Skip to main content

Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications

  • Chapter
  • First Online:
Natural Polymer Drug Delivery Systems

Abstract

The most emerging branch in pharmaceutical sciences known as “Pharmaceutical nanotechnology” presents new tools, opportunities and scope, which are expected to have significant applications in disease diagnostics and therapeutics. Recently nano-pharamceuticals reveal enormous potential in drug delivery as carrier for spatial and temporal delivery of bioactive and diagnostics. Additionally it also provides smart materials for tissue engineering. This discipline is now well-established for drug delivery, diagnostics, prognostic and treatment of diseases through its nanoengineered tools. Some nanotech based products and delivery systems are already in market. Pharmaceutical nanotechnology comprised of nano-sized products which can be transformed in numerous ways to improve their characteristics. Drugs that are transformed in to nano range offer some unique features which can lead to prolonged circulation, improved drug localization, enhanced drug efficacy etc. Various pharmaceutical nanotechnology based systems which can be termed as nanopharmaceuticals like polymeric nanoparticles, magnetic nanoparticles, liposomes, carbon nanotubes, quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, etc. have brought about revolutionary changes in drug delivery as well as the total medical service system. With the aid of nanopharmaceuticals, Pharmaceutical nanotechnology could have a profound influence on disease prevention to provide better insights into the molecular basis of disease. However some recently found health risk evidences limits their utilization in pharmaceutical industry. Some concerning issues like safety, bioethical issues, toxicity hazards, physiological and pharmaceutical challenges get to be resolved by the scientists. Current researchers are still lacking sufficient data and guidelines regarding safe use of these nanotechnology based devices and materials. Therefore pharmaceutical nanotechnology is still in infancy. The present chapter summarizes the types of nanopharmaceuticals with the most important applications and nanoparticles associated health risk related information available till present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin CR. Welcome to nanomedicine. Nanomedicine. 2006;1(1):5.

    Article  Google Scholar 

  2. Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Fréchet JM, Dy EE, Szoka FC. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci U S A. 2006;103:16649–54.

    Article  CAS  Google Scholar 

  3. Goldberg DS, Vijayalakshmi N, Swaan PW, Ghandehari H. G3.5 PAMAM Dendrimers Enhance Transepithelial Transport of SN38 while minimizing Gastrointestinal Toxicity. J Control Release. 2011;150(3):318–25.

    Article  CAS  Google Scholar 

  4. Lobenberg R, Maas J, Kreuter J. Improved body distribution of 14Clabelled AZT bound to Mataraza nanoparticles in rats determined by radioluminography. J Drug Target. 1998;5(3):171–9.

    Article  CAS  Google Scholar 

  5. Brewer E, Coleman J, Lowman A. Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater. 2011;2011:1–10.

    Article  CAS  Google Scholar 

  6. Liu Z, Fan AC, Rakhra K. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed Eng. 2009;48:7668–72.

    Article  CAS  Google Scholar 

  7. Samori C, Li-Boucetta H, Sainz R. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun (Camb). 2010, 46: 1494–6.

    Google Scholar 

  8. Mahajan SD, Roy I, Xu G, Yong K-T, Ding H, Aalinkeel R. Enhancing the delivery of anti-retroviral drug “Saquinavir” across the blood brain barrier using nanoparticles. Curr HIV Res. 2010;9:396–404.

    Article  Google Scholar 

  9. Dutta T, Jain NK. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly(propyleneimine) dendrimer. Biochim Biophys Acta. 2007;1770(4):681–6.

    Article  CAS  Google Scholar 

  10. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.

    Article  CAS  Google Scholar 

  11. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  Google Scholar 

  12. Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007;3:1840–54.

    Article  CAS  Google Scholar 

  13. Davis ME, Chen Z. Shin DM Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  Google Scholar 

  14. Nahar M, Dutta T, Murugesan S, Asthana A, Mishra D, Rajkumar V, Tare M, Saraf S, Jain NK. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Crit Rev Ther Drug Carrier Syst. 2006;23(4):259–318.

