thongtem T (2013) Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles. Colloids Surf B Biointerfaces 113C:249–253

    Google Scholar 

  • Pinto-Alphandary H, Aboubakar M, Jaillard D, Couvreur P, Vauthier C (2003) Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm Res 20:1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z, Zidan AS, Habib MJ, Khan MA (2010) Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design. Int J Pharm 389:186–194

    Article  CAS  PubMed  Google Scholar 

  • Ren F, Chen R, Wang Y, Sun Y, Jiang Y, Li G (2011) Paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res 28:897–906

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro TG, Chavez-Fumagalli MA, Valadares DG, Franca JR, Rodrigues LB, Duarte MC, Lage PS, Andrade PHR, Lage DP, Arruda LV, Abanades DR, Costa LE, Martins VT, Tavares CA, Castilho RO, Coelho EA, Faraco AA (2014) Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine 9:877–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J, Panyam J (2012) Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saengkrit N, Sanitrum P, Woramongkolchai N, Saesoo S, Pimpha N, Chaleawlert-Umpon S, Tencomnao T, Puttipipatkhachorn S (2012) The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr Polym 90:1323–1329

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Agrawal YK, Garala K, Ramkishan A (2012) Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J Pharm Sci 74:434–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362

    Article  CAS  PubMed  Google Scholar 

  • Su X, Wang Z, Li L, Zheng M, Zheng C, Gong P, Zhao P, Ma Y, Tao Q, Cai L (2013) Lipid-polymer nanoparticles encapsulating doxorubicin and 2′-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm 10:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45:619–629

    Article  CAS  PubMed  Google Scholar 

  • Tahara K, Yamamoto H, Hirashima N, Kawashima Y (2010) Chitosan-modified poly(d, l-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects. Eur J Pharm Biopharm 74:421–426

    Article  CAS  PubMed  Google Scholar 

  • Tan SW, Billa N (2014) Lipid effects on expulsion rate of amphotericin B from solid lipid nanoparticles. AAPS PharmSciTech 15:287–295

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    CAS  PubMed  Google Scholar 

  • Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D (2013) Mitochondrial delivery of Doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 30:2832–2842

    Article  CAS  PubMed  Google Scholar 

  • Toub N, Bertrand JR, Tamaddon A, Elhamess H, Hillaireau H, Maksimenko A, Maccario J, Malvy C, Fattal E, Couvreur P (2006) Efficacy of siRNA nanocapsules targeted against the EWS–Fli1 oncogene in Ewing sarcoma. Pharm Res 23:892–900

    Article  CAS  PubMed  Google Scholar 

  • Uccello-Barretta G, Balzano F, Aiello F, Senatore A, Fabiano A, Zambito Y (2014) Mucoadhesivity and release properties of quaternary ammonium-chitosan conjugates and their nanoparticulate supramolecular aggregates: an NMR investigation. Int J Pharm 461:489–494

    Article  CAS  PubMed  Google Scholar 

  • Urbán-Morlán Z, Ganem-Rondero A, Melgoza-Contreras LM, Escobar-Chávez JJ, Nava-Arzaluz MG, Quintanar-Guerrero D (2010) Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine 5:611–620

    PubMed  PubMed Central  Google Scholar 

  • Van de Ven H, Paulussen C, Feijens PB, Matheeussen A, Rombaut P, Kayaert P, Van den Mooter G, Weyenberg W, Cos P, Maes L, Ludwig A (2012) PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release 161:795–803

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Jiang W, Yan H, Zhang X, Yang L, Deng L, Singh GK, Pan J (2011) Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Int J Nanomedicine 6:1443–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Feng SS, Wang S, Chen ZY (2010) Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm 400:194–200

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu P, Qiu L, Sun Y, Zhu M, Gu L, Di W, Duan Y (2013) Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 34:4068–4077

    Article  CAS  PubMed  Google Scholar 

  • Woo HN, Chung HK, Ju EJ, Jung J, Kang HW, Lee SW, Seo MH, Lee JS, Lee JS, Park HJ, Song SY, Jeong SY, Choi EK (2012) Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int J Nanomedicine 7:2197–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Shi H, Li Z, Shen H, Ma K, Li B, Shen S, Jin Y (2013) A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces 110:138–147

    Article  CAS  PubMed  Google Scholar 

  • Xing R, Lin H, Jiang P, Qu F (2012) Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surf A 403:7–14

    Article  CAS  Google Scholar 

  • Xu J, Ma L, Liu Y, Xu F, Nie J, Ma G (2012) Design and characterization of antitumor drug paclitaxel-loaded chitosan nanoparticles by W/O emulsions. Int J Biol Macromol 50:438–443

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Gu J, Zhu Y, Wen H, Ren Q, Chen J (2011) Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int J Nanomedicine 6:905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, Deng F (2009) Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol 191:13–20

    Article  CAS  Google Scholar 

  • Yogasundaram H, Bahniuk MS, Singh H-D, Aliabadi HM, Uludağ H, Unsworth LD (2012) BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int J Biomater 2012:584060. doi:10.1155/2012/584060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan H, Bao X, Du YZ, You J, Hu FQ (2012) Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery. Int J Nanomedicine 7:5119–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Shah BA, Kotadia NK, Li J, Gu H, Wu Z (2010) The development and mechanism studies of cationic chitosan-modified biodegradable PLGA nanoparticles for efficient siRNA drug delivery. Pharm Res 27:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Yuan XB, Yuan YB, Jiang W, Liu J, Tian EJ, Shun HM, Huang DH, Yuan XY, Li H, Sheng J (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349:241–248

    Article  CAS  PubMed  Google Scholar 

  • Zabaleta V, Ponchel G, Salman H, Agüeros M, Vauthier C, Irache JM (2012) Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: permeability and pharmacokinetic study. Eur J Pharm Biopharm 81:514–523

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J (2012) Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 45:632–638

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhu B, Jia Y, Hou W, Su C (2013) Preparation of biocompatible carboxymethyl chitosan nanoparticles for delivery of antibiotic drug. Biomed Res Int 2013:236469. doi:10.1155/2013/236469

    PubMed  PubMed Central  Google Scholar 

  • Zhou W, Wang Y, Jian J, Song S (2013) Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomedicine 8:3715–3728

    PubMed  PubMed Central  Google Scholar 

  • Zweers MLT, Engbers GHM, Grijpma DW, Feijen J (2006) Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles. J Control Release 114:317–324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Charrueau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charrueau, C., Zandanel, C. (2016). Drug Delivery by Polymer Nanoparticles: The Challenge of Controlled Release and Evaluation. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_14

Download citation

Publish with us

Policies and ethics