Skip to main content

Dielectric Nanomaterials for Silicon Solar Cells

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Dielectric nanomaterials are emerging as key components in today’s highly efficient silicon solar cells. The most successful materials are SiO2, SiNx:H and Al2O3 due to their excellent material properties for surface passivation and light management. Dielectric passivation layers ensure high level of chemical passivation by effectively reducing the density of silicon surface states, which could act as recombination centers for photo-generated charge carriers. Additionally, these materials provide strong field-effect passivation by a high density of intrinsic fixed charges. However, novel solar cell concepts demand for dielectric nanomaterials with additional functionalities, such as electrical conductivity, simultaneous applicability on n- and p-type substrates or compatibility with low-thermal budget processing. Recent developments show that these functionalities can be realized in multi-oxide nanolaminates including HfO2 or TiO2 sublayers. Additionally, alternative deposition techniques and innovative processes, such as flash light annealing, become available to reduce process complexity and thermal budget. This chapter reviews the theory and application of dielectric nanomaterials in today’s solar cells and gives an outlook on promising solutions in future solar cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.G. Aberle, Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. Res. Appl. 8, 473–487 (2000)

    Article  Google Scholar 

  2. A.W. Blakers, M.A. Green, 20 % Efficiency silicon solar cells. Appl. Phys. Lett. 48, 215 (1986)

    Article  Google Scholar 

  3. J. Zhao, A. Wang, M.A. Green, 24.5 % efficiency silicon PERT cells on MCZ substrates and 24.7 % efficiency PERL cells on FZ substrates. Prog. Photovolt. Res. Appl. 7, 471–474 (1999)

    Article  Google Scholar 

  4. A.G. Aberle, R. Hezel, Progress in low-temperature surface passivation of silicon solar cells using remote-plasma silicon nitride. Prog. Photovolt. Res. Appl. 5, 29–50 (1997)

    Article  Google Scholar 

  5. J. Schmidt, J.D. Moschner, J. Henze, S. Dauwe, R. Hezel, Recent progress in the surface passivation of silicon solar cells using silicon nitride, in Proc. 19th PVSEC (2004), pp. 391–396

    Google Scholar 

  6. G. Dingemans, W.M.M. Kessels, Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 30, 040802 (2012)

    Article  Google Scholar 

  7. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovolt. Res. Appl. 16, 461–466 (2008)

    Article  Google Scholar 

  8. M.A. Green, The passivated emitter and rear cell (PERC): from conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190–197 (2015)

    Article  Google Scholar 

  9. S.W. Glunz, R. Preu, D. Biro, Crystalline silicon solar cells—state-of-the-art and future developments. Compr. Renew. Energy, Elsevier 1, 353–387 (2012)

    Article  Google Scholar 

  10. K. Wijekoon, F. Yan, Y. Zheng, D. Wang, H. Mungekar, L. Zhang, H. Ponnekanti, Optimization of rear local contacts on high efficiency PERC solar cells structures. Int. J. Photoenergy 2013, 1–8 (2013)

    Article  Google Scholar 

  11. F. Dross, K. Baert, T. Bearda, J. Deckers, V. Depauw, O. El Daif, I. Gordon, A. Gougam, J. Govaerts, S. Granata, R. Labie, X. Loozen, R. Martini, A. Masolin, B. O’Sullivan, Y. Qiu, J. Vaes, D. Van Gestel, J. Van Hoeymissen, A. Vanleenhove, K. Van Nieuwenhuysen, S. Venkatachalam, M. Meuris, J. Poortmans, Crystalline thin-foil silicon solar cells: where crystalline quality meets thin-film processing: crystalline quality meets thin-film processing. Prog. Photovolt. Res. Appl. 20, 770–784 (2012)

    Article  Google Scholar 

  12. P. Kapur, M. Moslehi, A. Deshpande, V. Rana, J. Kramer, S. Seutter, H. Deshazer, S. Coutant, A. Calcaterra, S. Kommera, S. Su, D. Grupp, S. Tamilmani, D. Dutton, T. Stalcup, T. Du, M. Wingert, A manufacturable, non-plated, non-Ag metallization based 20.44 % efficient, 243 cm2 area, back contacted solar cell on 40 µm thick mono-crystalline silicon, in Proc. 28th PVSEC (2013), pp. 2228–2231

    Google Scholar 

  13. J.H. Petermann, D. Zielke, J. Schmidt, F. Haase, E.G. Rojas, R. Brendel, 19 %-Efficient and 43 µm-thick crystalline Si solar cell from layer transfer using porous silicon. Prog. Photovolt. Res. Appl. 20, 1–5 (2012)

    Article  Google Scholar 

  14. J. Govaerts, C. Trompoukis, H.S. Radhakrishnan, L. Tous, S.N. Granata, E.G. Carnemolla, R. Martini, A. Marchegiani, M. Karim, I. Sharlandziev, T. Bearda, V. Depauw, K. Van Nieuwenhuysen, I. Gordon, J. Szlufczik, J. Poortmans, Solar cells from epitaxial foils: an epifoil epiphany. Energy Procedia 77, 871–880 (2015)

    Article  Google Scholar 

  15. M.J. Kerr, P. Campbell, A. Cuevas, Lifetime and efficiency limits of crystalline silicon solar cells, in Photovoltaic Specialists Conference (PVSC), 29th IEEE, (2002), pp. 438–441

    Google Scholar 

  16. M.A. Green, Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination. Prog. Photovolt. Res. Appl. 7, 327–330 (1999)

    Article  Google Scholar 

  17. A. Bozzola, P. Kowalczewski, L.C. Andreani, Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non-radiative recombinations. J. Appl. Phys. 115, 094501 (2014)

    Article  Google Scholar 

  18. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, 24.7 % Record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014)

    Article  Google Scholar 

  19. M. Bivour, C. Meinhardt, D. Pysch, C. Reichel, K.-U. Ritzau, M. Hermle, and S. W. Glunz, n-Type silicon solar cells with amorphous/crystalline silicon heterojunction rear emitter, in Photovoltaic Specialists Conference (PVSC), 35th IEEE (2010), pp. 001304–001308

    Google Scholar 

  20. L. Tous, S.N. Granata, P. Choulat, T. Bearda, A. Michel, A. Uruena, E. Cornagliotti, M. Aleman, R. Gehlhaar, R. Russell, F. Duerinckx, J. Szlufcik, Process simplifications in large area hybrid silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 142, 66–74 (2015)

    Article  Google Scholar 

  21. I. Dirnstorfer, F. Benner, D. K. Simon, T. Mikolajick, N. Schilling, U. Klotzbach, Feasibility study for silicon heterojunction metal wrap through solar cells. Proc. 28th PVSEC (2013), pp. 1108–1112

    Google Scholar 

  22. S. De Wolf, A. Descoeudres, Z.C. Holman, C. Ballif, High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012)

    Google Scholar 

  23. A.G. Aberle, S. Glunz, W. Warta, Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si-SiO2 interface. J. Appl. Phys. 71, 4422 (1992)

    Article  Google Scholar 

  24. M.J. Kerr, A. Cuevas, Very low bulk and surface recombination in oxidized silicon wafers. Semicond. Sci. Technol. 17, 35–38 (2002)

    Article  Google Scholar 

  25. S.W. Glunz, A.B. Sproul, W. Warta, W. Wettling, Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations. J. Appl. Phys. 75, 1611 (1994)