    Article  CAS  Google Scholar 

  15. Hett A. Nanotechnology: small matters, many unknown. 2004.

    Google Scholar 

  16. Vyas SP, Khar RK. Targeted and controlled drug delivery.CBS publishers and distributers. New Delhi. 2002;1:331–43.

    Google Scholar 

  17. Redhead HM, Davis SS, Illum LJ. Control. Release. 2001;70:353.

    Article  CAS  Google Scholar 

  18. Betancor L, Luckarift HR. Trends Biotechnol. 2008;26:566. Dunne M, Corrigan.

    Article  CAS  Google Scholar 

  19. DeAssis DN, Mosqueira VC, Vilela JM, Andrade MS, Cardoso VN. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99m Technetium—fluconazole nanocapsules. Int J Pharm. 2008;349:152–60.

    Article  CAS  Google Scholar 

  20. Jores K, Mehnert W, Drecusler M, Bunyes H, Johan C, MAder K. Investigation on the stricter of solid lipid nanopartuicles and oil-loaded solid nanoparticles by photon correlation spectroscopy, fieldflow fractionasition and transmission electron microscopy. J Control Release. 2004;17:217–27.

    Article  CAS  Google Scholar 

  21. Molpeceres J, Aberturas MR, Guzman M. Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization. J Microencapsul. 2000;17:599–614.

    Article  CAS  Google Scholar 

  22. Muhlen AZ, Muhlen EZ, Niehus H, Mehnert W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res. 1996;13:1411–6.

    Article  Google Scholar 

  23. Shi HG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD, Hurter PN, Reynolds SD, Kaufman MJ. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res. 2003;20:479–84.

    Article  CAS  Google Scholar 

  24. Polakovic M, Gorner T, Gref R, Dellacherie E. Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J Control Release. 1999;60:169–77.

    Article  CAS  Google Scholar 

  25. Pangi Z, Beletsi A, Evangelatos K. PEG-ylated nanoparticles for biological and pharmaceutical application. Adv Drug Del Rev. 2003;24:403–19.

    Google Scholar 

  26. Scholes PD, Coombes AG, Illum L, Davis SS, Wats JF, Ustariz C, Vert M, Davies MC. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release. 1999;59:261–78.

    Article  CAS  Google Scholar 

  27. Kreuter J. Physicochemical characterization of polyacrylic nanoparticles. Int J Pharm. 1983;14:43–58.

    Article  CAS  Google Scholar 

  28. Magenhein B, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers ultrafiltration technique at low pressure. Int J Pharm. 1993;94:115–23.

    Article  Google Scholar 

  29. Kreuter J. Nanoparticles. In: Kreuter J, editor. Colloidal drug delivery systems. New York: Marcel Dekker; 1994. p. 219–342.

    Google Scholar 

  30. Reverchon E, Adami R. Nanomaterials and supercritical fluids. J Supercrit Fluids. 2006;37:1–22.

    Article  CAS  Google Scholar 

  31. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc. 2005;127:10096–100.

    Article  CAS  Google Scholar 

  32. Kompella UB, Bandi N, Ayalasomayajula SP. Poly (lactic acid) nanoparticles for sustained release of budesonide. Drug Deliv Technol. 2001;1:1–7.

    Google Scholar 

  33. Ravi MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25:1771–7.

    Article  CAS  Google Scholar 

  34. Li YP, Pei YY, Zhou ZH, Zhang XY, Gu ZH, Ding J, Zhou JJ. Gao, XJ, PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-[alpha] carriers. J Control Release. 2001;71:287–96.

    Article  Google Scholar 

  35. Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH. Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloids Surf A Physicochem Eng Aspects. 2001;182:123–30.

    Article  CAS  Google Scholar 

  36. Zambaux M, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso M, Labrude P, Vigneron C. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method. J Control Release. 1998;50:31–40.

