Skip to main content

Regulation and Turnover of Nitric Oxide by Phytoglobins in Plant Cell Responses

  • Chapter
Gasotransmitters in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

The involvement of phytoglobins in the metabolism of nitric oxide (NO) and reactive nitrogen species (RNS) produced during stress, plant growth, and development is discussed. The action of phytoglobin expression upon NO leads to the maintenance of redox status, minimization of the damage from reactive oxygen and nitrogen species in the cytoplasm of the cell, and regulation of hormonal and stress responses. NO scavenging is achieved via phytoglobins, and it can also involve S-nitrosoglutathione reductase and a direct interaction of NO with superoxide anion followed by detoxification of formed peroxynitrite. The interplay between these pathways results in flexible change of NADH/NAD+ ratios, glutathione potential, and the level of nitrosylation of proteins. The system of production and detoxification of RNS is linked to morphogenetic events such as relief of dormancy, aerenchyma formation, etc. Due to the mobility of both NO and phytohormones, plants developed strategies to regulate specific cell hormonal actions to permit differentiation during development and to respond to stress. Phytoglobins are the agents responsible for differential cellular responses to hormones that use NO as a signal transduction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Airaki M, Sánchez-Moreno L, Leterrier M, Barroso JB, Palma JM, Corpas FJ (2011) Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS. Plant Cell Physiol 52:2006–2015

    Article  CAS  PubMed  Google Scholar 

  • Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  CAS  PubMed  Google Scholar 

  • Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52:1179–1190

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Rolletschek H (2008) Nitric oxide is a versatile sensor of low oxygen stress in plants. Plant Signal Behav 3:391–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Bykova NV, Igamberdiev AU, Ens W, Hill RD (2006) Identification of an intermolecular disulfide bond in barley hemoglobin. Biochem Biophys Res Commun 347:301–309

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Chen J, Ef AA, Wang P, Wang G, Hu X, Shi J (2015) Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta 242:1361–1390

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Del Río LA, Barroso JB (2013a) Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Alché JD, Barroso JB (2013b) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    Article  CAS  PubMed  Google Scholar 

  • De MR, Vurro E, Rigo C, Costa A, Elviri L, Di VM, Careri M, Zottini M, di Sanita TL, Lo SF (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Duff SMG, Guy PA, Nie X, Durnin DC, Hill RD (1998) Hemoglobin expression in germinating barley. Seed Sci Res 8:431–436

    Article  CAS  Google Scholar 

  • Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C (2013) Function of the type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. Plant J 74:946–958

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108:18506–18511

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 11:537–543

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011a) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LA, Igamberdiev AU (2011b) Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585:3843–3849

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Kruger NJ, Ratcliffe GR (2014) Nitric oxide is required for homeostasis of oxygen and reactive oxygen species in barley roots under aerobic conditions. Mol Plant 7:747–750

    Article  CAS  PubMed  Google Scholar 

  • Guy PA, Sidaner J-P, Schroeder S, Edney M, MacGregor AW, Hill RD (2002) Embryo phytoglobin gene expression as a measure of germination in cereals. J Cereal Sci 36:147–156

    Article  CAS  Google Scholar 

  • Hebelstrup KH, Jensen EO (2008) Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta 227:917–927

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Shah JK, Igamberdiev AU (2013) The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiol Plant 148:457–469

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Shah JK, Simpson C, Schjoerring JK, Mandon J, Cristescu SM, Harren FJ, Christiansen MW, Mur LA, Igamberdiev AU (2014) An assessment of the biotechnological use of hemoglobin modulation in cereals. Physiol Plant 150:593–603

    Article  CAS  PubMed  Google Scholar 

  • Heckmann AB, Hebelstrup KH, Larsen K, Micaelo NM, Jensen EØ (2006) A single hemoglobin gene in Myrica gale retains both symbiotic and non-symbiotic specificity. Plant Mol Biol 61:769–779

    Article  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Düner M, Casero D, Merchant SS, Winkler M, Happe T (2013) Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide. Proc Natl Acad Sci USA 110:10854–10859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins – what’s happening beyond nitric oxide scavenging? AoB Plants 2012: pls004

    Google Scholar 

  • Hill RD, Huang S, Stasolla C (2013) Hemoglobins, programmed cell death and somatic embryogenesis. Plant Sci 211:35–41

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Hill RD, Wally OS, Dionisio G, Ayele BT, Jami SK, Stasolla C (2014a) Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol 165:810–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Hill RD, Stasolla C (2014b) Plant hemoglobin participation in cell fate determination. Plant Signal Behav 9:e29485

