Skip to main content

Somatic Embryogenesis for More Effective Breeding and Deployment of Improved Varieties in Pinus spp.: Bottlenecks and Recent Advances

  • Chapter
  • First Online:

Abstract

Global transition towards a bioeconomy sets new demands for wood supply (bioenergy, biomaterials, biochemicals, etc.), and the forestry sector is also expected to help mitigate climate change by increasing carbon fixation. For increased biomass production, the use of improved, genetically superior materials becomes a necessity, and vegetative propagation of elite genotypes provides a potential delivery mechanism for this. Vegetative propagation through somatic embryogenesis alone or in combination with rooted cuttings obtained from somatic young trees can facilitate both tree breeding (greater selection accuracy and gains, breeding archives of donor material for making crosses after selection) and the implementation of deployment strategies for improved reforestation materials. To achieve these goals, progress in the efficiency of pine somatic embryogenesis biotechnology has been made for a few commercial pine species, and a better understanding has been gained of the molecular mechanisms underpinning somatic and zygotic embryo development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aidun CK, Egertsdotter EMU (2012) Fluidics-based automation of clonal propagation via somatic embryogenesis: SE-fluidics system. In: Second International conference of the IUFRO working party 2.09.02, June 25–28, Brno, Czech Republic, pp. S3–3

    Google Scholar 

  • Alvarez JM, Cortizo M, Bueno N et al (2013) CLAVATA1-LIKE, a leucine-rich-repeat protein receptor kinase gene differentially expressed during adventitious caulogenesis in Pinus pinaster and Pinus pinea. Plant Cell Tiss Org 112:331–342. doi:10.1007/s11240-012-0240-8

    Article  CAS  Google Scholar 

  • Anonymous (2014) Close to the application of somatic embryogenesis. Scand J For Res News Views 6:615–616

    Google Scholar 

  • Anonymous (2015) Are hybrid pines the super trees of the future? New Zeal Logger, Sept 2015:46–49

    Google Scholar 

  • Antony F, Schimleck LR, Jordan L et al (2014) Growth and wood properties of genetically improved loblolly pine: propagation type comparison and genetic parameters. Can J For Res 44:263–272. doi:10.1139/cjfr-2013-0163

    Article  Google Scholar 

  • Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568. doi:10.1016/j.plaphy.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  • Aquea F, Gutierrez F, Medina C, Arce-Johnson P (2008) A novel Otubain-like cysteine protease gene is preferentially expressed during somatic embryogenesis in Pinus radiata. Mol Biol Rep 35:567–573. doi:10.1007/s11033-007-9124-0

    Article  CAS  PubMed  Google Scholar 

  • Aronen T (2016) From lab to field-current state of somatic embryogenesis in Scots pine. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFoS). Seoul, Korea, pp. 515–527

    Google Scholar 

  • Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24:372–383. doi:10.1080/02827580903228862

    Article  Google Scholar 

  • Baltunis BS, Brawner JT (2010) Clonal stability in Pinus radiat a across New Zealand and Australia. I. Growth and from traits. New Forest 40:305–322. doi:10.1007/s11056-010-9201-4

    Article  Google Scholar 

  • Baltunis BS, Wu HX, Dungey HS et al (2009) Comparisons of genetic parameters and clonal value predictions from clonal trials and seedling base population trials of radiate pine. Tree Genet Genomes 5:269–278. doi:10.1007/s11295-008-0172-y

    Article  Google Scholar 

  • Bettinger P, Clutter M, Siry J et al (2009) Broad implications of Southern United States pine clonal forestry on planning and management of forests. Int For Rev 11(3):331–345. doi:10.1505/ifor.11.3.331

    Google Scholar 

  • Bishop-Hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tiss Org 74:267–281. doi:10.1023/A:1024067703550

    Article  CAS  Google Scholar 

  • Breton D, Harvengt L, Trontin J-F et al (2005) High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in maritime pine. In Vitro Cell Dev-Pl 41:494–504. doi:10.1079/IVP200567

    Article  CAS  Google Scholar 

  • Breton D, Harvengt, L, Trontin et al (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tiss Org 87:95–108. doi:10.1007/s11240-006-9144-9

    Google Scholar 

  • Brownfield DL, Todd CD, Stone SL et al (2007) Patterns of storage protein and triacylglycerol accumulation during loblolly pine somatic embryo maturation. Plant Cell Tiss Org 88:217–223. doi:10.1007/s11240-006-9193-0