    Article  CAS  Google Scholar 

  37. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, Levy RJ. Formulation and characterization of biodegradables nanoparticles for intravascular local drug delivery. J Control Release. 1997;43:197–212.

    Article  Google Scholar 

  38. Jaiswal J, Gupta SK, Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification solvent evaporation process. J Control Release. 2004;96:169–78.

    Article  CAS  Google Scholar 

  39. Soppinath KS, Aminabhavi TM, Kulkurni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    Article  Google Scholar 

  40. Tice TR, Gilley RM. Preparation of injectable controlledrelease microcapsules by solvent- evaporation process. J Control Release. 1985;2:343–52.

    Article  CAS  Google Scholar 

  41. Tabata J, Ikada Y. Protein pre-coating of polylactide microspheres containing a lipophilic immunopotentiator for enhancement of macrophage phagocytosis and activation. Pharm Res. 1989;6:296–301.

    Article  CAS  Google Scholar 

  42. Ueda H, Kreuter J. Optimization of the preparation of loperamide- loaded poly (l-lactide) nanoparticles by high pressure emulsification solvent evaporation. J Microencapsul. 1997;14:593–605.

    Article  CAS  Google Scholar 

  43. Allemann E, Gurny R, Doekler E. Drug-loaded nanoparticlespreparation methods and drug targeting issues. Eur J Pharm Biopharm. 1993;39:173–91.

    CAS  Google Scholar 

  44. Bodmeier R, Chen H. Indomethacin polymeric nanosuspensions prepared by micro- fluidization. J Control Release. 1990;12:223–33.

    Article  CAS  Google Scholar 

  45. Koosha F, Muller RH, Davis SS, Davies MC. The surface chemical structure of poly (-hydroxybutyrate) microparticles produced by solvent evaporation process. J Control Release. 1989;9:149–57.

    Article  CAS  Google Scholar 

  46. Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials. 2006;27:108–18.

    Article  CAS  Google Scholar 

  47. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. Preparation of biodegradable nanoparticles of water-soluble and insoluble drugs with D, Llactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release. 1993;25:89–98.

    Article  CAS  Google Scholar 

  48. Vandervoort J, Ludwig A. Biodegradable stabilizers in the preparation of PLGA nano particles: a factorial design study. Int J Pharm. 2002;238:77–92.

    Article  CAS  Google Scholar 

  49. Ubrich N, Bouillot P, Pellerin C, Hoffman M, Maincent P. Preparation and characterization of propanolol hydrochloride nano particles: a comparative study. J Control Release. 2004;19:291–300.

    Article  CAS  Google Scholar 

  50. Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with Nano particles: current possibilities and future trends. Eur J Pharm Biopharm. 1995;41:2–13.

    CAS  Google Scholar 

  51. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JK, Kissel T. Biodegradable nano particles for oral delivery of peptides: is there a role for polymer to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50:147–60.

    Article  CAS  Google Scholar 

  52. Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E. Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24:1113–28.

    Article  CAS  Google Scholar 

  53. Lambert G, Fattal E, Couvreur P. Nanoparticulate system for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev. 2001;47:99–112.

    Article  CAS  Google Scholar 

  54. Takeuchi H, Yamamoto Y. Mucoadhesive nanoparticulate system for peptide drug delivery. Adv Drug Del Rev. 2001;47:39–54.

    Article  CAS  Google Scholar 

  55. Vargas A, Pegaz B, Devefve E, Konan-Kouakou Y, Lange N, Ballini JP. Improved photodynamic activity of porphyrin loaded into nano particles: an in vivo evaluation using chick embryos. Int J Pharm. 2004;286:131–45.

    Article  CAS  Google Scholar 

  56. El-shabouri MH. Positively charged nano particles for improving the oral bioavailability of cyclosporine-A. Int J Pharm. 2002;249:101–8.

    Article  CAS  Google Scholar 

  57. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nano capsule formation by interfacial deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.

