Skip to main content

Selecting and Designing Polymers Suitable for Nanoparticle Manufacturing

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines
  • 1982 Accesses

Abstract

Man has always tried to use the materials around him to construct more and more complex objects for its everyday use, with a particular attention to materials which can be used to treat diseases and/or injuries. With the technological progress and the apparition of macromolecular materials, the objects available to treat the human body improved. Polymers, considered to be powerful building blocks, attracted and continue to attract a lot of attention from researchers, especially from those working in the biomedical and therapeutic domains. Moreover, the advances in medical knowledge about diseases, such as the different types of cancer, lead to the development of very specific and complex materials, elaborated specifically for the biomedical and therapeutic fields. Therefore, the macromolecular chemist plays a crucial role in the design of such complex polymer structures obtained by polymerization and/or copolymerization of functional monomers, as well as by chemical modification of natural or synthetic polymers . To illustrate the complexity in the design of polymers suitable for manufacturing nanoparticles , several examples of degradable or fragmentable (co)polymers , specifically designed for application as degradable nanocarriers, are given. These macromolecular materials are synthesized, either by chemical modification of natural or synthetic polymers using classical chemical reactions known in organic chemistry, or by (co)polymerization of functional monomers using the (co)polymerization techniques known for classical polymer synthesis (radical polymerization, ring-opening polymerization , etc.). The polymers’ composition are explained in correlation with the factors influencing the degradation rate of the corresponding nanovectors, such as the hydrophilic/hydrophobic balance of the macromolecular materials and the degradation mechanisms (when known).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertsson AC, Renstad R, Erlandsson B, Eldsäter C, Karlsson S (1998) Effect of processing additives on (bio)degradability of film-blown poly(ε-caprolactone). J Appl Polym Sci 70:61–74

    Article  CAS  Google Scholar 

  • Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K (2005) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst 1:242–250. doi:10.1039/b500266d

    Article  CAS  PubMed  Google Scholar 

  • Belbella A, Vauthier C, Fessi H, Devissaguet JP, Puisieux F (1996) In vitro degradation of nanospheres from poly(D, L-lactides) of different molecular weights and polydispersities. Int J Pharm 129:95–102

    Article  CAS  Google Scholar 

  • Cammas S, Renard I, Langlois V, Guérin P (1996) Poly(β-malic acid): obtaining of high molecular weights by improvment of the synthesis route. Polymer 37(18):4215–4220

    Article  CAS  Google Scholar 

  • Cheng Y, He C, Xiao C, Ding J, Zhuang X, Chen X (2011) Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polym Chem 2:2627–2634. doi:10.1039/c1py00281c

    Article  CAS  Google Scholar 

  • Chiefari J, ChongYK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  • de Medeiros Modolon S, Ostuka I, Fort S, Minatti E, Borsali R, Halila S (2012) Sweet block copolymer nanoparticles: preparation and self-assembly of fully oligosaccharide-based amphiphile. Biomacromolecules 13:1129–1135. doi:10.1021/bm3000138

    Article  Google Scholar 

  • Deshayes S, Kasko AM (2013) Polymeric biomaterials with engineered degradation. J Polym Sci, Part A: Polym Chem 51:3531–3566. doi:10.1002/pola.26765

    Article  CAS  Google Scholar 

  • Duan Y, Zhang Y, Gong T, Zhang Z (2007) Synthesis and characterization of MeO-PEG-PLGA-PEG-OMe copolymers as drug carriers and their behavior in vitro. J Mater Sci Mater Med 18:2067–2073. doi:10.1007/s10856-007-3090x

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich P (1906) Collected study on immunology. Wiley, New York

    Google Scholar 

  • Ferrari R, Colombo C, Casali C, Lupi M, Ubezio P, Falcetta F, D’Incalci M, Morbidelli M, Moscatelli D (2013) Synthesis of surfactant free PCL-PEG brushed nanoparticles with tunable degradation kinetics. Int J Pharm 453:551–559. doi:10.1016/j.ijpharm.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  • Fisher H, Erdmann S, Holler E (1989) An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase alpha in vitro. Biochemistry 28(12):5219–5226