    Article  CAS  Google Scholar 

  • Burg K, Helmersson A, Bozhkov P, von Arnold S (2007) Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J Exp Bot 58:687–698. doi:10.1093/jxb/erl241

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Pullman J (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536. doi:10.1111/j.1469-8137.2007.02239.x

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Xu N, MacKay J, Pullman J (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev-Pl 36:155–162. doi:10.1007/s11627-000-0031-5

    Google Scholar 

  • Carneros E, Celestino C, Klimaszewska K et al (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tiss Org 98:165–178. doi:10.1007/s11240-009-9549-3

    Article  CAS  Google Scholar 

  • Carson M, Carson S, Te Riini C (2015) Successful varietal forestry with radiate pine in New Zealand. New Zeal J Forestry 60:8–11

    Google Scholar 

  • Ciavatta VT, Morillon R, Pullman GS et al (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiol 127:1556–1567. doi:10.1104/pp.010793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciavatta VT, Egertsdotter U, Clapham D et al (2002) A promoter from the loblolly pine PtNIP1;1 gene directs expression in an early-embryogenesis and suspensor-specific fashion. Planta 215:694–698. doi:10.1007/s00425-002-0822-5

    Article  CAS  PubMed  Google Scholar 

  • Cown D, Sorensson CT (2008) Can use of clones improve wood quality? New Zeal J Forestry 52:14–19

    Google Scholar 

  • Cyr DR, Klimaszewska K (2002) Conifer somatic embryogenesis: II. Applications. Dendrobiology 48:41–49

    Google Scholar 

  • Daoust G, Klimaszewska K, Plourde D (2009) Somatic embryogenesis, a tool for accelerating the selection and deployment of hybrids of eastern white pine (Pinus strobus) and Himalayan white pine (P. wallichiana) resistant to white pine blister rust (Cronartium ribicola). In: Noshad D, Noh Eun Woon, King J, Sniezko RA (eds) Breeding and Genetic Resources of Five-Needle Pines. Proceedings of the IUFRO Conference 2008, Yangyang, Korea. Korea Forest Research Institute, Seoul 104 p. ISBN 978-89-8176-605-4 (93520)

    Google Scholar 

  • De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM et al (2015) The role of chromatin modifications in somatic embryogenesis in plants. Frontiers Plant Sci 6:635. doi:10.3389/fpls.2015.00635

    Article  Google Scholar 

  • de Vega-Bartol JJ, Simões M, Lorenz WW et al (2013) Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biol 13:123. doi:10.1186/1471-2229-13-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dungey HS, Brawner JT, Burger F et al (2009) A new breeding strategy for Pinus radiata in New Zealand and New South Wales. Silvae Genetica 58:28–38

    Google Scholar 

  • Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev-Pl 49:631–642. doi:10.1007/s11627-013-9547-3

    Article  Google Scholar 

  • El-Kassaby YA, Klápště J (2015) Genomic selection and clonal forestry revival. In: Park YS, Bonga JM (eds) Proceedings of the IUFRO unit 2.09.02 on “Woody plant production integrating genetic and vegetative propagation technologies”, pp 98-100. Sept 8–12, 2014, Vitoria-Gasteiz, Spain. http://www.iufro20902.org. doi:10.1007/s11056-016-9525-9

    Google Scholar 

  • Find JI, Hargreaves CL, Reeves CB (2014) Progress towards initiation of somatic embryogenesis from differentiated tissues of radiata pine (Pinus radiata D. Don) using cotyledonary embryos. In Vitro Cell Dev-Pl 50:190–198. doi:10.1007/s11627-013-9581-1

    Article  Google Scholar 

  • Fourré J-L (2000) Somaclonal variation and genetic molecular markers in woody plants. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, The Netherlands, pp 425–449. doi:10.1007/978-94-017-2311-4_18

    Google Scholar 

  • Garcia-Mendiguren O, Montalbán IA, Stewart D et al (2015) Gene expression profiling of shoot-derived calli from adult radiata pine and zygotic embryo-derived embryonal masses. PLoS ONE 10:e0128679. doi:10.1371/journal.pone.0128679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves S, Cairney J, Rodríguez MP et al (2007) PpRab1, a Rab GTPase gene from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 278:273–282. doi:10.1007/s00438-007-0247-8