    Article  CAS  Google Scholar 

  58. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoprticles as protein carriers. J Appl Polym Sci. 1997;63:125–32.

    Article  CAS  Google Scholar 

  59. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997;14:1431–6.

    Article  CAS  Google Scholar 

  60. Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm. 2001;218:75–80.

    Article  CAS  Google Scholar 

  61. Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G. Combined hydroxypropyl-[beta]- cyclodextrin and poly(alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm. 2001;218:113–24.

    Article  CAS  Google Scholar 

  62. Puglisi G, Fresta M, Giammona G, Ventura CA. Influence of the preparation conditions on poly(ethylcyanoacrylate) nanocapsule formation. Int J Pharm. 1995;125:283–7.

    Article  CAS  Google Scholar 

  63. Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids. 2001;20:179–219.

    Article  CAS  Google Scholar 

  64. Sun Y, Mezian M, Pathak P, Qu L. Polymeric nanoparticles from rapid expansion of supercritical fluid solution. Chemistry. 2005;11:1366–73.

    Article  CAS  Google Scholar 

  65. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  66. Reilly RM. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med. 2007;48:1039–42.

    Article  CAS  Google Scholar 

  67. Saad MZH, Jahan R, Bagul U. Nanopharmaceuticals: a New perspective of drug delivery system. Asian J Biomed Pharm Sci. 2012;2:14.

    Google Scholar 

  68. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med. 2007;48:1180–9.

    Article  CAS  Google Scholar 

  69. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60–8.

    Article  CAS  Google Scholar 

  70. Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T, et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res. 2006;12:4933–9.

    Article  CAS  Google Scholar 

  71. Sinha N, Yeow JTW. Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience. 2005;4(2):180–95.

    Article  Google Scholar 

  72. Thakral S, Mehta RM. Fullerenes: an introduction and overview of their biological properties. Ind J Pharm Sci. 2006;68:13–9.

    Article  CAS  Google Scholar 

  73. Kratschmer W, Lamb LD, Fostiropoulos K, Hoffman DR. Solid C 60: a new form of carbon. Nature. 1990;347:354–8.

    Article  Google Scholar 

  74. Taylor R, Hare JP, Abdul-Sada AK, Kroto HW. Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J Chem Soc Chem Commun. 1990;20:1423–5.

    Article  Google Scholar 

  75. Chandrakumar KR, Ghosh SK. Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett. 2008;8:13–9.

    Article  CAS  Google Scholar 

  76. Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, et al. Invitro and invivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology. 2006;240:756–64.

    Article  Google Scholar 

  77. Komatsu K, Murata M, Murata Y. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science. 2005;307:238–40.

    Article  CAS  Google Scholar 

  78. Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A. 1998;95:10809–13.

    Article  CAS  Google Scholar 

  79. Mroz P, Pawlak A, Satti M, Lee H, WhartonT GH, et al. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radic Biol Med. 2007;43:711–9.

    Article  CAS  Google Scholar 

  80. Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, et al. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol. 2005;12:1127–35.

    Article  CAS  Google Scholar 

  81. Bosi S, Da RT, Castellano S, Banfi E, Prato M. Antimycobacterial activity of ionic fullerene derivatives. Bioorg Med Chem Lett. 2000;10:1043–5.

    Article  CAS  Google Scholar 

  82. Ji H, Yang Z, Jiang W, Geng C, Gong M, Xiao H, et al. Antiviral activity of nano carbon fullerene lipidosome against influenza virus in vitro. J Huazhong Univ Sci Technolog Med Sci. 2008;28:243–6.

    Article  CAS  Google Scholar 

  83. Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, et al. Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+)-induced cellular model of Parkinson’s disease. J Neurosci Res. 2008;86:3622–34.

    Article  CAS  Google Scholar 

  84. Markovic Z, Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials. 2008;29:3561–73.

    Article  CAS  Google Scholar 

  85. Iga AM, Robertson JH, Winslet MC, Seifalian AM. Clinical potential of quantum dots. J Biomed Biotechnol. 2007;2007:76087–97.