    Article  Google Scholar 

  26. K. Carstens, M. Dahlinger, E. Hoffmann, J.R. Köhler, R. Zapf-Gottwick, J.H. Werner, Universal passivation for p++ and n++ areas on IBC solar cells. Energy Procedia 77, 779–785 (2015)

    Article  Google Scholar 

  27. B.W.H. van de Loo, H.C.M. Knoops, G. Dingemans, G.J.M. Janssen, M.W.P.E. Lamers, I.G. Romijn, A.W. Weeber, W.M.M. Kessels, ‘Zero-charge’ SiO2/Al2O3 stacks for the simultaneous passivation of n+ and p+ doped silicon surfaces by atomic layer deposition. Sol. Energy Mater. Sol. Cells 143, 450–456 (2015)

    Article  Google Scholar 

  28. U. Wurfel, A. Cuevas, P. Wurfel, Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015)

    Article  Google Scholar 

  29. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol. Energy Mater. Sol. Cells 91, 238–249 (2007)

    Article  Google Scholar 

  30. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961)

    Article  Google Scholar 

  31. T. Trupke, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006)

    Article  Google Scholar 

  32. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  MATH  Google Scholar 

  33. R.N. Hall, Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952)

    Article  Google Scholar 

  34. D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (N.J. IEEE Press. Wiley, Hoboken, 2006)

    Google Scholar 

  35. F. Werner, A. Cosceev, J. Schmidt, Interface recombination parameters of atomic-layer-deposited Al2O3 on crystalline silicon. J. Appl. Phys. 111, 073710 (2012)

    Article  Google Scholar 

  36. P. Saint-Cast, Y.-H. Heo, E. Billot, P. Olwal, M. Hofmann, J. Rentsch, S.W. Glunz, R. Preu, Variation of the layer thickness to study the electrical property of PECVD Al2O3/c-Si interface. Energy Procedia 8, 642–647 (2011)

    Article  Google Scholar 

  37. L.E. Black, K.R. McIntosh, Modeling recombination at the Si-Al2O3 interface. IEEE J. Photovolt. 3, 936–943 (2013)

    Article  Google Scholar 

  38. W.G.J.H.M. van Sark, L. Korte, F. Roca (eds.), Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Springer, Heidelberg, 2012)

    Google Scholar 

  39. T. Dullweber, M. Siebert, B. Veith, C. Kranz, J. Schmidt, R. Brendel, B. F. P. Roos, T. Dippell, A. Schwabedissen, and S. Peters, High-efficiency industrial-type PERC solar cells applying ICP AlOx as rear passivation layer. Proc. 27th PVSEC (2012), pp. 672–675

    Google Scholar 

  40. B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89, 042112 (2006)

    Article  Google Scholar 

  41. H. Mäckel, R. Lüdemann, Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation. J. Appl. Phys. 92, 2602 (2002)

    Article  Google Scholar 

  42. R.A. Sinton, A. Cuevas, M. Stuckings, Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. in Photovoltaic Specialists Conference (PVSC), 25th IEEE (1996), pp. 457–460

    Google Scholar 

  43. A. Cuevas, R.A. Sinton, Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance. Prog. Photovolt. Res. Appl. 5, 79–90 (1997)

    Article  Google Scholar 

  44. K. Dornich, T. Hahn, J.R. Niklas, Non destructive electrical defect characterisation and topography of silicon wafers and epitaxial layers. MRS Proc. 864(E11), 2 (2005)

    Google Scholar 

  45. D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, G. Hahn, Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging. J. Appl. Phys. 110, 054508 (2011)

    Article  Google Scholar 

  46. A.B. Sproul, Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors. J. Appl. Phys. 76, 2851 (1994)

    Article  Google Scholar 

  47. A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012)

    Article  Google Scholar 

  48. R.B.M. Girisch, R.P. Mertens, R.F. De Keersmaecker, Determination of Si-SiO2 interface recombination parameters using a gate-controlled point-junction diode under illumination. IEEE Trans. Electron Devices 35, 203–222 (1988)

    Article  Google Scholar 

  49. D.A. Clugston, P.A. Basore, PC1D version 5: 32-bit solar cell modeling on personal computers, in Proc. PVSC, 26th IEEE (1997), pp. 207–210

    Google Scholar 

  50. R. Stangl, C. Leendertz, J. Haschke, Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET, in InTech e-book: “SolarEnergy” (2010)

    Google Scholar 

  51. S. Steingrube, P.P. Altermatt, D.S. Steingrube, J. Schmidt, R. Brendel, Interpretation of recombination at c-Si/SiNx interfaces by surface damage. J. Appl. Phys. 108, 014506 (2010)

    Article  Google Scholar 

  52. B. Hoex, J.J.H. Gielis, M.C.M. van de Sanden, W.M.M. Kessels, On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys. 104, 113703 (2008)

    Article  Google Scholar 

  53. J.R. Elmiger, Recombination at the silicon nitride/silicon interface. J. Vac. Sci. Technol. A 15, 2418 (1997)

    Article  Google Scholar 

  54. J. Schmidt, A.G. Aberle, Carrier recombination at silicon-silicon nitride interfaces fabricated by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 85, 3626 (1999)

    Article  Google Scholar 

  55. G. Dingemans, N.M. Terlinden, M.A. Verheijen, M.C.M. van de Sanden, W.M.M. Kessels, Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. J. Appl. Phys. 110, 093715 (2011)

    Article  Google Scholar 

  56. S.W. Glunz, D. Biro, S. Rein, W. Warta, Field-effect passivation of the SiO2-Si interface. J. Appl. Phys. 86, 683 (1999)

    Article  Google Scholar 

  57. S. Steingrube, P.P. Altermatt, D. Zielke, F. Werner, J. Schmidt, R. Brendel, Reduced passivation of silicon surfaces at low injection densities caused by H-induced defects, in Proc. 15th PVSEC (2010), pp. 1748–1754

    Google Scholar 

  58. F.-J. Ma, G.G. Samudra, M. Peters, A.G. Aberle, F. Werner, J. Schmidt, B. Hoex, Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers. J. Appl. Phys. 112, 054508 (2012)

    Article  Google Scholar 

  59. Z. Hameiri, Fa-Jun Ma, K.R. McIntosh, Investigation of low injection effects using the local ideality factor obtained from effective lifetime measurements. Photovoltaic Specialists Conference (PVSC), 2014 IEEE 40th, pp. 1842–1847

    Google Scholar 

  60. I. Dirnstorfer, D.K. Simon, P.M. Jordan, T. Mikolajick, Near surface inversion layer recombination in Al2O3 passivated n-type silicon. J. Appl. Phys. 116, 044112 (2014)

    Article  Google Scholar 

  61. M. Kessler, T. Ohrdes, P.P. Altermatt, R. Brendel, The effect of sample edge recombination on the averaged injection-dependent carrier lifetime in silicon. J. Appl. Phys. 111, 054508 (2012)

    Article  Google Scholar 

  62. B. Veith, T. Ohrdes, F. Werner, R. Brendel, P.P. Altermatt, N.-P. Harder, J. Schmidt, Injection dependence of the effective lifetime of n-type Si passivated by Al2O3: An edge effect? Sol. Energy Mater. Sol. Cells 120, 436–440 (2014)