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179. doi:10.1007/BF00269282

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Durzan DJ (1986) Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/Technol 4:643–645

    Article  Google Scholar 

  • Gupta PK, Durzan DJ (1987) Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technol 5:147–151

    Article  Google Scholar 

  • Gupta P, Hartle J, Jamruszka A (2014). Advancement of somatic embryogenesis of conifers at Weyerhaeuser. In: 3rd international conference of the IUFRO Working Party 2.09.02, Woody plant production integrating genetic and vegetative propagation technologies, Sept 8–12, Vitoria-Gasteiz, Spain, p 105

    Google Scholar 

  • Hargreaves C, Menzies M (2007) Organogenesis and cryopreservation of juvenile radiate pine. In: Jain SM, Häggman H (eds) Protocols for Micropropagation of Woody Trees and Fruits. Springer, The Netherlands, p 51–65. doi:10.1007/978-1-4020-6352-7_6

    Google Scholar 

  • Hargreaves CL, Grace LJ, van der Maas SA et al (2005) Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Can J For Res 35:2629–2641. doi:10.1139/x05-178

    Article  Google Scholar 

  • Hargreaves CL, Reeves CB, Find JI et al (2009) Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation. Can J For Res 39:1566–1574. doi:10.1139/X09-082

    Article  Google Scholar 

  • Hargreaves CL, Reeves CB, Find JI et al (2011) Overcoming the challenges of family and genotype representation and early cell line proliferation in somatic embryogenesis from control-pollinated seeds of Pinus radiata. New Zeal J For Sci 41:97–114

    Google Scholar 

  • Harvengt L, Trontin J-F, Reymond I et al (2001) Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis. Planta 213:828–832. doi:10.1007/s004250100628

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Carneros E, Pizatrro A et al (2011) Expression pattern of the GRAS gene family during somatic embryogenesis in pine. BMC Proc 5:P136. doi:10.1186/1753-6561-5-S7-P136

    Article  PubMed Central  Google Scholar 

  • Hosoi Y, Maruyama TE (2012) Plant regeneration from embryogenic tissue of Pinus luchuensis Mayr, an endemic species in Ryukyu Island, Japan. Plant Biotech 29:401–406. doi:10.5511/plantbiotechnology.12.0530a

    Article  CAS  Google Scholar 

  • Humánez A, Blasco M, Brisa C et al (2012) Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Plant Cell Tiss Org 111:373–383. doi:10.1007/s11240-012-0203-0

    Article  Google Scholar 

  • Jones B (2011) Identification, isolation, expression analysis and molecular characterization of nine genes key to late embryogenesis in loblolly pine. Ph.D. Dissertation, School of Biology, Georgia Institute of Technology, 173 p

    Google Scholar 

  • Kim YW, Moon HK (2014) Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine (Pinus densiflora). Plant Biotechnol Rep 8:259–266. doi:10.1007/s11816-014-0319-2

    Article  Google Scholar 

  • Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100:949–957. doi:10.1111/j.1399-3054.1997.tb00022.x

    Article  CAS  Google Scholar 

  • Klimaszewska K, Rutledge RG (2016) Is there potential for propagation of adult spruce trees through somatic embryogenesis? In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFoS). Seoul, Korea, pp. 195–210

    Google Scholar 

  • Klimaszewska K, Bernier-Cardou M, Cyr DR, Sutton BCS (2000) Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cell Dev-Pl 36:279–286. doi:10.1007/s11627-000-0051-1

    Article  CAS  Google Scholar 

  • Klimaszewska K, Park Y-S, Overton C et al (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev-Pl 37:392–399. doi:10.1079/IVP2001175

    Article  Google Scholar 

  • Klimaszewska K, Morency F, Jones-Overton C, Cooke J (2004) Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690. doi:10.1111/j.1399-3054.2004.00370.x

    Article  CAS  Google Scholar 

  • Klimaszewska K, Trontin J-F, Becwar MR et al (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25. doi:10.1007/s11627-000-0051-1

    Google Scholar 

  • Klimaszewska K, Noceda C, Pelletier G et al (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell Dev-Pl 45:20–33. doi:10.1007/s11627-008-9158-6

    Article  Google Scholar 

  • Klimaszewska K, Pelletier G, Overton C et al (2010) Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Rep 29:723–734. doi:10.1007/s00299-010-0859-z