    Article  Google Scholar 

  86. Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Physica E. 2004;25:1–12.

    Article  CAS  Google Scholar 

  87. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In-vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76.

    Article  CAS  Google Scholar 

  88. Amiot CL, Xu S, Liang S, Pan L, Zhao JX. Near-infrared fluorescent materials for sensing of biological targets. Sensors. 2008;8:3082–105.

    Article  CAS  Google Scholar 

  89. West JL, Halas NJ. Applications of nanotechnology to biotechnology commentary. Curr Opin Biotechnol. 2000;11:215–7.

    Article  CAS  Google Scholar 

  90. Kherlopian AR, Song T, Duan Q, Neimark MA, Po MJ, Gohagan JK, et al. A review of imaging techniques for systems biology. BMC Syst Biol. 2008;2:74–92.

    Article  CAS  Google Scholar 

  91. Klibanov AL. Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol. 2006;41:354–62.

    Article  Google Scholar 

  92. Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drugloaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics. 2008;48:260–70.

    Article  CAS  Google Scholar 

  93. Negishi Y, Endo Y, Fukuyama T, Suzuki R, Takizawa T, Omata D, et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J Control Release. 2008;132:124–30.

    Article  CAS  Google Scholar 

  94. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Maruyama K. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int J Pharm. 2008;354:49–55.

    Article  CAS  Google Scholar 

  95. Iverson N, Plourde N, Chnari E, Nackman GB, Moghe PV. Convergence of nanotechnology and cardiovascular medicine: progress and emerging prospects. BioDrugs. 2008;22:1–10.

    Article  CAS  Google Scholar 

  96. Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006;107:459–66.

    Article  CAS  Google Scholar 

  97. Artemov D, Mori N, Okollie B, Bhujwalla ZM. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med. 2003;49:403–8.

    Article  CAS  Google Scholar 

  98. Aduro Biotech. Berkeley: Oncologic and Triton BioSystems Merge to Form Aduro BioTech Aduro to Focus on NT™ and TNT™ Systems for Solid Tumor Cancers. 2008. Available from http://www.tritonsys. com/news/Aduro.pdf. Accessed 16 May 2009.

    Google Scholar 

  99. Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based biobar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.

    Article  CAS  Google Scholar 

  100. Moore A, Weissleder R, Bogdanov Jr A. Uptake of dextrancoated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging. 1997;7:1140–5.

    Article  CAS  Google Scholar 

  101. Xu H, Yan F, Monson EE, Kopelman R. Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. J Biomed Mater Res A. 2003;66:870–9.

    Article  CAS  Google Scholar 

  102. Freitas RA. Pharmacytes: an ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol. 2006;6:2769–75.

    Article  CAS  Google Scholar 

  103. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–30.

    Article  CAS  Google Scholar 

  104. Baker JR, Quintana A, Piehler L, Banazak-Holl TD, Raczka E. The synthesis and testing of anti-cancer therapeutic nanodevices. Biomed Microdevices. 2001;3:61–9.

    Article  CAS  Google Scholar 

  105. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, et al. Dendrimermodified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67:8156–63.

    Article  CAS  Google Scholar 

  106. Quiagen California: SuperFect Transfection Reagent. Available from http://www1.qiagen.comProducts/Transfection/Transfection Reagents/SuperFectTransfectionReagent.aspx#Tabs = t1. Accessed 3 May 2008.

    Google Scholar 

  107. Tomalia DA, Reyna LA, Svenson S. Dendrimers as multipurpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans. 2007;35:61–7.

    Article  CAS  Google Scholar 

  108. Freitas Jr RA. Microbivores: artificial mechanical phagocytes using digest and discharge protocol. J Evol Technol. 2005;14:1–52.

    Google Scholar 

  109. Freitas Jr RA. Exploratory design in medical nanotechnology: a mechanical artifcial red cell. Artif Cells Blood Substit Immobil Biotechnol. 1998;26:411–30.