    Article  Google Scholar 

  63. J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. 88, 1–41 (2015)

    Article  Google Scholar 

  64. B.E. Deal, A.S. Grove, General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770 (1965)

    Article  Google Scholar 

  65. B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow, Characteristics of the surface-state charge (Qss) of thermally oxidized silicon. J. Electrochem. Soc. 114, 266 (1967)

    Article  Google Scholar 

  66. F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, G. Hollinger, Microscopic structure of the SiO2/Si interface. Phys. Rev. B 38, 6084–6096 (1988)

    Article  Google Scholar 

  67. F. Werner, B. Veith, D. Zielke, L. Kühnemund, C. Tegenkamp, M. Seibt, R. Brendel, J. Schmidt, Electronic and chemical properties of the c-Si/Al2O3 interface. J. Appl. Phys. 109, 113701 (2011)

    Article  Google Scholar 

  68. F. Benner, P.M. Jordan, M. Knaut, I. Dirnstorfer, J.W. Bartha, T. Mikojajick, Investigation of the c-Si/Al2O3 interface for silicon surface passivation, in Proc 27th PVSEC (2012), pp. 1793–1796

    Google Scholar 

  69. M. Bhaisare, A. Misra, A. Kottantharayil, Aluminum oxide deposited by pulsed-DC reactive sputtering for crystalline slicon surface passivation. IEEE J. Photovolt. 3, 930–935 (2013)

    Article  Google Scholar 

  70. V. Verlaan, L.R.J.G. van den Elzen, G. Dingemans, M.C.M. van de Sanden, W.M.M. Kessels, Composition and bonding structure of plasma-assisted ALD Al2O3 films. Phys. Status Solidi C 7, 976–979 (2010)

    Google Scholar 

  71. O. Renault, L.G. Gosset, D. Rouchon, A. Ermolieff, Angle-resolved x-ray photoelectron spectroscopy of ultrathin Al2O3 films grown by atomic layer deposition. J. Vac. Sci. Technol. A 20, 1867 (2002)

    Google Scholar 

  72. F. Lin, B. Hoex, Y.H. Koh, J. Lin, A.G. Aberle, Low-temperature surface passivation of moderately doped crystalline silicon by atomic-layer-deposited hafnium oxide films. ECS J. Solid State Sci. Technol. 2, N11–N14 (2012)

    Article  Google Scholar 

  73. D.K. Simon, P.M. Jordan, M. Knaut, T. Chohan, T. Mikolajick, I. Dirnstorfer, ALD Al2O3 based Nanolaminates for Solar Cell Applications, in Photovoltaic Specialists Conference (PVSC), IEEE 42th (2015), pp. 1–6

    Google Scholar 

  74. A.G. Aberle, Overview on SiN surface passivation of crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 65, 239–248 (2001)

    Article  Google Scholar 

  75. A. Stesmans, V.V. Afanas’ev, Si dangling-bond-type defects at the interface of (100)Si with ultrathin layers of SiOx, Al2O3, and ZrO2. Appl. Phys. Lett. 80, 1957 (2002)

    Google Scholar 

  76. G. Dingemans, M.C.M. van de Sanden, W.M.M. Kessels, Influence of the deposition temperature on the c-Si surface passivation by Al2O3 films synthesized by ALD and PECVD. Electrochem. Solid-State Lett. 13, H76–H79 (2010)

    Article  Google Scholar 

  77. M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004)

    Article  Google Scholar 

  78. J. Schmidt, M. Kerr, A. Cuevas, Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks. Semicond. Sci. Technol. 16, 164–170 (2001)

    Article  Google Scholar 

  79. G. Dingemans, C. Van Helvoirt, M.C.M. Van de Sanden, W.M. Kessels, Plasma-assisted atomic layer deposition of low temperature SiO2. ECS Trans. 35, 191–204 (2011)

    Article  Google Scholar 

  80. G. Dingemans, W. Beyer, M.C.M. van de Sanden, W.M.M. Kessels, Hydrogen induced passivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks. Appl. Phys. Lett. 97, 152106 (2010)

    Article  Google Scholar 

  81. G. Dingemans, F. Einsele, W. Beyer, M.C.M. van de Sanden, W.M.M. Kessels, Influence of annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2 interface. J. Appl. Phys. 111, 093713 (2012)

    Article  Google Scholar 

  82. A. Richter, J. Benick, M. Hermle, S.W. Glunz, Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al2O3. Appl. Phys. Lett. 104, 061606 (2014)

    Article  Google Scholar 

  83. X. Zhang, A. Thomson, A. Cuevas, Silicon surface passivation by sputtered aluminium oxide: influence of annealing temperature and ambient gas. ECS Solid State Lett. 3, N37–N39 (2014)

    Article  Google Scholar 

  84. A. Stesmans, Passivation of Pb0 and Pb1 interface defects in thermal (100) Si/SiO2 with molecular hydrogen. Appl. Phys. Lett. 68, 2076 (1996)

    Article  Google Scholar 

  85. L. Tsetseris, S.T. Pantelides, Migration, incorporation, and passivation reactions of molecular hydrogen at the Si-SiO2 interface. Phys. Rev. B 70, 245320 (2004)

    Article  Google Scholar 

  86. F. Kersten, A. Schmid, S. Bordihn, J.W. Müller, J. Heitmann, Role of annealing conditions on surface passivation properties of ALD Al2O3 films. Energy Procedia 38, 843–848 (2013)

    Article  Google Scholar 

  87. I. Dirnstorfer, T. Chohan, P.M. Jordan, M. Knaut, D.K. Simon, J.W. Bartha, T. Mikojajick, Al2O3–TiO2 nanolaminates for conductive silicon surface passivation. IEEE J. Photovolt. 6, 86–91 (2015)

    Article  Google Scholar 

  88. N.M. Terlinden, G. Dingemans, M.C.M. van de Sanden, W.M.M. Kessels, Role of field-effect on c-Si surface passivation by ultrathin (2–20 nm) atomic layer deposited Al2O3. Appl. Phys. Lett. 96, 112101 (2010)

    Article  Google Scholar 

  89. B. Veith, F. Werner, D. Zielke, R. Brendel, J. Schmidt, Comparison of the thermal stability of single Al2O3 layers and Al2O3/SiNx stacks for the surface passiviation of silicon. Energy Procedia 8, 307–312 (2011)

    Article  Google Scholar 

  90. W. Liang, K.J. Weber, A.F. Thomson, Effective SiNx: H capping layers on 1-nm Al2O3 for p+ Surface Passivation. IEEE J. Photovolt. 4, 1405–1412 (2014)

    Google Scholar 

  91. D. Schuldis, A. Richter, J. Benick, P. Saint-Cast, M. Hermle, S.W. Glunz, Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si surface passivation. Appl. Phys. Lett. 105, 231601 (2014)

    Article  Google Scholar 

  92. P. Saint-Cast, D. Kania, R. Heller, S. Kuehnhold, M. Hofmann, J. Rentsch, R. Preu, High-temperature stability of c-Si surface passivation by thick PECVD Al2O3 with and without hydrogenated capping layers. Appl. Surf. Sci. 258, 8371–8376 (2012)

    Article  Google Scholar 

  93. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn (2007)

    Google Scholar 

  94. S. Duttagupta, F. Lin, K.D. Shetty, A.G. Aberle, B. Hoex, Excellent boron emitter passivation for high-efficiency Si wafer solar cells using AlOx/SiNx dielectric stacks deposited in an industrial inline plasma reactor: Excellent boron emitter passivation for high-efficiency Si wafer solar cells. Prog. Photovolt. Res. Appl. 21, 760–764 (2012)