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska K, Overton C, Stewart D, Rutledge RC (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635–647. doi:10.1007/s00425-010-1325-4

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds) In vitro Embryogenesis in Higher Plants, Methods in Molecular Biology, Chapter 7, vol 1359, Springer Science+Business Media, New York. doi:10.1007/978-1-4939-3061-6_7 pp 131–162

  • Krakau UK, Liesebach M, Aronen T et al (2013) Scots pine (Pinus sylvestris L.). In: Pâques LE (ed) Forest tree breeding in europe: current state-of-the-art and perspectives. Managing forest ecosystems 25. Springer Science+Business Media, Dordrecht, pp 267–323. doi:10.1007/978-94-007-6146-9_6

    Google Scholar 

  • Lara-Chavez A, Flinn BS, Egertsdotter U (2011) Initiation of somatic embryogenesis from immature zygotic embryos of Oocarpa pine (Pinus oocarpa Schiede ex Schlectendal). Tree Physiol 31:539–554. doi:10.1093/treephys/tpr040

    Article  PubMed  Google Scholar 

  • Lara-Chavez A, Egertsdotter U, Flinn BS (2012) Comparison of gene expression markers during zygotic and somatic embryogenesis in pine. In Vitro Cell Dev-Pl 48:341–354. doi:10.1007/s11627-012-9440-5

    Article  CAS  Google Scholar 

  • Latutrie M, Aronen T (2013) Long-term cryopreservation of embryogenic Pinus sylvestris cultures. Scand J For Res 28:103–109. doi:10.1080/02827581.2012.701325

    Article  Google Scholar 

  • Lelu M-A, Bastien C, Drugeault A et al (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol Plant 105:719–728. doi:10.1034/j.1399-3054.1999.105417.x

    Article  CAS  Google Scholar 

  • Lelu-Walter M-A, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776. doi:10.1007/s00299-006-0115-8

    Article  CAS  PubMed  Google Scholar 

  • Lelu-Walter M-A, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Org 92:31–45. doi:10.1007/s11240-007-9300-x

    Article  Google Scholar 

  • Lelu-Walter M-A, Thompson D, Harvengt L et al (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899. doi:10.1007/s11295-013-0620-1

    Article  Google Scholar 

  • Lindgren D (2009) A way to utilise the advantages of clonal forestry for Norway spruce? In: Aronen T, Nikkanen T, Tynkkynen T (eds) Vegetative propagation of conifers for enhancing landscaping and tree breeding. Proceedings of the Nordic meeting held in September 10th–11th 2008 at Punkaharju, Finland. Working Papers of the Finnish Forest Research Institutem, vol 114, pp 8–15

    Google Scholar 

  • Lipavská H, Konrádová H (2004) Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev-Pl 40:23–30. doi:10.1079/IVP2003482. doi: 10.1079/IVP2003482

    Google Scholar 

  • Lippert D, Zhuang J, Ralph S et al (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473. doi:10.1002/pmic.200400986

    Article  CAS  PubMed  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328. doi:10.1007/BF00269890

    Article  CAS  PubMed  Google Scholar 

  • Lstibůrek M, Mullin TJ, El-Kassaby YA (2006) The impact of differential success of somatic embryogenesis on the outcome of clonal forestry programs. I. Initial comparison under multitrait selection. Can J For Res 36:1376–1384. doi:10.1139/x06-036

    Article  Google Scholar 

  • Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss Org. 107:25–33. doi:10.1007/s11240-011-9952-4

    Google Scholar 

  • Mahdavi-Darvari F, Mohd Noor N, Ismanizan I (2015) Epigenetic regulation and gene markers as signals of early somatic embryogenesis. Plant Cell Tiss Org 120:407–422. doi:10.1007/s11240-014-0615-0

    Article  CAS  Google Scholar 

  • Marum L (2009) Evaluation of the stability of embryogenic cultures and of emblings of maritime pine (Pinus pinaster Ait.) using molecular markers. Ph.D. Thesis, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal, 181 p

    Google Scholar 

  • Marum L, Loureiro J, Rodriguez E et al (2009a) Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis. J Biotechnol 143:288–295. doi:10.1016/j.jbiotec.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Marum L, Rocheta M, Maroco J et al (2009b) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682. doi:10.1007/s00299-008-0668-9