    Article  Google Scholar 

  • Fox ME, Szoka FC, Fréchet JMJ (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42(8):1141–1151. doi:10.1021/ar900035f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinchedi P, Conti B, Scalia S, Conte U (1998) In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Release 56:53–62

    Article  Google Scholar 

  • Herzog H, Müller RJ, Deckwer WD (2006) Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym Degrad Stab 91:2486–2498. doi:10.1016/j.polymdegradstab.2006.03.005

    Article  CAS  Google Scholar 

  • Heskins M, Guillet JE, James EJ (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A2:1441–1455

    Article  Google Scholar 

  • Hoffman AS (2008) The origins and evolution of ‘‘controlled’’ drug delivery systems. J Control Release 132:153–163. doi:10.1016/j.jconrel.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  • Högland A, Hakkarainen M, Albertsson AC (2007) Degradation profile of poly(ε-caprolactone)- The influence of macroscopic and macromolecular biomaterial design. J Macromol Sci Part A Pure Appl Chem 44(9):1041–1046. doi:10.1080/10601320701424487

    Article  Google Scholar 

  • Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73:121–136

    Article  CAS  PubMed  Google Scholar 

  • Huang ZH, Laurent V, Chetouani G, Ljubimova JY, Holler E, Benvegnu T, Loyer P, Cammas-Marion S (2012) New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery. Int J Pharm 423:84–92. doi:10.1016/j.ijpharm.2011.04.035

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Yadav SK, Yadav SS (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18. doi:10.1016/j.colsurfb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  • Lanz-Landázuri A, García-Alvarez M, Portilla-Arias JA, Martínez de Ilarduya A, Patil R, Holler E, Ljubimova J, Muñoz-Guerra S (2011) Poly(methyl malate) nanoparticles: formation, degradation, and encapsulation of anti-cancer drug. Macromol Biosci 11:1370–1377. doi:10.1002/mabi.201100107

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanz-Landázuri A, García-Alvarez M, Portilla-Arias JA, Martínez de Ilarduya A, Holler E, Ljubimova J, Muñoz-Guerra S (2012) Modification of microbial polymalic acid with hydrophobic amino acids for drug-releasing nanoparticles. Macromol Chem Phys 213:1623–1631. doi:10.1002/macp.201200134

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Hellaye M, Fortin N, Guilloteau J, Soum A, Lecommandoux S, Guillaume SM (2008) Biodegradable polycarbonate-b-polypeptide and polyester-b-polypeptide block copolymers: synthesis and nanoparticle formation towards biomaterials. Biomacromolecules 9:1924–1933. doi:10.1021/bm8001792

    Article  PubMed  Google Scholar 

  • Liu S, Maheshwari R, Kiick KL (2009) Polymer-based therapeutics. Macromolecules 42:3–13. doi:10.1021/ma801782q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Steele T, Kissel T (2010) Degradation of hyper-brenched p.oly(ethylenimine)-graft-poly(caprolactone)-block-monomethoxy-poly(ethylene glycol) as a potential gene delivery vector. Macromol Rapid Commun 31:1509–1515. doi:10.1002/marc.201000337

    Article  CAS  PubMed  Google Scholar 

  • Ljubimova JY, Portilla-Arias J, Patil R, Ding H, Inoue S, Markman JL, Rekechenetskiy A, Konda B, Gangalum PR, Chesnokova A, Ljubimov AV, Black KL, Holler E (2013) Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment. J Drug Target 21(10):956–967. doi:10.3109/1061186X.2013.837470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyer P, Cammas-Marion S (2014) Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers. J Drug Target 22(7):556–575. doi:10.3109/1061186X.2014.936871

    Article  CAS  PubMed  Google Scholar 

  • Loyer P, Bedhouche W, Huang ZW, Cammas-Marion S (2013) Degradable and biocompatible nanoparticles decorated with cyclic RGD peptide for efficient drug delivery to hepatoma cells in vitro. Int J Pharm 454:727–737. doi:10.1016/j.ijpharm.2013.05.060

    Article  CAS  PubMed  Google Scholar 

  • Lutz JF (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025. doi:10.1002/anie.200604050

    Article  CAS  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nano-sized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599. doi:10.1016/j.tips.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  • Martinez Barbosa ME, Cammas S, Appel M, Ponchel G (2004) Investigation of the degradation mechanisms of poly(malic acid) esters in vitro and their related cytotoxicities on J774 macrophages. Biomacromolecules 5:137–143. doi:10.1021/bm0300608

    Article  PubMed  Google Scholar 

  • Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nano-technology in cancer therapy. Drug Discov Today 15:842–850. doi:10.1016/j.drudis.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  • Mohammad AK, Reineke JJ (2013) Quantitative detection of PLGA nanoparticle degradation in tissues following intravenous administration. Mol Pharm 10:2183–2189. doi:10.1021/mp300559v

    Article  CAS  PubMed  Google Scholar 

  • Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. doi:10.1016/j.biortech.2010.05.092

    Article  Google Scholar 

  • Nottelet B, Di Tommaso C, Mondon K, Gurny R, Möller M (2010) Fully biodegradable polymeric micelles based on hydrophobic- and hydrophilic-functionalized poly(lactide) block copolymers. J Polym Sci, Part A: Polym Chem 48:3244–3254. doi:10.1002/pola.24100

    Article  CAS  Google Scholar 

  • Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33:113–137. doi:10.1016/j.progpolymsci.2007.09.003

    Article  Google Scholar 

  • Portilla-Arias JA, García-Alvarez M, Martínez de Ilarduya A, Holler E, Galbis JA, Muñoz-Guerra S (2008a) Synthesis, degradability, and drug releasing properties of methyl esters of fungal poly(β-L-malic acid). Macromol Biosci 8:540–550. doi:10.1002/mabi.200700248

    Article  CAS  PubMed  Google Scholar 

  • Portilla-Arias JA, García-Alvarez M, Galbis JA, Muñoz-Guerra S (2008b) Biodegradable nanoparticles of partially methylated fungal poly(β-malic acid) as a novel protein delivery carrier. Macromol Biosci 8:551–559. doi:10.1002/mabi.200700249

    Article  CAS  PubMed  Google Scholar 

  • Portilla-Arias JA, Camargo B, García-Alvarez M, Martinez de Llarduya A, Muñoz-Guerra S (2009) Nanoparticles made of microbial poly(γ-glutamate)s for encapsulation and delivery of drugs and proteins. J Biomater Sci 20:1065–1079. doi:10.1163/156856209X444420

    Article  CAS  Google Scholar 

  • Ratcliffe LPD, Blanazs A, Williams CN, Brown SL, Armes SP (2014) RAFT polymerization of hydroxy-functional methacrylic monomers under heterogeneous conditions: effect of varying the core-forming block. Polym Chem 5:3643–3655. doi:10.1039/c4py00203b

    Article  CAS  Google Scholar 

  • Ryu JG, Jeong YI, Kim HK, Kim IS, Kim DH, Kim SH (2001) Preparation of core-shell type nanoparticles of poly(ε-caprolactone)/poly(ethylene glycol)/poly(ε-caprolactone) triblock copolymers. Bull Korean Chem Soc 22(5):467–475

    CAS  Google Scholar 

  • Santander-Ortega MJ, Csaba N, Gonzalez L, Bastos-Gonzalez D, Ortega-Vinuessa JL, Alonso MJ (2010) Protein-loaded PLGA-PEO blend nanoparticles: encapsulation, release and degradation characteristics. Colloid Polym Sci 288:141–150. doi:10.1007/s00396-009-2131-z

    Article  CAS  Google Scholar 

  • Sawhney AS, Hubbel JA (1990) Rapidly degraded terpolymers of dl-lactide, glycolide and ε-caprolactone with increase hydrophilicity by copolymerization with polyethers. J Biomed Mat Sci 24(14):1397–1411. doi:10.1002/jbm.820241011

    Article  CAS  Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide): experimental and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  • Schott MA, Domurado M, Leclercq L, Barbaud C, Domurado D (2013) Solubilization of water-insoluble drugs due to random amphiphilic and degradable poly(dimethylmalic acid) derivatives. Biomacromolecules 14:1936–1944. doi:10.1021/bm400323c

