Skip to main content

Measuring Silica Nanoparticles in the Skin

  • Reference work entry
  • First Online:
Agache's Measuring the Skin

Abstract

Nanotechnology is a rapidly expanding area of research involved in developing science-based solutions for innovative therapeutics. Silica nanoparticles (SNPs) have received wide attention in several industries and medicine. Recently, they are emerging in the fields of cosmetics and dermal preparations. SNP may offer a revolutionized treatment of several skin diseases by controlled and sustained release of drugs to the skin, as well as enhanced skin penetration of encapsulated drug ingredients. SNPs are candidates for transcutaneous vaccination and transdermal gene therapy, too. Yet there exist concerns that while the properties of silica nanoparticles have enabled numerous industrial and medical applications, their toxicological and environmental safety mandates evaluation. The knowledge of passage of silica nanoparticles through the skin following skin exposure (intentionally or unintentionally) and subsequent effects is limited. This review surveys the key experiments on SNP-based formulations in the fields of dermatology and cosmetics with the goal of rationalizing data and informing public health concerns related to silica nanoparticles’ toxicity among scientists and manufacturers handling them while highlighting the research gaps in dermal absorption of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SC:

Stratum corneum

SNPs:

Silica nanoparticles

References

  • Agudelo D, Nafisi S, Tajmir-Riahi HA. Encapsulation of milk-lactoglobulin by chitosan nanoparticles. J Phys Chem B. 2013a;117:6403–9.

    Google Scholar 

  • Agudelo D, Sanyakamdhorn S, Nafisi S, Tajmir-Riahi HA. Transporting antitumor drug tamoxifen and its metabolites, 4-Hydroxytamoxifen and endoxifen by chitosan nanoparticles. PLoS One. 2013b;8:e60250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alikhan FS, Maibach HI. Topical absorption and systemic toxicity. Cutan Ocul Toxicol. 2011;30:175–86.

    Article  PubMed  Google Scholar 

  • Alnasif N, Zoschke C, Fleige E, Brodwolf R, Boreham A, Rühl E, et al. Penetration of normal, damaged and diseased skin – an in vitro study on dendritic core-multishell nanotransporters. J Control Release. 2014;185C:45–50.

    Article  CAS  Google Scholar 

  • Ambrogi V, Latterini L, Marmottini F, Pagano C, Ricci M. Mesoporous silicate MCM-41 as a particulate carrier for octylmethoxycinnamate: sunscreen release and photostability. J Pharm Sci. 2013;102:1468–75.

    Article  CAS  PubMed  Google Scholar 

  • Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16:1959–66.

    Article  CAS  Google Scholar 

  • Bätz F, Klipper W, Korting HC, Henkler F, Landsiedel R, Luch A, et al. Esterase activity in excised and reconstructed human skin – biotransformation of prednicarbate and the model dye fluorescein diacetate. Eur J Pharm Biopharm. 2013;84:374–85.

    Article  PubMed  CAS  Google Scholar 

  • Behtash A, Nafisi S, Maibach HI. New generation of fluconazole: a review on existing researches and technologies. Cur Drug Deliv. 2016, Manuscript in Publishing.

    Google Scholar 

  • Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121:2768–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlier G, Gastaldi L, Ugazio E, Miletto I, Iliade P, Sapino S. Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: positive effect of surface functionalization. J Colloid Interface Sci. 2013a;393:109–18.

    Article  CAS  PubMed  Google Scholar 

  • Berlier G, Gastaldi L, Sapino S, Miletto I, Bottinelli E, Chirio D, et al. MCM-41 as a useful vector for rutin topical formulations: synthesis, characterization and testing. Int J Pharm. 2013b;457:177–86.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein IA, Vaughan FL. Cultured keratinocytes in in vitro dermatotoxicological investigation: a review. J Toxicol Environ Health B. 1999;2:1–30.

    Article  CAS  Google Scholar 

  • Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A. 2005;102:11539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonen J, Baert B, Lambert J, De Spiegeleer B. Skin penetration of silica microparticles. Pharmazie. 2011;66:463–4.

    CAS  PubMed  Google Scholar 

  • Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res. 2003;42:1–36.