    Article  CAS  PubMed  Google Scholar 

  • Maruyama TE, Hosoi Y (2012) Post-maturation treatment improves and synchronizes somatic embryo germination of three species of Japanese pines. Plant Cell Tiss Org 110:45–52. doi:10.1007/s11240-012-0128-7

    Article  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725. doi:10.1093/jxb/err155

    Article  CAS  PubMed  Google Scholar 

  • Miguel CM, Rupps A, Raschke J et al (2016) Impact of molecular studies on somatic embryogenesis development for implementation in conifer multi-varietal forestry. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFoS). Seoul, Korea, pp. 373–421

    Google Scholar 

  • Montalbán IA, De Diego N, Moncaleán P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees Struct Funct 24:1061–1071. doi:10.1007/s00468-010-0477-y

    Article  Google Scholar 

  • Montalbán IA, De Diego N, Aguirre-Igartua E et al (2011) A combined pathway of somatic embryogenesis and organogenesis to regenerate radiata pine plants. Plant Biotech Rep 5:177–186. doi:10.1007/s11816-011-0171-6

    Article  Google Scholar 

  • Montalbán IA, Setién-Olarra A, Hargreaves CL, Moncaleán P (2013) Somatic embryogenesis in Pinus halepensis Mill.: an important ecological species from the Mediterranean forest. Trees 27:1339–1351. doi:10.1007/s00468-013-0882-0

    Article  Google Scholar 

  • Montalbán IA, García-Mendiguren O, Goicoa T et al (2015) Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New Forest 46:309–317. doi:10.1007/s11056-014-9457-1

    Article  Google Scholar 

  • Morel A (2014) Molecular physiology of somatic embryo development in maritime pine (Pinus pinaster Ait.): transcriptomic and proteomic approaches. Ph.D. Thesis, University of Orléans, France, 317 p

    Google Scholar 

  • Morel A, Teyssier C, Trontin J-F et al (2014a) Early molecular events involved in Pinus pinaster Ait somatic embryo development under reduced water availability: transcriptomic and proteomic analysis. Physiol Plant 152:184–201. doi:10.1111/ppl.12158

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Trontin J-F, Corbineau F et al (2014b) Cotyledonary somatic embryos of Pinus pinaster Ait most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta 240:1075–1095. doi:10.1007/s00425-014-2125-z

    Article  CAS  PubMed  Google Scholar 

  • Noceda C, Salaj T, Pérez M et al (2009) DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn cell culture. Trees 23:1285–1293. doi:10.1007/s00468-009-0370-8

    Article  CAS  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Develop 24:2678–2692. doi:10.1101/gad.1986710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stages-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80. doi:10.1111/j.1469-8137.2008.02448.x

    Article  CAS  PubMed  Google Scholar 

  • Palovaara J, Hakman I (2008) Conifer WOX-related homeodomain transcription factors: developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol Biol 66:533–549. doi:10.1007/s11103-008-9289-5

    Article  CAS  PubMed  Google Scholar 

  • Park Y-S (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656. doi:10.1051/forest:2002051

    Article  Google Scholar 

  • Park Y-S, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev-Pl 34:231–239. doi:10.1007/BF02822713

    Article  Google Scholar 

  • Park Y-S, Lelu-Walter M-A, Harvengt L et al (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tiss Org 86:87–101. doi:10.1007/s11240-006-9101-7

    Article  Google Scholar 

  • Park S-Y, Klimaszewska K, Park J-Y, Mansfield S (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30:1469–1478. doi:10.1093/treephys/tpq081

    Article  CAS  PubMed  Google Scholar 

  • Pérez Rodríguez MJ, Suárez MF, Heredia R et al (2006) Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytol 169:35–44. doi:10.1111/j.1469-8137.2005.01551.x

    Article  CAS  Google Scholar 

  • Plomion C, Bastien C, Bogeat-Triboulot M-B et al (2016) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann For Sci 73: 77–103. doi:10.1007/s13595-015-0488-3

    Google Scholar 

  • Pullman G, Bucalo K (2014) Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New Forest 45:353–377. doi:10.1007/s11056-014-9407-y

    Article  Google Scholar 

  • Pullman GS, Buchanan M (2008) Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28:985–996. doi:10.1093/treephys/28.7.985

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S (2009) Loblolly pine (Pinus taeda) female gametophyte and embryo pH changes during seed development. Tree Physiol 29:829–836. doi:10.1093/treephys/tpp020

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S, Peter G et al (2003) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758. doi:10.1007/s00299-003-0586-9