    Article  CAS  Google Scholar 

  110. Freitas Jr. RA. A mechanical artificial red cell: exploratory design in medical nanotechnology [serial on the internet]. Available from http ://www.foresight.org/nanomedicine/Respirocytes4.html#Sec610, Accessed 29 Sept 2008.

    Google Scholar 

  111. Kayser O, Lemke A, Hernández-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol. 2005;6(1):3–5.

    Article  CAS  Google Scholar 

  112. Kaparissides C, Alexandridou S, Kotti K, Chaitidou S. Recent advances in novel drug delivery systems; 2006.

    Google Scholar 

  113. Singh Suri S, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16.

    Article  CAS  Google Scholar 

  114. Jahanshahi M, Babaei Z. Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol. 2008;7(25):4926–34.

    CAS  Google Scholar 

  115. Rawat M, Deependra S, Saraf S, Saraf S. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29(9):1790–8.

    Article  CAS  Google Scholar 

  116. Verdun C, Brasseur F, Vranckx H, Couvreur P, Roland M. Tissue distribution of doxorubicin associated with polyhexylcyanoacrylate nanoparticles. Cancer Chemother Pharmacol. 1990;26:13–8.

    Article  CAS  Google Scholar 

  117. Couvreur P, Kante B, Lenaerts V, Scailteur V, Roland M, Speiser P. Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharm Sci. 1980;69:199–202.

    Article  CAS  Google Scholar 

  118. Bibby DC, Talmadge JE, Dalal MK, Kurz SG, Chytil KM, Barry SE, Shand DG, Steiert M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicinloaded nanoparticles in tumor-bearing mice. Int J Pharm. 2005;293:281–90.

    Article  CAS  Google Scholar 

  119. Chiannilkulchai N, Ammoury N, Caillou B, Devissaguet JP, Couvreur P. Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol. 1990;26:122–6.

    Article  CAS  Google Scholar 

  120. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    CAS  Google Scholar 

  121. Storm G, Belliot S, Daemen T, Lasic D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17:31–48.

    Article  CAS  Google Scholar 

  122. Torchilin V, Trubetskoy V. Which polymer can make nanoparticulate drug carriers long circulating? Adv Drug Deliv Rev. 1995;16:141–55.

    Article  CAS  Google Scholar 

  123. Jeon SI, Andrade JD. Protein—surface interactions in the presence of polyethylene oxide: II. Effect of protein size. J Colloid Interf Sci. 1991;142:159–66.

    Article  CAS  Google Scholar 

  124. Stella B, Arpicco S, Peracchia M, Desmaele D, Hoebeke J, Renoir M, d’Angelo J, Cattel L, Couvreur P. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2000;89:1452–64.

    Article  CAS  Google Scholar 

  125. Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release. 2004;95:613–26. Drugs. Eur. J. Cancer Sci 2000. 11:265–83.

    Article  CAS  Google Scholar 

  126. Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther. 2000;85:217–29.

    Article  CAS  Google Scholar 

  127. Brandtzaeg P, Berstad A, Farstad I, Haraldsen G, Helgeland L, Jahnsen F, Johansen F, Natvig I, Nilsen E, Rugtveit J. Mucosal immunity—a major adaptive defense mechanism. Behring Inst Mitt. 1997;98:1–23.

    CAS  Google Scholar 

  128. Haltner E, Easson J, Lehr C. Lectins and bacterial invasion factors for controlling endo- and transcytosis of bioadhesive drug carrier systems. Eur J Pharm Biopharm. 1997;44:3–13.

    Article  CAS  Google Scholar 

  129. Hussain N, Jani PU, Florence AT. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm Res. 1997;14:613–8.

    Article  CAS  Google Scholar 

  130. Schipper N, Olsson S, Hoogstrate J, de Boer A, Varum K, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs. 3: influence of mucus on absorption enhancement. Eur J Pharm Sci. 1999;8:335–43.

    Article  CAS  Google Scholar 

  131. Lehr C, Bowstra J, Tukker J, Junginer H. Intestinal transit of bioadhesive microspheres in an in situ loop in the rat. J Control Release. 1990;13:51–62.

    Article  CAS  Google Scholar 

  132. Bjork E, Isakkson U, Edman P, Artursson P. Starch microspheres induce pulsatile delivery of drugs and peptides across the epithelial barrier by reversible separation of the tight junctions. J Drug Target. 1995;6:501–7.

    Article  Google Scholar 

  133. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.

    Article  CAS  Google Scholar 

  134. Hedley M, Curley J, Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med. 1998;4:365–8.

    Article  CAS  Google Scholar 

  135. Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 2004;4:484–8.

    Article  CAS  Google Scholar 

  136. Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov. 2002;1:131–9.

    Article  CAS  Google Scholar 

  137. Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, Suhara T. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci. 2006;78:851–5.

    Article  CAS  Google Scholar 

  138. Scherrmann JM, Temsamani J. The use of Pep: trans vectors for the delivery of drugs into the central nervous system. Int Cong Ser. 2005;1277:199–211.

    Article  CAS  Google Scholar 

  139. Gabathuler R, Arthur G, Kennard M, Chen Q, Tsai S, Yang J, Schoorl W, Vitalis TZ, Jefferies WA. Development of a potential protein vector (NeuroTrans) to deliver drugs across the bloodbrain barrier. Int Cong Ser. 2005;1277:171–84.

    Article  CAS  Google Scholar 

  140. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2007;2(5):681–93.

    Article  CAS  Google Scholar 

  141. Figueiredo S, Cabral R, Luís D, Fernandes AR, Baptista PV. Integration of gold nanoparticles and liposomes for combined anti-cancer drug delivery. In: Seifalian A. (ed.) Nanomedicine. University College London (UK); 2014. Chapter 3. Available from http://www.onecentralpress.com/nanomedicine/#.

    Google Scholar 

  142. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40(1):44–56.

    Article  CAS  Google Scholar 

  143. Kumar A, Boruah BM, Liang XJ. Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomater. 2011;31:1–17.

    Google Scholar 

  144. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.

    Article  CAS  Google Scholar 

  145. Wang J, Yao K, Wang C, Tang C, Jiang X. Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mater Chem B. 2013;1(17):2324–32.

    Article  CAS  Google Scholar 

  146. Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA. Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem. 2009;20(12):2247–53.

    Article  CAS  Google Scholar 

  147. Lim ZZJ, Li JEJ, Ng CT, Yung LYL, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32(8):983–90.

    Article  CAS  Google Scholar 

  148. Hunt KK, Vorburguer SA. Hurdles and hopes for cancer therapy. Science. 2002;297(5580):415–6.

    Article  CAS  Google Scholar 

  149. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:1–12.

    Article  CAS  Google Scholar 

  150. Albertazzi L, Gherardini L, Brondi M, et al. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm. 2013;10:249–60.

    Article  CAS  Google Scholar 

  151. Hoet PMH, Brnske HI, Salata OR. Nano particles known and unknown health risk. J Nanobiotecnol. 2004;2:12.

    Article  CAS  Google Scholar 

  152. Lee KP, Kelly DP, Oneal FO, Kennedy GL. Lung response to ultrafine kertar aramid synthetic fibrils following 2-year inhalation exposure in rats. Findam Appl Toxicol. 1998;11:1–20.

    Article  Google Scholar 

  153. Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticles uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990;42(12):812–26.

    Article  Google Scholar 

  154. Jani P, Halbert GW, Langridge J, Florence AT. The uptake and translocation of latex nanosphere and microsphere after oral administration to rats. J Pharm Pharmacol. 1989;41(12):809–12.

    Article  CAS  Google Scholar 

  155. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaelmes H, Mueller G, Sterry W. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12(5):247–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. In: Natural Polymer Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-41129-3_2

Download citation

Publish with us

Policies and ethics