    Article  CAS  PubMed  Google Scholar 

  • Butz T. Dermal penetration of nanoparticles-what we know and what we don’t. SöFW J10. 2009;135:30–4.

    CAS  Google Scholar 

  • Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;18:3144–76.

    Article  CAS  Google Scholar 

  • Choi M, Cho WS, Han BS, Cho M, Kim SY, Yi JY, et al. Transient pulmonary fibrogenic effect induced by intratracheal instillation of ultrafine amorphous silica in A/J mice. Toxicol Lett. 2008;182:97–101.

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, et al. Design considerations for tumor-targeted nanoparticles. Nat Nanotechnol. 2010;5:42–7.

    Article  CAS  PubMed  Google Scholar 

  • Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health. 2009;82:1043–55.

    Article  CAS  PubMed  Google Scholar 

  • De Louise LA. Applications of nanotechnology in dermatology. J Invest Dermatol. 2012;132:964–75.

    Article  CAS  Google Scholar 

  • De Villiers MM, Aramwit P, Kwon GS. Nanotechnology in drug delivery. New York: Springer/AAPS Press; 2009.

    Book  Google Scholar 

  • Do N, Weindl G, Grohmann L, Salwiczek M, Koksch B, Korting HC, et al. Cationic membrane-active peptides – anticancer and antifungal activity as well as penetration into human skin. Exp Dermatol. 2014;23:326–31.

    Article  CAS  PubMed  Google Scholar 

  • ECETOC. Synthetic amorphous silica (CAS No. 7631-86-9) – JACC REPORT No. 51. Brussels: European Centre for Ecotoxicology and Toxicology of Chemicals; 2006. p. 6339–51. ISSN-0773-2006.

    Google Scholar 

  • Elias Z, Poirot O, Daniere MC, Terzetti F, Marande AM, Dzwigaj S, et al. Cytotoxic and transforming effects of silica particles with different surface properties in Syrian hamster embryo (SHE) cells. Toxicol In Vitro. 2000;14:409–22.

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Chávez JJ, Merino-Sanjuan V, Lopez-Cervantes M, Urban-Morlan Z, Pinon-Segundo E, Quintanar-Guerrero D, et al. The tape stripping technique as a method for drug qualification in skin. J Pharm Pharmaceut Sci. 2008;11:104–30.

    Article  Google Scholar 

  • EU Commission Recommendation. Definition of nanomaterial. Available at http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF (2011).

  • Fenoglio I, Martra G, Coluccia S, Fubini B. Possible role of ascorbic acid in the oxidative damage induced by inhaled crystalline silica particles. Chem Res Toxicol. 2000;13:971–5.

    Article  CAS  PubMed  Google Scholar 

  • Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm. 2015;495:599–607.

    Article  CAS  PubMed  Google Scholar 

  • Firouz A, Namdar R, Nafisi S, Maibach HI. Nano-sized technologies for miconazole skin delivery. Cur Pharm Biotech. 2016;17:524–31.

    Article  CAS  Google Scholar 

  • Franz J. Percutaneous absorption on the relevance of in-vitro data. J Invest Dermatol. 1975;67:190–5.

    Article  Google Scholar 

  • Friedman R. Nano dot technology enters clinical trials. J Natl Cancer Inst. 2011;103:1428–9.

    Article  PubMed  Google Scholar 

  • Fruijtier-Polloth C. The toxicological mode of action and the safety of synthetic amorphous silica-A nanostructured material. Toxicol. 2012, 11;294(2–3):61–79.

    Google Scholar 

  • Gamer AO, Leibold E, van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro. 2006;20:301–7.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bennett AE. Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. Nanomedicine. 2011;6:867–77.

    Article  CAS  PubMed  Google Scholar 

  • Gastaldi L, Ugazio E, Sapino S, Iliade P, Miletto I, Berlier G. Mesoporous silica as a carrier for topical application: the Trolox case study. Phys Chem Chem Phys. 2012;14:11318–26.

    Article  CAS  PubMed  Google Scholar 

  • Georgia State University. Hyperphysics. Abundances of the elements in the earth’s crust. Available at http://hyperphysics.phy-astr.gsu.edu/hbase/tables/elabund.html

  • Ghouchi-Eskandar N, Simovic S, Prestidge CA. Chemical stability and phase distribution of all-trans-retinol in nanoparticle-coated emulsions. Int J Pharm. 2009a;376:186–94.