    CAS  PubMed  Google Scholar 

  • Pullman GS, Zeng X, Copeland-Kamp B et al (2015) Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents. Tree Physiol 35:209–224. doi:10.1093/treephys/tpu117

    Article  PubMed  Google Scholar 

  • Ramarosandratana A, Harvengt L, Bouvet A et al (2001) Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos. Plant Sci 160:473–479. doi:10.1016/S0168-9452(00)00410-6

    Article  CAS  PubMed  Google Scholar 

  • Resende MFR, Munoz P, Acosta JJ et al (2012) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193:617–624. doi:10.1111/j.1469-8137.2011.03895.x

    Article  PubMed  Google Scholar 

  • Robinson AR, Dauwe R, Ukrainetz NK et al (2009) Predicting the regenerative capacity of conifer somatic embryogenic cultures by metabolomics. Plant Biotech J 7:952–963. doi:10.1111/j.1467-7652.2009.00456.x

    Article  CAS  Google Scholar 

  • Rosvall O, Mullin TJ (2013) Introduction to breeding strategies and evaluation of alternatives. In: Mullin TJ, Lee SJ (eds) Best practice for tree breeding in Europe, Skogforsk, pp. 7–27. ISBN: 978-91-977649-6-4

    Google Scholar 

  • Salaj T, Fráterová L, Cárach M, Salaj J (2014) The effect of culture medium formulation on Pinus nigra somatic embryogenesis. Dendrobiology 71:119–128. doi:10.12657/denbio.071.012

    CAS  Google Scholar 

  • Simões M, Rodrigues A, de Vega-Bartol J et al (2011) Molecular characterization of pine embryogenesis: pursuing the role of a putative non-specific lipid-transfer protein. BMC Proc 5:P71. doi:10.1186/1753-6561-5-S7-P71

    Article  PubMed Central  Google Scholar 

  • Soresson (2006) Varietal pines boom in the US South. New Zeal J Forestry, August 2006:34-40

    Google Scholar 

  • Tang W, Newton RJ (2008) Pines. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants. Transgenic forest tree species, vol 9, pp 109–150. Wiley-Blackwell, John Wiley & Sons Ltd. Oxford, UK

    Google Scholar 

  • Tereso S, Zoglauer K, Milhinhos A et al (2007) Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study. Trees Physiol 27:661–669. doi:10.1093/treephys/27.5.661

    Article  CAS  Google Scholar 

  • Trontin J-F, Reymond I, Quoniou S et al (2011) An overview of current achievements and shortcomings in developing Maritime pine somatic embryogenesis and enabling technologies in France. In: Park Y-S, Bonga JM, Park S-Y, Moon H-K (eds) Advances in Somatic Embryogenesis of Trees and Its Application for the Future Forests and Plantations. IUFRO Working Party 2.09.02: Somatic embryogenesis and other clonal propagation methods of forest trees, August 19–21 2010 (Suwon, South Korea), p 100–102

    Google Scholar 

  • Trontin J-F, Teyssier C, Morel A et al (2016a) Prospects for new variety deployment through somatic embryogenesis in maritime pine. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFoS). Seoul, Korea, pp. 572–606

    Google Scholar 

  • Trontin J-F, Klimaszewska K, Morel A et al (2016b) Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights. In: Germana MA, Lambardi M (eds) In vitro Embryogenesis in Higher Plants, Methods in Molecular Biology, Chapter 8, vol. 1359, pp 167–207. Springer Science+Business Media, New York. doi:10.1007/978-1-4939-3061-6_8

    Google Scholar 

  • Trontin J-F, Aronen T, Hargreaves C et al (2016c). International effort to induce somatic embryogenesis in adult pine trees. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFoS). Seoul, Korea, pp. 211–260

    Google Scholar 

  • Uddenberg D, Valladares S, Abrahamsson M et al (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527–539. doi:10.1186/1753-6561-5-S7-P151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdés AE, Fernández B, Centeno ML (2003) Alterations in endogenous levels of cytokinins following grafting of Pinus radiata support ratio of cytokinins as an index of ageing and vigour. J Plant Physiol 160:1407–1410. doi:10.1078/0176-1617-00992

    Article  PubMed  Google Scholar 

  • Vales T, Feng X, Ge L et al (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26:133–143. doi:10.1007/s00299-006-0221-7

    Article  CAS  PubMed  Google Scholar 

  • von Aderkas P, Bonga J, Klimaszewska K, Owens J (1991) Comparison of larch embryogeny in vivo and in vitro. In: Ahuja MR (ed) Woody plant biotechnology, New York Plenum Press, pp. 139–155. doi:10.1007/978-1-4684-7932-4_15

    Google Scholar 

  • von Arnold S, Larsson E, Moschou PN et al (2016) Norway spruce as a model for studying regulation of somatic embryo development in conifers. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFoS). Seoul, Korea, pp. 351–372

    Google Scholar 

  • Vuosku J (2011) A matter of life and death—polyamine metabolism during zygotic embryogenesis of pine. Ph.D. Thesis, University of Oulu, Finland, 68 p

    Google Scholar 

  • Vuosku J, Jokela A, Läärä E et al (2006) Consistency of polyamine profiles and expression of arginine decarboxylase in mitosis during zygotic embryogenesis of Scots pine. Plant Physiol 142:1027–1038. doi:10.1104/pp.106.083030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuosku J, Sutela S, Kestilä J et al (2015) Expression of catalase and retinoblastoma-related protein genes associates with cell death processes in Scots pine zygotic embryogenesis. BMC Plant Biol 15:88. doi:10.1186/s12870-015-0462-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng Y, Park YS, Krasowski MJ, Mullin TJ (2011) Allocation of varietal testing efforts for implementing conifer multi-varietal forestry using white spruce as a model species. Ann For Sci 68:129–138. doi:10.1007/s13595-011-0014-1

    Article  Google Scholar 

  • Wood ER, Bullock BP, Isik F, McKeand SE (2015) Variation in stem taper and growth traits in a clonal trial of loblolly pine. For Sci 61:76–78. doi:10.5849/forsci.12-068

    Google Scholar 

  • Yan G, Menli X, Guifeng W et al (2010) Molecular characterization and expression analysis of PmSERK1 during somatic embryogenesis in masson pine. Mol Plant Breeding 8:53–58

    Google Scholar 

  • Zhen Y, Zhao Z-Z, Zheng R-H, Shi J (2012) Proteomic analysis of early seed development in Pinus massoniana L. Plant Physiol Biochem 54:97–104. doi:10.1016/j.plaphy.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  • Zhu C (2008) Serine palmitoyltransferase and ceramide kinase in embryo development of Loblolly pine. Ph.D. Thesis, School of Biology, Georgia Institute of Technology, 160 p

    Google Scholar 

Download references

Acknowledgements

The “Genetics and Biotechnology” team of the FCBA is gratefully acknowledged for its contribution to the technical and scientific developments presented throughout this chapter for maritime pine somatic embryogenesis. We especially thank Isabelle Reymond, Francis Canlet, Sandrine Debille, Karine Durandeau, Pierre Alazard and Luc Harvengt. We also thank Alain Bouvet for statistical support.

In France, the maritime pine multiyear project was supported by grants from the “Conseil Régional de la Région Centre” (EMBRYOME project, contract 33639; IMTEMPERIES, contract 2014-00094511), the “Conseil Régional de la Région Aquitaine” (Embryo2011, contract 09012579-045), the French Ministry of Foreign Affairs and the French Ministry of Higher Education and Research through the France/Czech Republic Science Cooperation BARRANDE Program. Data analysis and experiments were made possible through the involvement of INRA’s GenoToul bioinformatics platform in Toulouse (France) and the XYLOFOREST platform (ANR-10-EQPX-16), especially the XYLOBIOTECH technical facility located at INRA Orléans and FCBA Pierroton (France). In Portugal, the preparation of this chapter was supported through projects funded by (1) the European Community’s Seventh Framework Programme (FP7/2007-2013, Grant Agreement N°289841-PROCOGEN), and (2) Fundação para a Ciência e Tecnologia (FCT), through grants GREEN-it (UID/Multi/04551/2013) and IF/01168/2013. In Canada, KK was supported by Natural Resources Canada, Canadian Forest Service. Ms Isabelle Lamarra (NRCan-CFS) is thanked for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Anne Lelu-Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lelu-Walter, MA. et al. (2016). Somatic Embryogenesis for More Effective Breeding and Deployment of Improved Varieties in Pinus spp.: Bottlenecks and Recent Advances. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_19

Download citation

Publish with us

Policies and ethics