    Google Scholar 

  95. W. Liang, K.J. Weber, D. Suh, S.P. Phang, J. Yu, A.K. McAuley, B.R. Legg, Surface passivation of boron-diffused p-type silicon surfaces with (100) and (111) orientations by ALD Al2O3 layers. IEEE J. Photovolt. 3, 678–683 (2013)

    Article  Google Scholar 

  96. L.E. Black, T.C. Kho, K.R. McIntosh, A. Cuevas, The influence of orientation and morphology on the passivation of crystalline silicon surfaces by Al2O3. Energy Procedia 55, 750–756 (2014)

    Article  Google Scholar 

  97. H.C. Sio, S.P. Phang, Y. Wan, W. Liang, T. Trupke, S. Cao, D. Hu, Y. Wan, D. Macdonald, The influence of crystal orientation on surface passivation in multi-crystalline silicon, in Photovoltaic Specialists Conference (PVSC), IEEE 39th (2013), pp. 1770–1775

    Google Scholar 

  98. H. Haug, Ø. Nordseth, E.V. Monakhov, E.S. Marstein, Photoluminescence imaging under applied bias for characterization of Si surface passivation layers. Sol. Energy Mater. Sol. Cells 106, 60–65 (2012)

    Article  Google Scholar 

  99. P.M. Jordan, D.K. Simon, F.P.G. Fengler, T. Mikolajick, I. Dirnstorfer, 2D mapping of chemical and field effect passivation of Al2O3 on silicon substrates. Energy Procedia 77, 91–98 (2015)

    Article  Google Scholar 

  100. P.M. Jordan, D.K. Simon, T. Mikolajick, I. Dirnstorfer, BiasMDP: carrier lifetime characterization technique with applied bias voltage. Appl. Phys. Lett. 106, 061602 (2015)

    Article  Google Scholar 

  101. W.L. Warren, F.C. Rong, E.H. Poindexter, G.J. Gerardi, J. Kanicki, Structural identification of the silicon and nitrogen dangling-bond centers in amorphous silicon nitride. J. Appl. Phys. 70, 346 (1991)

    Article  Google Scholar 

  102. K.T. Butler, M.P.W.E. Lamers, A.W. Weeber, J.H. Harding, Molecular dynamics studies of the bonding properties of amorphous silicon nitride coatings on crystalline silicon. J. Appl. Phys. 110, 124905 (2011)

    Article  Google Scholar 

  103. S. Garcia, I. Martil, G. Gonzalez Diaz, E. Castan, S. Dueñas, M. Fernandez, Deposition of SiNx: H thin films by the electron cyclotron resonance and its application to Al/SiNx:H/Si structures. J. Appl. Phys. 83, 332 (1998)

    Article  Google Scholar 

  104. G. Lucovsky, Defect properties of Si-, O-, N-, and H-atoms at Si—SiO2 interfaces. J. Vac. Sci. Technol. B 14, 2832 (1996)

    Article  Google Scholar 

  105. G. Dingemans, N.M. Terlinden, D. Pierreux, H.B. Profijt, M.C.M. van de Sanden, W.M.M. Kessels, Influence of the oxidant on the chemical and field-effect passivation of Si by ALD Al2O3. Electrochem. Solid-State Lett. 14, H1 (2011)

    Article  Google Scholar 

  106. D.K. Simon, T. Henke, P.M. Jordan, F.P.G. Fengler, T. Mikolajick, J.W. Bartha, I. Dirnstorfer, Low-thermal budget flash light annealing for Al2O3 surface passivation: low-thermal budget flash light annealing for Al2O3 surface passivation. Phys. Status Solidi RRL—Rapid Res. Lett. 9, 631–635 (2015)

    Google Scholar 

  107. D.K. Simon, Realization and characterization of advanced nanolayers for photovoltaic applications, PhD thesis, TU Dresden (2016)

    Google Scholar 

  108. J. Benick, A. Richter, T.-T.A. Li, N.E. Grant, K.R. McIntosh, Y. Ren, K.J. Weber, M. Hermle, S.W. Glunz, Effect of a post-deposition anneal on Al2O3/Si interface properties, in Photovoltaic Specialists Conference (PVSC), IEEE 35th (2010), pp. 000891–000896

    Google Scholar 

  109. D.K. Simon, P.M. Jordan, T. Mikolajick, I. Dirnstorfer, On the control of the fixed charge densities in Al2O3 based silicon surface passivation schemes. ACS Appl. Mater. Interfaces 7, 28215–28222 (2015)

    Article  Google Scholar 

  110. A. Rothschild, B. Vermang, X. Loozen, B.J. O’Sullivan, J. John, J. Poortmans, ALD-Al2O3 passivation for solar cells: charge investigation, in Proc 25th PVSEC (2010), pp. 1382–1385

    Google Scholar 

  111. B. Shin, J.R. Weber, R.D. Long, P.K. Hurley, C.G. Van de Walle, P.C. McIntyre, Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates. Appl. Phys. Lett. 96, 152908 (2010)

    Article  Google Scholar 

  112. Y. Ahn, S.H. Choudhury, D. Lee, S.M. Sadaf, M. Siddik, M. Jo, S. Park, Y.D. Kim, D.H. Kim, H. Hwang, Estimation of interfacial fixed charge at Al2O3/SiO2 using Slant-Etched wafer for solar cell application. Jpn. J. Appl. Phys. 50, 071503 (2011)

    Article  Google Scholar 

  113. V. Naumann, M. Otto, R.B. Wehrspohn, C. Hagendorf, Chemical and structural study of electrically passivating Al2O3/Si interfaces prepared by atomic layer deposition. J. Vac. Sci. Technol. A 30, 04D106 (2012)

    Article  Google Scholar 

  114. K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka, A. Toriumi, Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si(001) using energy-loss near-edge structures. Appl. Phys. Lett. 83, 4306 (2003)

    Article  Google Scholar 

  115. G. Lucovsky, A chemical bonding model for the native oxides of the III–V compound semiconductors. J. Vac. Sci. Technol. 19, 456 (1981)

    Article  Google Scholar 

  116. K. Matsunaga, T. Tanaka, T. Yamamoto, Y. Ikuhara, First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 085110 (2003)

    Article  Google Scholar 

  117. J.R. Weber, A. Janotti, C.G. Van de Walle, Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. J. Appl. Phys. 109, 033715 (2011)

    Article  Google Scholar 

  118. M. Choi, A. Janotti, C.G. Van de Walle, Native point defects and dangling bonds in α-Al2O3. J. Appl. Phys. 113, 044501 (2013)

    Article  Google Scholar 

  119. J.J.H. Gielis, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, Negative charge and charging dynamics in Al2O3 films on Si characterized by second-harmonic generation. J. Appl. Phys. 104, 073701 (2008)

    Article  Google Scholar 

  120. B. Liao, R. Stangl, T. Mueller, F. Lin, C.S. Bhatia, B. Hoex, The effect of light soaking on crystalline silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 113, 024509 (2013)

    Article  Google Scholar 

  121. J.A. Töfflinger, A. Laades, C. Leendertz, L.M. Montañez, L. Korte, U. Stürzebecher, H.-P. Sperlich, B. Rech, PECVD-AlOx/SiNx passivation stacks on silicon: effective charge dynamics and interface defect state spectroscopy. Energy Procedia 55, 845–854 (2014)