    Article  CAS  Google Scholar 

  • Ghouchi-Eskandar N, Simovic S, Prestidge CA. Nanoparticle coated emulsions as novel dermal delivery vehicles. Curr Drug Deliv. 2009b;6:367–73.

    Article  Google Scholar 

  • Ghouchi-Eskandar N, Simovic S, Prestidge CA. Solid-state nanoparticle coated emulsions for encapsulation and improving the chemical stability of all-trans-retinol. Int J Pharm. 2012;423:384–91.

    Article  CAS  PubMed  Google Scholar 

  • Götz C, Pfeiffer R, Blatz V, Tigges J, Jäckh C, Freytag EM, et al. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (phase I). Exp Dermatol. 2012;1:358–63.

    Article  CAS  Google Scholar 

  • Guth K, Riviere JE, Brooks JD, Dammann M, Fabian E, van Ravenzwaay B, et al. In silico models to predict dermal absorption from complex agrochemical formulations. SAR QSAR Environ Res. 2014;25:565–88.

    Article  CAS  PubMed  Google Scholar 

  • Hayes AW, Kruger CL. Hayes’ principles and methods of toxicology. New York: CRC Press; 2014.

    Google Scholar 

  • Higaki K, Nakayama K, Suyama T, Amnuaikit C, Ogawara K, Kimura T. Enhancement of topical delivery of drugs via direct penetration by reducing blood flow rate in skin. Int J Pharm. 2005;288:227–33.

    Article  CAS  PubMed  Google Scholar 

  • Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Tochigi S, Ichihashi K, et al. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part Fibre Toxicol. 2012;9:3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Fröba M. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Edit. 2006;45:3216–51.

    Article  CAS  Google Scholar 

  • Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials. 2008;29:4045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iier RK. The chemistry of silica. New York: Wiley; 1979.

    Google Scholar 

  • IMA Europe. Crystalline silica and health from a European industry perspective. Available at www.crystallinesilica.eu (2014).

  • Jäckh C, Blatz V, Fabian E, Guth K, van Ravenzwaay B, Reisinger K, et al. Characterization of enzyme activities of Cytochrome P450 enzymes, Flavin-dependent monooxygenases, N-acetyltransferases and UDP-glucuronyltransferases in human reconstructed epidermis and full-thickness skin models. Toxicol In Vitro. 2011;25:1209–14.

    Article  PubMed  CAS  Google Scholar 

  • Jacobi U, Engel K, Patzelt A, Worm M, Sterry W, Lademann J. Penetration of pollen proteins into the skin. Skin Pharmacol Physiol. 2007;20:297–304.

    Article  CAS  PubMed  Google Scholar 

  • Korting HC, Schäfer–Korting M. Carriers in the topical treatment of skin disease. Handb Exp Pharmacol. 2010;197:435–68.

    Article  CAS  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartul JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  • Kreyling WG, Behnke MS, Chaudhry Q. A complementary, definition of nanomaterial. Nano Today. 2010;5:165–8.

    Article  Google Scholar 

  • Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomed Nanotechnol Biol Med. 2013;9:39–54.

    Article  CAS  Google Scholar 

  • Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, et al. Hair follicles – a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 2006;19:232–6.

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt. 2009;14:021014-1–4.

    Google Scholar 

  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, et al. Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and In vivo biodistribution. Adv Funct Mater. 2009;19:215–22.

    Article  CAS  Google Scholar 

  • Lei C, Liu P, Chen B, Mao Y, Engelmann H, Shin Y, et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc. 2010;132:6906–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Qiao SZ, Chen JS, Lou XWD, Xing X, Lu GQM. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun. 2011;47:12578–91.

    Article  CAS  Google Scholar 

  • Lou XWD, Archer LA, Yang Z. Hollow micro-/nanostructures: synthesis and applications. Adv Mater. 2008;20:3987–4019.

    Article  CAS  Google Scholar 

  • Low SP, Voelcker NH, Canham LT, Williams KA. The biocompatibility of porous silicon in tissues of the eye. Biomaterials. 2009;30:2873–80.