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Guo S, Lu C (2007) Degradation behaviors of star-shaped poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles in aqueous solution. Polym Degrad Stab 92:1891–1898. doi:10.1016/j.polymdegradstab.2007.06.012

    Article  CAS  Google Scholar 

  • Soriano del Amo D, Wang W, Jiang H, Besanceney C, Yan AC, Levy M, Liu Y, Marlow FL, Wu P (2010) Biocompatible copper(I) catalysts for in vivo imaging of glycans. J Am Chem Soc 132:16893–16899. doi:10.1021/ja106553e

    Article  CAS  PubMed  Google Scholar 

  • Stolnik S, Garnett MC, Davies MC, Illum L, Davis SS, Boustta M, Vert M (1996) Nanospheres prepared from poly(β-malic acid) benzyl ester copolymers: evidence for their in vitro degradation. J Mater Sc Mater Med 7:161–166

    Article  CAS  Google Scholar 

  • Takei YG, Aoki T, Sanui K, Ogata N, Okano T, Sakurai Y (1993) Temperature-responsive bioconjugatedesign for temperature-modulated bioseparations. Bioconjug Chem 4:341–346. doi:10.1021/bc00023a006

    Article  CAS  PubMed  Google Scholar 

  • Taylor LD, Cerankowski LD (1992) Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions. J Polym Sci Polym Chem 13:267–276

    Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Article  CAS  PubMed  Google Scholar 

  • Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864. doi:10.1002/polb.22259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk M, Postma TM, Rijkers DTS, Liskamp RMJ, van Nostrum CF, Hennink VE (2010) Synthesis and characterization of tailorable biodegradable thermoresponsive methacryloylamide polymers based on L-serine and L-threonime alkyl esters. Polymer 51:2479–2485. doi:10.1016/j.polymer.2010.04.010

    Article  Google Scholar 

  • Vert M (2003) La chimie pour adapter les dispositifs thérapeutiques polymères à l’organisme humain. L’Actualité Chimique 270:20–25

    Google Scholar 

  • Vert M, Lenz RW (1981) Malic acid polymers. US patent 4265247

    Google Scholar 

  • Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Shué F (2012) Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 84(2):377–410. doi:10.1351/PAC-REC-10-12-14

    Article  CAS  Google Scholar 

  • Wang L, Jia X, Liu X, Yuan Z, Huang J (2006) Synthesis and characterization of a functional amphiphilic diblock copolymer: MePEG-b-poly(DL-lactide-co-RS-β-malic acid). Colloid Polym Sci 285:273–281. doi:10.1007/s00396-006-1560-1

    Article  CAS  Google Scholar 

  • Witt U, Miiller RJ, Augusta J, Widdecke H, Deckwer WD (1994) Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol Chem Phys 195:793–802

    Article  CAS  Google Scholar 

  • Yang Y, Pan D, Luo K, Li L, Gu Z (2013) Biodegradable and amphiphilic block-copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34:8430–8443. doi:10.1016/j.biomaterials.2013.07.037

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zheng M, Kissel T, Agarwal S (2012) Design and biophysical characterization of bioresponsive degradable poly(dimethylaaminoethyl methacrylate) based polymer for in vitro DNA transfection. Biomacromolecules 13:13–22. doi:10.1021/bm2015174

    Google Scholar 

  • Zhao N, Roesler S, Kissel T (2011) Synthesis of a new potential biodegradable disulfide containing poly(ethylene imine)-poly(ethylene glycol) copolymer cross-linked with click cluster for gene delivery. Int J Pharm 411:197–205. doi:10.1016/j.ijpharm.2011.03.038

    Article  CAS  PubMed  Google Scholar 

  • Zweers MLT, Engbers GHM, Grijpma DW, Feijen J (2004) In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release 100:347–356. doi:10.1016/j.jconrel.2004.09.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Cammas-Marion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cammas-Marion, S. (2016). Selecting and Designing Polymers Suitable for Nanoparticle Manufacturing. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_12

Download citation

Publish with us

Policies and ethics