    Article  Google Scholar 

  122. F. Benner, M. Knaut, P.M. Jordan, I. Dirnstorfer, J. Ocker, J.W. Bartha, T. Mikolajick, Improvement of Al2O3 passivation by Ti-doping, in Proc 28th PVSEC (2013), pp. 1156–1161

    Google Scholar 

  123. F. Werner, J. Schmidt, Manipulating the negative fixed charge density at the c-Si/Al2O3 interface. Appl. Phys. Lett. 104, 091604 (2014)

    Article  Google Scholar 

  124. M. Cho, R. Degraeve, P. Roussel, B. Govoreanu, B. Kaczer, M.B. Zahid, E. Simoen, A. Arreghini, M. Jurczak, J.V. Houdt, G. Groeseneken, A consistent model for oxide trap profiling with the trap spectroscopy by charge injection and sensing (TSCIS) technique. Solid-State Electron. 54, 1384–1391 (2010)

    Article  Google Scholar 

  125. E. Vianello, F. Driussi, A. Arreghini, P. Palestri, D. Esseni, L. Selmi, N. Akil, M.J. van Duuren, D.S. Golubovic, Experimental and simulation analysis of program/retention transients in silicon nitride-based NVM cells. IEEE Trans. Electron Devices 56, 1980–1990 (2009)

    Article  Google Scholar 

  126. T. Mikolajick, M. Specht, N. Nagel, T. Mueller, S. Riedel, F. Beug, T. Melde, K.-H. Kusters, The future of charge trapping memories. Int. Symp. VLSI-TSA 2007, 1–4 (2007)

    Google Scholar 

  127. N.M. Terlinden, G. Dingemans, V. Vandalon, R.H.E.C. Bosch, W.M.M. Kessels, Influence of the SiO2 interlayer thickness on the density and polarity of charges in Si/SiO2/Al2O3 stacks as studied by optical second-harmonic generation. J. Appl. Phys. 115, 033708 (2014)

    Article  Google Scholar 

  128. R. Degraeve, M. Cho, B. Govoreanu, B. Kaczer, M.B. Zahid, J. Van Houdt, M. Jurczak, G. Groeseneken, Trap spectroscopy by charge injection and sensing (TSCIS): a quantitative electrical technique for studying defects in dielectric stacks (IEDM, IEEE Int. Electron Devices Meet, 2008), pp. 775–778

    Google Scholar 

  129. M. Toledano-Luque, R. Degraeve, M.B. Zahid, B. Kaczer, J. Kittl, M. Jurczak, G. Groeseneken, J. Van Houdt, Resolving fast VTH transients after program/erase of flash memory stacks and their relation to electron and hole defects (IEDM, IEEE Int. Electron Devices Meet, 2009), pp. 749–752

    Google Scholar 

  130. M. Bazilchuk, H. Haug, E.S. Marstein, Modulating the fixed charge density in silicon nitride films while monitoring the surface recombination velocity by photoluminescence imaging. Appl. Phys. Lett. 106, 143505 (2015)

    Article  Google Scholar 

  131. Y. Ren, K. Weber, F. Karouta, K. Vora, W. Liang, Charge trapping and storage in SiNx thin films deposited with Oxford PlasmaLab 100 system, in Photovoltaic Specialists Conference (PVSC), 38th IEEE (2012), pp. 001094–001097

    Google Scholar 

  132. www.itrpv.net, “International Technology Roadmap for Photovoltaic (ITRPV), 2014 Results,” 01-Jul-2015

  133. S. Miyajima, J. Irikawa, A. Yamada, M. Konagai, High quality aluminum oxide passivation layer for crystalline silicon solar cells deposited by parallel-plate plasma-enhanced chemical vapor deposition. Appl. Phys. Express 3, 012301 (2010)

    Article  Google Scholar 

  134. T. Lauinger, Optimization and characterization of remote plasma-enhanced chemical vapor deposition silicon nitride for the passivation of p-type crystalline silicon surfaces. J. Vac. Sci. Technol. A 16, 530 (1998)

    Article  Google Scholar 

  135. Y. Wan, K.R. McIntosh, A.F. Thomson, A. Cuevas, Low surface recombination velocity by low-absorption silicon nitride on c-Si. IEEE J. Photovolt. 3, 554–559 (2013)

    Article  Google Scholar 

  136. S. Duttagupta, F. Ma, B. Hoex, T. Mueller, A.G. Aberle, Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling. Energy Procedia 15, 78–83 (2012)

    Article  Google Scholar 

  137. Z. Hameiri, L. Mai, N. Borojevic, S. Javid, B. Tjahjono, S. Wang, A. Sproul, S. Wenham, The influence of silicon nitride layer parameters on the implied Voc of CZ silicon wafers after annealing, in Photovoltaic Specialists Conference (PVSC), 34th IEEE (2009), pp. 1795–1800

    Google Scholar 

  138. M. Hofmann, S. Kambor, C. Schmidt, D. Grambole, J. Rentsch, S. W. Glunz, R. Preu, PECVD-ONO: a new deposited firing stable rear surface passivation layer system for crystalline silicon solar cells. Adv. Optoelectron., 1–10 (2008)

    Google Scholar 

  139. Z. Chen, S.K. Pang, K. Yasutake, A. Rohatgi, Plasma-enhanced chemical-vapor-deposited oxide for low surface recombination velocity and high effective lifetime in silicon. J. Appl. Phys. 74, 2856 (1993)

    Article  Google Scholar 

  140. J. Irikawa, S. Miyajima, S. Kida, T. Watahiki, M. Konagai, Effects of annealing and atomic hydrogen treatment on aluminum oxide passivation layers for crystalline silicon solar cells. Jpn. J. Appl. Phys. 50, 012301 (2011)

    Article  Google Scholar 

  141. G. Dingemans, P. Engelhart, R. Seguin, M.M. Mandoc, M.C.M. van de Sanden, W.M.M. Kessels, Comparison between aluminum oxide surface passivation films deposited with thermal ALD, plasma ALD and PECVD, in Photovoltaic Specialists Conference (PVSC), 35th IEEE (2010), pp. 003118–003121

    Google Scholar 

  142. H.-P. Sperlich, D. Decker, P. Saint-Cast, E. Erben, L. Peters, High productive solar cell passivation on Roth&Rau MAiA® MW-PECVD Inline machine—a comparison of Al2O3, SiO2 and SiNx-H process conditions and performance. in Proc 25th PVSEC (2010), pp. 1352–1357

    Google Scholar 

  143. P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, R. Preu, Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide. Appl. Phys. Lett. 95, 151502 (2009)

    Article  Google Scholar 

  144. A. Laades, H.-P. Sperlich, M. Bähr, U. Stürzebecher, C.A. Diaz Alvarez, M. Burkhardt, H. Angermann, M. Blech, A. Lawerenz, On the impact of interfacial SiOx-layer on the passivation properties of PECVD synthesized aluminum oxide: on the impact of interfacial SiOx-layer on the passivation properties of PECVD synthesized aluminum oxide. Phys. Status Solidi C 9, 2120–2123 (2012)

    Article  Google Scholar 

  145. M.D. Groner, S.M. George, High-k dielectrics grown by atomic layer deposition. Interlayer Dielectrics for Semiconductor Technologies (Elsevier, Amsterdam, 2003), pp. 327–348