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf S, Otberg N, Maibach HI, Sinkgraven R, Sterry W, Lademann J. Ethnic variation in vellus hair follicle size and distribution. Skin Pharmacol Physiol. 2006;19:159–67.

    Article  CAS  PubMed  Google Scholar 

  • Marzulli FN, Maibach HI. Relevance of animal models-the hexachlorophene story. In: Maibach HI, editor. Animal models in dermatology. Edinburgh: Churchill Living Stone; 1975. p. 156–67.

    Google Scholar 

  • Mavon A, Miquel C, Lejeune O, Payre B, Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol. 2007;20:10–20.

    Article  CAS  PubMed  Google Scholar 

  • Meinke MC, Patzelt A, Richter H, Schanzer S, Sterry W, Filbry A, et al. Prevention of follicular penetration: barrier-enhancing formulations against the penetration of pollen allergens into hair follicles. Skin Pharmacol Physiol. 2011;24:144–50.

    Article  CAS  PubMed  Google Scholar 

  • Menczel E, Maibach HI. In vitro human percutaneous penetration of benzyl alcohol and testosterone: epidermal-dermal retention. J Invest Dermatol. 1970;54:386–94.

    Article  CAS  PubMed  Google Scholar 

  • Michel K, Scheel J, Karsten S, Stelter N, Wind T. Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation. Nanotoxicology. 2013;7:974–88.

    Article  CAS  PubMed  Google Scholar 

  • Moger J, Johnston BD, Tyler CR. Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Opt Express. 2008;16:3408–19.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon. 2006;44:1070–8.

    Article  CAS  Google Scholar 

  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Tochigi S, Kondoh S, et al. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol. 2011a;8:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Matsuo K, Arimori A, et al. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials. 2011b;32:2713–24.

    Article  CAS  PubMed  Google Scholar 

  • Nafisi S, Maibach HI. Silica nanoparticles: promising nanoparticles for increasing cosmetic ingredients/drugs efficacy. Cosmet Toilet. 2015.

    Google Scholar 

  • Nafisi S, Maibach HI. Skin penetration of nanoparticles. In: Souto EB, editor. Emerging nanotechnologies in immunology: the design, application and toxicology of nanopharmaceuticals and nanovaccines. Elsevier; 2016. In Publishing.

    Google Scholar 

  • Nafisi S, Maibach HI. Nanotechnology in cosmetics. In: Yamashita Y, Lochhead RY, Maibach HI, editors. Cosmetics and nanotechnology in cosmetics science and technology: theoretical principles and applications. Elsevier; 2016. In Publishing.

    Google Scholar 

  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010;7:39–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassiri-Kashani M, Namdar N, Nafisi S, Maibach HI. Improved voriconazole skin delivery by nanoparticles. Pharmaceut Chem J. 2016;50:76–79.

    Google Scholar 

  • Nel A, Xia T, Meng H, Wang X, Lin S, JI Z, Zhang H. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res. 2013;46:607–21.

    Article  CAS  PubMed  Google Scholar 

  • Ngo MA, Malley MO, Maibach HI. Percutaneous absorption and exposure assessment of pesticides. J Appl Toxicol. 2010;30:91–114.

    CAS  PubMed  Google Scholar 

  • Ngo MA, Malley MO, Maibach HI. Perspectives on percutaneous penetration of nanomaterials. In: Nasir A, Friedman A, Wang S, editors. Nanotechnology in dermatology. New York: Springer; 2012. p. 63–86.

    Google Scholar 

  • Nigg HN, Stamper JH. Biological monitoring for pesticide dose determination. In: Wang RGM, Wang CA, Franklin CA, Honeycutt RC, Reinert JC, editors. Biological monitoring for pesticide exposure: measurement, estimation, and risk reduction. Washington, DC: American Chemical Society; 1989. p. 6–27.

    Google Scholar 

  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. 2007;37:251–77.

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • OECD SIDS. Synthetic amorphous silica and silicates. Available at http://www.chem.unep.ch/irptc/sids/oecdsids/Silicates.pdf (2004).

  • OSHA 3177. Occupational Safety and Health Administration. Crystalline silica exposure. Health hazard information for construction employees. Available at https://www.osha.gov/Publications/osha3177.pdf (2002>).