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis ES, Peacock WJ (2001) Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Mol Biol 47:677–692

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Ens W, Hill RD (2004) Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide. FEBS Lett 568:146–150

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2006) Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta 223:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2011) Structural and functional properties of class 1 plant hemoglobins. IUBMB Life 63:146–152

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Stasolla C, Hill RD (2014) Low oxygen stress, nonsymbiotic hemoglobins, NO and programmed cell death. In: van Dongen JT, Licausi F (eds) Low oxygen stress in plants, Plant Cell Monographs, Book 21. Springer, Berlin, pp 41–58

    Google Scholar 

  • Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236:887–900

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiva-Eriksson N, Pin PA, Kraft T, Dohm JC, Minoche AE, Himmelbauer H, Bülow L (2014) Differential expression patterns of non-symbiotic hemoglobins in sugar beet (Beta vulgaris ssp. vulgaris). Plant Cell Physiol 55:834–844

    Article  CAS  PubMed  Google Scholar 

  • Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 6:789–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manac’h-Little N, Igamberdiev AU, Hill RD (2005) Hemoglobin expression affects ethylene production in maize cell cultures. Plant Physiol Biochem 43:485–489

    Article  PubMed  Google Scholar 

  • Mancuso S, Boselli M (2002) Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Planta 214:767–774

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH (2012) Haemoglobin modulates salicylate and jasmonate/ethylene- mediated resistance mechanisms against pathogens. J Exp Bot 63:4375–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013a) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013b) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052

    Google Scholar 

  • Qu ZL, Wang HY, Xia GX (2005) GhHb1: a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochim Biophys Acta 1730:103–113

    Article  CAS  PubMed  Google Scholar 

  • Qu ZL, Zhong NQ, Wang HY, Chen AP, Jian GL, Xia GX (2006) Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHbd1 triggers defense responses and increases disease tolerance in Arabidopsis. Plant Cell Physiol 47:1058–1068

    Article  CAS  PubMed  Google Scholar 

  • Ross EJ, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G (2004) Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J Exp Bot 55:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M (2013) Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. Plant J 76:875–887

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inzé D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Luque E, Ocaña-Calahorro F, de Montaigu A, Chamizo-Ampudia A, Llamas Á, Galván A, Fernández E (2015) THB1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity. Plant J 81:467–479

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Seregélyes C, Mustardy L, Ayaydin F, Sass L, Kovacs L, Endre G, Lukacs N, Kovacs I, Vass I, Kiss GB, Horvath GV, Dudits D (2000) Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells. FEBS Lett 482:125–130

    Article  PubMed  Google Scholar 

  • Seregélyes C, Barna B, Hennig J, Konopka D, Pasternak TP, Lukacs N, Feher A, Horvath GV, Dudits D (2003) Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach. Plant Sci 165:541–550

    Article  Google Scholar 

  • Sowa AW, Duff SMG, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci USA 95:10317–10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasolla C, Belmonte MF, Van Zyl L, Craig DL, Liu W, Yeung EC, Sederoff R (2004) The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot 55:695–709

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  Google Scholar 

  • Sturms R, Di Spirito AA, Fulton DB, Hargrove MS (2011) Hydroxylamine reduction to ammonium by plant and cyanobacterial hemoglobins. Biochemistry 50:10829–10835

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862

    Article  CAS  PubMed  Google Scholar 

  • Thiel J, Rolletschek H, Friedel S, Lunn JE, Nguyen TH, Feil R, Tschiersch H, Müller M, Borisjuk L (2011) Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana. BMC Plant Biol 11:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dongen JT, Roeb GW, Dautzenberg M, Froehlich A, Vigeolas H, Minchin PEH, Geigenberger P (2004) Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds. Plant Physiol 135:1809–1821

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Elhiti M, Hebelstrup KH, Hill RD, Stasolla C (2011) Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiol Biochem 49:1108–1116

    Article  CAS  PubMed  Google Scholar 

  • Wulff A, Oliveira HC, Saviani EE, Salgado I (2009) Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide 21:132–139

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Guerra D, Lee U, Vierling E (2013) S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci 4:430

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C (2004) Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol 136:2875–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir U. Igamberdiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Igamberdiev, A.U., Hebelstrup, K.H., Stasolla, C., Hill, R.D. (2016). Regulation and Turnover of Nitric Oxide by Phytoglobins in Plant Cell Responses. In: Lamattina, L., García-Mata, C. (eds) Gasotransmitters in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-40713-5_8

Download citation

Publish with us

Policies and ethics