    Google Scholar 

  146. S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010)

    Article  Google Scholar 

  147. G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne, Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Sol. Energy Mater. Sol. Cells 90, 3438–3443 (2006)

    Article  Google Scholar 

  148. H.C.M. Knoops, E.M.J. Braeken, K. de Peuter, S.E. Potts, S. Haukka, V. Pore, W.M.M. Kessels, Atomic layer deposition of silicon nitride from bis(tert-butylamino)silane and N2 Plasma. ACS Appl. Mater. Interfaces 7, 19857–19862 (2015)

    Article  Google Scholar 

  149. S.W. King, Plasma enhanced atomic layer deposition of SiNx: H and SiO2. J. Vac. Sci. Technol. A 29, 041501 (2011)

    Article  Google Scholar 

  150. F. Werner, B. Veith, V. Tiba, P. Poodt, F. Roozeboom, R. Brendel, J. Schmidt, Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide. Appl. Phys. Lett. 97, 162103 (2010)

    Article  Google Scholar 

  151. F. Benner, P.M. Jordan, C. Richter, D.K. Simon, I. Dirnstorfer, M. Knaut, J.W. Bartha, T. Mikolajick, Atomic layer deposited high-κ nanolaminates for silicon surface passivation. J. Vac. Sci. Technol. B 32, 03D110 (2014)

    Article  Google Scholar 

  152. S. Bordihn, V. Mertens, J.W. Müller, W.M.M. Kessels, Deposition temperature dependence of material and Si surface passivation properties of O3-based atomic layer deposited Al2O3-based films and stacks. J. Vac. Sci. Technol. A 32, 01A128 (2014)

    Article  Google Scholar 

  153. D.K. Simon, P.M. Jordan, I. Dirnstorfer, F. Benner, C. Richter, T. Mikolajick, Symmetrical Al2O3-based passivation layers for p- and n-type silicon. Sol. Energy Mater. Sol. Cells 131, 72–76 (2014)

    Article  Google Scholar 

  154. G. Dingemans, W.M.M. Kessels, Aluminum oxide and other ALD materials for Si surface passivation. ECS Trans. 41, 293–301 (2011)

    Article  Google Scholar 

  155. B. Liao, B. Hoex, A.G. Aberle, D. Chi, C.S. Bhatia, Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide. Appl. Phys. Lett. 104, 253903 (2014)

    Article  Google Scholar 

  156. D. Suh, D.-Y. Choi, K.J. Weber, Al2O3/TiO2 stack layers for effective surface passivation of crystalline silicon. J. Appl. Phys. 114, 154107 (2013)

    Article  Google Scholar 

  157. Y. Wan, J. Bullock, A. Cuevas, Passivation of c-Si surfaces by ALD tantalum oxide capped with PECVD silicon nitride. Sol. Energy Mater. Sol. Cells 142, 42–46 (2015)

    Article  Google Scholar 

  158. T.G. Allen, M. Ernst, C. Samundsett, A. Cuevas, Demonstration of c-Si solar cells with gallium oxide surface passivation and laser-doped gallium p+ regions. IEEE J. Photovolt. 5, 1586–1590 (2015)

    Google Scholar 

  159. P. Poodt, D.C. Cameron, E. Dickey, S.M. George, V. Kuznetsov, G.N. Parsons, F. Roozeboom, G. Sundaram, A. Vermeer, Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 30, 010802 (2012)

    Article  Google Scholar 

  160. V.I. Kuznetsov, M.A. Ernst, E.H.A. Granneman, Al2O3 surface passivation of silicon solar cells by low cost ald technology, in Photovoltaic Specialists Conference (PVSC), IEEE 40th (2014), pp. 0608–0611

    Google Scholar 

  161. E. Cornagliotti, L. Tous, A. Uruena de Castro, A. Rothschild, R. Russell, V. Lu, S. Radosavjlevic, J. John, J. Toman, M. Aleman, F. Duerinckx, J. Poortmans, J. Szlufcik, B. Dielissen, F. Souren, X. Gay, R. Görtzen, B. Hallam, Integration of spatial ALD aluminum oxide for rear side passivation of p-type PERC/PERL solar cells, in Proc 28th PVSEC (2013), pp. 976–981

    Google Scholar 

  162. L. Black, T. Allen, K.R. McIntosh, Safe and inexpensive Al2O3 deposited by APCVD with single-source precursor. Proc 28th PVSEC (2013), pp. 1068–1072

    Google Scholar 

  163. L.E. Black, K.R. McIntosh, Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3. Appl. Phys. Lett. 100, 202107 (2012)

    Article  Google Scholar 

  164. L.E. Black, T. Allen, A. Cuevas, K.R. McIntosh, B. Veith, J. Schmidt, Thermal stability of silicon surface passivation by APCVD Al2O3. Sol. Energy Mater. Sol. Cells 120, 339–345 (2014)

    Article  Google Scholar 

  165. A.F. Thomson, K.R. McIntosh, Light-enhanced surface passivation of TiO2-coated silicon: light-enhanced surface passivation of TiO2-coated silicon. Prog. Photovolt. Res. Appl. 20, 343–349 (2012)

    Article  Google Scholar 

  166. B.S. Richards, J.E. Cotter, C.B. Honsberg, Enhancing the surface passivation of TiO2 coated silicon wafers. Appl. Phys. Lett. 80, 1123 (2002)

    Article  Google Scholar 

  167. M. Vetter, Surface passivation of silicon by rf magnetron-sputtered silicon nitride films. Thin Solid Films 337, 118–122 (1999)

    Article  Google Scholar 

  168. X. Zhang, A. Cuevas, Plasma hydrogenated, reactively sputtered aluminium oxide for silicon surface passivation. Phys. Status Solidi RRL—Rapid Res. Lett. 7, 619–622 (2013)

    Google Scholar 

  169. T.-T.A. Li, A. Cuevas, Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide. Prog. Photovolt. Res. Appl. 19, 320–325 (2011)

    Article  Google Scholar 

  170. X. Zhang, A. Cuevas, A. Thomson, Process control of reactive sputter deposition of AlOx and improved surface passivation of crystalline silicon. IEEE J. Photovolt. 3, 183–188 (2013)

    Article  Google Scholar 

  171. J. Schmidt, F. Werner, B. Veith, D. Zielke, S. Steingrube, P.P. Altermatt, S. Gatz, T. Dullweber, R. Brendel, Advances in the surface passivation of silicon solar cells. Energy Procedia 15, 30–39 (2012)

    Article  Google Scholar 

  172. S. Vandana, N. Batra, J. Gope, R. Singh, J. Panigrahi, S. Tyagi, P. Pathi, S.K. Srivastava, C.M.S. Rauthan, P.K. Singh, Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films. Phys. Chem. Chem. Phys. 16, 21804–21811 (2014)

    Article  Google Scholar 

  173. G. Seguini, E. Cianci, C. Wiemer, D. Saynova, J.A.M. van Roosmalen, M. Perego, Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process. Appl. Phys. Lett. 102, 131603 (2013)

    Article  Google Scholar 

  174. T. Gebel, M. Voelskow, W. Skorupa, G. Mannino, V. Privitera, F. Priolo, E. Napolitani, A. Carnera, Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon, Nucl. Instrum. Methods Phys. Res. Sect. B 186, 287–291 (2002)