  • Ostrowski A, Nordmeyer D, Boreham A, Brodwolf R, Mundhenk L, Fluhr JW. Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine. 2014;10:1571–81.

    Google Scholar 

  • Otberg N, Patzelt A, Rasulev U, Hagemeister T, Linscheid M, Sinkgraven R, et al. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol. 2008;65:488–92.

    Article  CAS  PubMed  Google Scholar 

  • Otterstedt JE, Brandreth DA. Small particles technology. New York: Plenum Press; 1998.

    Book  Google Scholar 

  • Park YH, Kim JN, Jeong SH, Choi JE, Lee SH, Choi BH, et al. Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology. 2010;267:178–81.

    Article  CAS  PubMed  Google Scholar 

  • Park YH, Bae HC, Jang Y, JeongSH LHN, Ryu WI, et al. Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol Cell Toxicol. 2013;9:67–74.

    Article  CAS  Google Scholar 

  • Patzelt A, Richter H, Knorr F, Schafer U, Lehr CM, Dahne L, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150:45–8.

    Article  CAS  PubMed  Google Scholar 

  • Pfluecker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, et al. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol. 2001;14 Suppl 1:92–7.

    Google Scholar 

  • Piao Y, Burns A, Kim J, Wiesner U, Hyeon T. Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater. 2008;18:3745–58.

    Article  CAS  Google Scholar 

  • Pilloni M, Ennas G, Casu M, Fadda AM, Frongia F, Marongiu F, et al. Drug silica nanocomposite: preparation, characterization and skin permeation studies. Pharm Dev Technol. 2013;18:626–33.

    Article  CAS  PubMed  Google Scholar 

  • Poland CA, Read SAK, Varet J, Carse G, Christensen FM, Hankin SM. Dermal absorption of nanomaterials, Environmental Project No.1504. Denmark: The Danish Environmental Protection Agency; 2013.

    Google Scholar 

  • Prausnitz MR, Elias PM, Franz TJ, Schmuth M, Tsai JC, Menon GK, et al. Skin barrier and transdermal drug delivery. In: Bolognia J, Jorizzo JL, Schaffer JV, editors. Dermatology. Philadelphia: Saunders; 2012. p. 2065–73.

    Google Scholar 

  • Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.

    Article  PubMed  Google Scholar 

  • Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63:470–91.

    Article  CAS  PubMed  Google Scholar 

  • Quignard S, Mosser G, Boissière M, Coradin T. Long-term fate of silica nanoparticles interacting with human dermal fibroblasts. Biomaterials. 2012;33:4431–42.

    Article  CAS  PubMed  Google Scholar 

  • Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, et al. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano. 2012;6:6829–42.

    Article  CAS  PubMed  Google Scholar 

  • Raju B, Rom WN. Silica, some silicates, coal dust and para-aramid fibrils. IARC monographs on the evaluation of carcinogenic risks to humans. Cancer Cause Control. 1998;68:351–3.

    Google Scholar 

  • Rosenholm JM, Sahlgren C, Linden M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets. 2011;12:1166–86.

    Article  CAS  PubMed  Google Scholar 

  • Rougier A, Lotte C, Maibach HI. In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: predictive assessment by the stripping method. J Pharm Sci. 1987;76:451–4.

    Article  CAS  PubMed  Google Scholar 

  • Scalia S, Franceschinis E, Bertelli D, Iannuccelli V. Comparative evaluation of the effect of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin penetration of quercetin. Skin Pharmacol Physiol. 2013;26:57–67.

    Article  CAS  PubMed  Google Scholar 

  • SCCP – Scientific Committee on Consumer Products. Preliminary opinion on safety of nanomaterials in cosmetic products. Available at http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_099.pdf (2007).

  • Scheuplein RJ. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol. 1967;48:79–88.

    Article  CAS  PubMed  Google Scholar 

  • Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5:126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scodeller P, Catalano PN, Salguero N, Duran H, Wolosiuk A, Soler-Illia GJAA. Hyaluronan degrading silica nanoparticles for skin cancer therapy. Nanoscale. 2013;5:9690–8.

    Article  CAS  PubMed  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–88.

    Article  CAS  PubMed  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles: structural design and applications. J Mater Chem. 2010;20:7924–37.