    Google Scholar 

  175. J. Lehmann, R. Hübner, J.V. Borany, W. Skorupa, T. Mikolajick, A. Schäfer, J. Schubert, S. Mantl, Millisecond flash lamp annealing for LaLuO3 and LaScO3 high-k dielectrics. Microelectron. Eng. 109, 381–384 (2013)

    Article  Google Scholar 

  176. T. Henke, M. Knaut, C. Hossbach, M. Geidel, L. Rebohle, M. Albert, W. Skorupa, J.W. Bartha, Flash-enhanced atomic layer deposition: basics, opportunities, review, and principal studies on the flash-enhanced growth of thin films. ECS J. Solid State Sci. Technol. 4, P277–P287 (2015)

    Article  Google Scholar 

  177. T. Gebel, L. Rebohle, R. Fendler, W. Hentsch, W. Skorupa, M. Voelskow, W. Anwand, R.A. Yankov, Millisecond annealing with flashlamps: Tool and process challenges, in RTP ’06. 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors (2006), pp. 47–55

    Google Scholar 

  178. R.A. McMahon, M.P. Smith, K.A. Seffen, M. Voelskow, W. Anwand, W. Skorupa, Flash-lamp annealing of semiconductor materials—applications and process models. Vacuum 81, 1301–1305 (2007)

    Article  Google Scholar 

  179. G. Dingemans, M.C.M. van de Sanden, W.M.M. Kessels, Excellent Si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film. Phys. Status Solidi RRL—Rapid Res. Lett. 5, 22–24 (2011)

    Google Scholar 

  180. O. Sharia, A.A. Demkov, G. Bersuker, B.H. Lee, Effects of aluminum incorporation on band alignment at the SiO2/HfO2 interface. Phys. Rev. B 77, 085326 (2008)

    Article  Google Scholar 

  181. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S.W. Glunz, Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014)

    Article  Google Scholar 

  182. B. Nemeth, D.L. Young, H.-C. Yuan, V. LaSalvia, A.G. Norman, M. Page, B.G. Lee, P. Stradins, Low temperature Si/SiOx/pc-Si passivated contacts to n-type Si solar cells, in Photovoltaic Specialists Conference (PVSC), IEEE 40th (2014), pp. 3448–3452

    Google Scholar 

  183. U. Römer, R. Peibst, T. Ohrdes, B. Lim, J. Krügener, E. Bugiel, T. Wietler, R. Brendel, Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions. Sol. Energy Mater. Sol. Cells 131, 85–91 (2014)

    Google Scholar 

  184. D. Garcia-Alonso, S. Smit, S. Bordihn, W.M.M. Kessels, Silicon passivation and tunneling contact formation by atomic layer deposited Al2O3/ZnO stacks. Semicond. Sci. Technol. 28, 082002 (2013)

    Article  Google Scholar 

  185. D. Zielke, J.H. Petermann, F. Werner, B. Veith, R. Brendel, J. Schmidt, Contact passivation in silicon solar cells using atomic-layer-deposited aluminum oxide layers. Phys. Status Solidi RRL—Rapid Res. Lett. 5, 298–300 (2011)

    Google Scholar 

  186. F. Feldmann, K.-U. Ritzau, M. Bivour, A. Moldovan, S. Modi, J. Temmler, M. Hermle, S.W. Glunz, High and low work function materials for passivated contacts. Energy Procedia 77, 263–270 (2015)

    Article  Google Scholar 

  187. H. Steinkemper, F. Feldmann, M. Bivour, M. Hermle, Numerical simulation of carrier-selective electron contacts featuring tunnel oxides. IEEE J. Photovolt. 5, 1348–1356 (2015)

    Article  Google Scholar 

  188. F. Klow, E.S. Marstein, S.E. Foss, Tunneling contact passivation simulations using Silvaco Atlas. Energy Procedia 77, 99–105 (2015)

    Article  Google Scholar 

  189. J.B. Heng, J. Fu, B. Kong, Y. Chae, W. Wang, Z. Xie, A. Reddy, K. Lam, C. Beitel, C. Liao, C. Erben, Z. Huang, Z. Xu, >23 % High-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. IEEE J. Photovolt. 5, 82–86 (2015)

    Article  Google Scholar 

  190. F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, S.W. Glunz, Tunnel oxide passivated contacts as an alternative to partial rear contacts. Sol. Energy Mater. Sol. Cells 131, 46–50 (2014)

    Article  Google Scholar 

  191. B.G. Lee, J. Skarp, V. Malinen, S. Li, S. Choi, and H.M. Branz, Excellent passivation and low reflectivity Al2O3/TiO2 bilayer coatings for n-wafer silicon solar cells, in Photovoltaic Specialists Conference (PVSC), 38th IEEE (2012), pp. 001066–001068

    Google Scholar 

  192. W.-C. Wang, M.-C. Tsai, J. Yang, C. Hsu, M.-J. Chen, Efficiency enhancement of nanotextured black silicon solar cells using Al2O3/TiO2 dual-layer passivation stack prepared by atomic layer deposition. ACS Appl. Mater. Interfaces 7, 10228–10237 (2015)

    Article  Google Scholar 

  193. W. Jeon, H.-S. Chung, D. Joo, S.-W. Kang, TiO2∕Al2O3∕TiO2 nanolaminated thin films for DRAM capacitor deposited by Plasma-enhanced atomic layer deposition. Electrochem. Solid-State Lett. 11, H19 (2008)

    Article  Google Scholar 

  194. L. Aarik, T. Arroval, R. Rammula, H. Mändar, V. Sammelselg, B. Hudec, K. Hušeková, K. Fröhlich, J. Aarik, Atomic layer deposition of high-quality Al2O3 and Al-doped TiO2 thin films from hydrogen-free precursors. Thin Solid Films 565, 19–24 (2014)

    Article  Google Scholar 

  195. W.D. Kim, G.W. Hwang, O.S. Kwon, S.K. Kim, M. Cho, D.S. Jeong, S.W. Lee, M.H. Seo, C.S. Hwang, Y.-S. Min, Y.J. Cho, Growth characteristics of atomic layer deposited TiO2 thin films on Ru and Si electrodes for memory capacitor applications. J. Electrochem. Soc. 152, C552 (2005)

    Article  Google Scholar 

  196. I. Dirnstorfer, H. Mähne, T. Mikolajick, M. Knaut, M. Albert, K. Dubnack, Atomic layer deposition of anatase TiO2 on porous electrodes for dye-sensitized solar cells. J. Vac. Sci. Technol. A 31, 01A116 (2013)

    Article  Google Scholar 

  197. R. Peibst, U. Romer, K.R. Hofmann, B. Lim, T.F. Wietler, J. Krugener, N.-P. Harder, R. Brendel, Simple model describing the symmetric I-V characteristics of p polycrystalline Si/n monocrystalline Si, and n polycrystalline Si/p monocrystalline Si junctions. IEEE J. Photovolt. 4, 841–850 (2014)

    Google Scholar 

  198. E. Hecht, Optics, 4th edn (2014)

    Google Scholar 

  199. M.H. Kang, K. Ryu, A. Upadhyaya, A. Rohatgi, Optimization of SiN AR coating for Si solar cells and modules through quantitative assessment of optical and efficiency loss mechanism. Prog. Photovolt. Res. Appl. 19, 983–990 (2011)

    Article  Google Scholar 

  200. H. Nagel, A.G. Aberle, R. Hezel, Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide. Prog. Photovolt. Res. Appl. 7, 245–260 (1999)

    Article  Google Scholar 

  201. E. Bustarret, M. Bensouda, M.C. Habrard, J.C. Bruyère, S. Poulin, S.C. Gujrathi, Configurational statistics in a-SixNyHz alloys: a quantitative bonding analysis. Phys. Rev. B 38, 8171–8184 (1988)

    Article  Google Scholar 

  202. A. Thomson, Y. Wan, N. Lal, R.G. Elliman, Graded silicon nitride films: optics and passivation. J. Vac. Sci. Technol. A 33, 060610 (2015)

    Article  Google Scholar 

  203. S.W. Glunz, High-efficiency crystalline silicon solar cells. Adv. Optoelectron. 1–15 (2007)

    Google Scholar 

  204. D. Kray, M. Hermle, S.W. Glunz, Theory and experiments on the back side reflectance of silicon wafer solar cells. Prog. Photovolt. Res. Appl. 16, 1–15 (2008)

    Article  Google Scholar 

  205. J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, S. Schetter, M. Hofmann, R. Preu, Industrial deposition of PECVD AlOx for rear passivation of PERC type mc-Si solar cells, in Proc 25th PVSEC, pp. 1715–1718 (2010)

    Google Scholar 

  206. E. Yablonovitch, Statistical ray optics. J. Opt. Soc. Am. 72, 899 (1982)

    Article  Google Scholar 

  207. P. Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243 (1987)

    Article  Google Scholar 

  208. H. Seidel, Anisotropic etching of crystalline silicon in alkaline solutions. J. Electrochem. Soc. 137, 3612–3626 (1990)

    Article  Google Scholar 

  209. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A.N. Sprafke, J. Ziegler, M. Zilk, R.B. Wehrspohn, Black silicon photovoltaics. Adv. Opt. Mater. 3, 147–164 (2015)

    Article  Google Scholar 

  210. R. Einhaus, E. Vazsonyi, J. Szlufcik, J. Nijs, and R. Mertens, Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions, in Photovoltaic Specialists Conference (PVSC), 26th IEEE (1997), pp. 167–170

    Google Scholar 

  211. K. Kim, S.K. Dhungel, S. Jung, D. Mangalaraj, J. Yi, Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication. Sol. Energy Mater. Sol. Cells 92, 960–968 (2008)

    Article  Google Scholar 

  212. M. Burresi, F. Pratesi, F. Riboli, D.S. Wiersma, Complex photonic structures for light harvesting. Adv. Opt. Mater. 3, 722–743 (2015)

    Article  Google Scholar 

  213. C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E.G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P.R. i Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O.E. Daif, V. Depauw, Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells: advanced light trapping in thin crystalline silicon solar cells. Phys. Status Solidi A 212, 140–155 (2015)

    Article  Google Scholar 

  214. Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. 107, 17491–17496 (2010)

    Article  Google Scholar 

  215. A. Mellor, I. Tobías, A. Martí, M.J. Mendes, A. Luque, Upper limits to absorption enhancement in thick solar cells using diffraction gratings. Prog. Photovolt. Res. Appl. 19, 676–687 (2011)

    Article  Google Scholar 

  216. K.X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012)

    Article  Google Scholar 

  217. C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography. Appl. Phys. Lett. 101, 103901 (2012)

    Article  Google Scholar 

  218. N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J.C. Goldschmidt, B. Bläsi, Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating. Energy Procedia 77, 253–262 (2015)

    Article  Google Scholar 

  219. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms: diffractive gratings for crystalline silicon solar cells. Prog. Photovolt. Res. Appl. 20, 862–873 (2012)

    Article  Google Scholar 

  220. R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, W. Jantsch, Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings: Diffractive gratings for pyramidally textured silicon solar cells. Prog. Photovolt. Res. Appl. 21, 747–753 (2012)

    Google Scholar 

  221. J. Eisenlohr, B.G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J.C. Goldschmidt, M. Hermle, Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells. Sol. Energy Mater. Sol. Cells 142, 60–65 (2015)

    Article  Google Scholar 

  222. J. Eisenlohr, J. Benick, M. Peters, B. Bläsi, J.C. Goldschmidt, M. Hermle, Hexagonal sphere gratings for enhanced light trapping in crystalline silicon solar cells. Opt. Express 22, A111–A119 (2014)

    Article  Google Scholar 

  223. X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013)

    Article  Google Scholar 

  224. A. Shalav, B.S. Richards, M.A. Green, Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol. Energy Mater. Sol. Cells 91, 829–842 (2007)

    Article  Google Scholar 

  225. S. Fischer, J.C. Goldschmidt, P. Löper, G.H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S.W. Glunz, Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization. J. Appl. Phys. 108, 044912 (2010)

    Article  Google Scholar 

  226. F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, I.R. Martín, V. Lavín, U.R. Rodríguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol. Energy Mater. Sol. Cells 95, 1671–1677 (2011)

    Article  Google Scholar 

  227. B.S. Richards, A. Shalav, Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion. IEEE Trans. Electron Devices 54, 2679–2684 (2007)

    Article  Google Scholar 

  228. G.E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J.C. Goldschmidt, K.W. Krämer, B.S. Richards, Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics. Sol. Energy Mater. Sol. Cells 140, 217–223 (2015)

    Article  Google Scholar 

  229. G.H. Dieke, H.M. Crosswhite, The spectra of the doubly and triply ionized rare earths. Appl. Opt. 2, 675 (1963)

    Article  Google Scholar 

  230. J.C. Goldschmidt, S. Fischer, B. Herter, B. Fröhlich, K.W. Krämer, B.S. Richards, A. Ivaturi, S.K. . MacDougall, J. Marques Hueso, E. Favilla, M. Tonelli, Record efficient upconverter solar cell devices, in Proc 29th PVSEC (2014), pp. 1–4

    Google Scholar 

  231. S. Fischer, B. Fröhlich, H. Steinkemper, K.W. Krämer, J.C. Goldschmidt, Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections. Sol. Energy Mater. Sol. Cells 122, 197–207 (2014)

    Article  Google Scholar 

  232. P.-A. Hansen, H. Fjellvåg, T. Finstad, O. Nilsen, Structural and optical properties of lanthanide oxides grown by atomic layer deposition (Ln = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb). Dalton Trans. 42, 10778 (2013)

    Article  Google Scholar 

  233. G. Dingemans, A. Clark, J.A. van Delft, M.C.M. van de Sanden, W.M.M. Kessels, Er3+ and Si luminescence of atomic layer deposited Er-doped Al2O3 thin films on Si(100). J. Appl. Phys. 109, 113107 (2011)

    Article  Google Scholar 

  234. A. Polman, Erbium implanted thin film photonic materials. J. Appl. Phys. 82, 1 (1997)

    Article  Google Scholar 

  235. T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668 (2002)

    Article  Google Scholar 

  236. G. Gao, L. Wondraczek, Near-infrared down-conversion in Mn2+–Yb3+ co-doped Zn2GeO4. J. Mater. Chem. C 2013, 1 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Dirnstorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dirnstorfer, I., Mikolajick, T. (2016). Dielectric Nanomaterials for Silicon Solar Cells. In: Li, Q. (eds) Nanomaterials for Sustainable Energy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32023-6_2

Download citation

Publish with us

Policies and ethics