    Article  CAS  Google Scholar 

  • Smith EW, Maibach HI. Percutaneous penetration enhancers. Boca Raton: CRC Press; 2006.

    Google Scholar 

  • Som C, Wick P, Krug H, Nowack B. Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int. 2011;37:1131–42.

    Article  CAS  PubMed  Google Scholar 

  • Stober W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  • Tajmir-Riahi HA, Nafisi S, Sanyakamdhorn S, Agudelo D, Chanphai P. Applications of chitosan nanoparticles in drug delivery. In: Jain KK, editor. Drug delivery systems. Springer; 2014. Chapter 11, p. 165–84.

    Chapter  Google Scholar 

  • Takahashi H, Yoshioka Y, Hirai T, Ichihashi KI, Nishijima N, Yoshida T, et al. The size effects of amorphous silica nanoparticles on atopic dermatitis-like skin lesion (P6259). J Immunol. 2013;190:181.12.

    Article  CAS  Google Scholar 

  • Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8:290–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24:1504–34.

    Article  CAS  PubMed  Google Scholar 

  • Thurn KT, Brown E, Wu A, Vogt S, Lai B, Maser J, et al. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett. 2007;2:430–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 2004;123:168–76.

    Article  CAS  PubMed  Google Scholar 

  • Tregear RT. Physical functions of skin. London: Academic; 1996.

    Google Scholar 

  • Trommer H, Neubert RH. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol. 2006;19:106–21.

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda S. Transdermal penetration and biodistribution of nanomaterials and their acute toxicity in vivo. Yakugaku Zasshi. 2011;131:203–7.

    Article  PubMed  Google Scholar 

  • Unger KK. Porous silica. Amsterdam: Elsevier; 1979.

    Google Scholar 

  • Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46:7548–58.

    Article  CAS  Google Scholar 

  • Van Blaadern A, Van Geest J, Vrij A. Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloid Interface Sci. 1992;154:481–501.

    Article  Google Scholar 

  • Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126:1316–22.

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Zhao DY. On the controllable soft-templating approach to mesoporous silicates. Chem Rev. 2007;107:2821–60.

    Article  CAS  PubMed  Google Scholar 

  • Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci. 2009;107:553–69.

    Article  CAS  PubMed  Google Scholar 

  • Welsher K, Sherlock SP, Dai H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci U S A. 2011;108:8943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wester RC, Noonan PK, Maibach HI. Frequency of application on percutaneous absorption of hydrocortisone. Arch Dermatol. 1977;113:620–2.

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Noonan PK, Maibach HI. Variations in percutaneous absorption of testosterone in the rhesus monkey due to anatomic site of application and frequency of application. Arch Dermatol Res. 1980;267:229–35.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm KP, Zhai H, Maibach HI. Dermatotoxicology. New York: CRC Press; 2012.

    Book  Google Scholar 

  • Willey JD. Amorphous silica. Kirk-Othmer encyclopedia of chemical technology. New York: Wiley; 1982. p. 766–81.

    Google Scholar 

  • Xia Y, Gates B, Yin Y, Lu Y. Monodispersed colloidal spheres: old materials with new applications. Colloidal spheres. Adv Mater. 2000;12:693–713.

    Article  CAS  Google Scholar 

  • Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B, et al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res. 2009;11:15–24.

    Article  CAS  Google Scholar 

  • Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5:5717–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Greish K, McGill LD, Ray A, Ghandehari H. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano. 2012;6:2289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Zhan P, Wang ZL, Zhang WY, Ming NB. Preparation of monodisperse silica particles with controllable size and shape. J Mater Res. 2003;18:649–53.

    Article  CAS  Google Scholar 

  • Zhang YY, Hu L, Yu DH, Gao CY. Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. Biomaterials. 2010;31:8465–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors appreciate Central Tehran Branch, IAU, Tehran, Iran for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shohreh Nafisi or Howard I. Maibach .

Editor information

Editors and Affiliations

Additional information

Declaration of Interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Nafisi, S., Schäfer-Korting, M., Maibach, H.I. (2017). Measuring Silica Nanoparticles in the Skin. In: Humbert, P., Fanian, F., Maibach, H., Agache, P. (eds) Agache's Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-32383-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32383-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32381-7

  • Online ISBN: 978-3-319-32383-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics