Skip to main content

Transcriptomic Responses of Barley (Hordeum vulgare L.) to Drought and Salinity

  • Chapter
  • First Online:
Plant Omics: Trends and Applications

Abstract

Drought and salinity are the main factors limiting plant growth and productivity. With the effects of global warming, severe drought episodes are expected to be widespread, which will certainly lead to decrease in crop production. Therefore, understanding plants’ response to drought and salinity stresses is more urgent than ever to reveal molecular mechanisms behind the natural tolerance which, then, can be used in the generation of stress-tolerant crop species. Barley stands out as the most salinity and drought-tolerant crop inPoaceae family with its wide range of wild genotypes. Due to its higher tolerance to abiotic and biotic stresses among other crops, it was studied to understand the mechanisms behind the natural tolerance via generation of various genetic resources and databases created by extensive sequence data, microarray studies, next-generation sequencing (NGS), and genetic maps. Large-scale transcriptomic analyses in barley showed that ROS-scavenging enzymes, transcription factors, LEA group proteins, and enzymes coding for osmoprotectants are the prominent groups of genes differentially expressed under salinity and drought stresses. Quantitative real-time PCR was efficiently used to measure transcript levels of stress-related genes under high salt or limited water conditions, allowing the prediction of functional characteristics of these genes according to their expression patterns. Small-scale expression studies also revealed the importance of cell and tissue type expression and mode of the stress treatment. However, although there are numerous candidate barley genes that can be used to develop transgenic crops with higher tolerance to salinity and drought, there are only limited isolation and cloning studies with these genes. We highly recommend more detailed studies on this naturally tolerant crop to be able to generate more drought or salt tolerance species via genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Melmaiee K, Berg V, Wise RP (2010) Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics 10:191–205

    Article  CAS  PubMed  Google Scholar 

  • Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol 14:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123

    Article  CAS  PubMed  Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013a) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS One 8:e77869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013b) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60

    Article  CAS  PubMed  Google Scholar 

  • Al Abdallat AM, Ayad JY, Abu Elenein JM, Al Ajlouni Z, Harwood WA (2014) Overexpression of the transcription factorHvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol Breed 33:401–414

    Article  CAS  Google Scholar 

  • Allardyce JA, Rookes JE, Hussain HI, Cahill DM (2013) Transcriptional profiling ofZea mays roots reveals roles for jasmonic acid and terpenoids in resistance againstPhytophthora cinnamomi. Funct Integr Genomics 13:217–228

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant ofAtNHX1, theArabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Atienza SG, Faccioli P, Perrotta G et al (2004) Large scale analysis of transcripts abundance in barley subjected to several single and combined abiotic stress conditions. Plant Sci 167:1359–1365

    Article  CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A, David Ho T-H, Wu R, Nguyen HT (2004)HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley. Mol Biol Evol 17:499–510

    Article  CAS  PubMed  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740

    Article  CAS  PubMed  Google Scholar 

  • Bedada G, Westerbergh A, Müller T, Galkin E, Bdolach E, Moshelion M, Fridman E, Schmidet KJ (2014) Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics 15:1–20

    Article  CAS  Google Scholar 

  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171:723–731

    Article  CAS  PubMed  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132:21–32

    Article  CAS  Google Scholar 

  • Bonman JM, Bockelman HE, Jackson LF, Steffenson BJ (2005) Disease and insect resistance in cultivated barley accessions from the USDA National Small Grains Collection. Crop Sci 45:1271–1280

    Article  Google Scholar 

  • Boscari A, Clément M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W (2009) Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ 32:1761–1777

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bot A, Benites J (2005) The importance of soil organic matter, key to drought-resistant soil and sustained food production. FAO Soils Bulletin, Rome

    Google Scholar 

  • Camilios-Neto D, Bonato P, Wassem R, Brusamarello-Santos LCC, Valdameri G, Donatti L, Faoro H, Weiss VA, Chubatsu LS, OPedrosa F, Souzaet EM (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized byAzospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics 15:378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barleyHva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Newman I, Zhou M et al (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C (2014) Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26:4636–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DW, Close TJ (2000) A newly identified barley gene, Dhn12, encoding a YSK2 DHN, is located on chromosome 6H and has embryo-specific expression. Theor Appl Genet 100:1274–1278

    Article  CAS  Google Scholar 

  • Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K Barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. N Biotechnol 30:355–361

    Article  CAS  PubMed  Google Scholar 

  • Cseri A, Cserháti M, von Korff M, Nagy B, Horvath GB, Palagyi A, Pauk J, Dudits D, Törjek O (2011) Allele mining and haplotype discovery in barley candidate genes for drought tolerance. Euphytica 181:341–356

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • De Mezer M, Turska-Taraska A, Kaczmarek Z, Glowacka K, Swarcewicz B, Rorat T (2014) Differential physiological and molecular response of barley genotypes to water deficit. Plant Physiol Biochem 80:234–248

    Article  PubMed  CAS  Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Bensher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Greilhuber J, Lucretii S, Meister A, Lysak MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26

    Article  CAS  Google Scholar 

  • Dolferus R (2014) To grow and not to grow: a stressful decision for plants. Plant Sci 229:247–261

    Article  CAS  PubMed  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  PubMed  Google Scholar 

  • Du JB, Yuan S, Chen YE, Sun X, Zhang ZW, Xu F, Yuan M, Shang J, Lin HH (2011) Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Plant 33:567–574

    Article  Google Scholar 

  • Eckardt NA, Berkowitz GA (2011) Functional analysis ofArabidopsis NHX antiporters: the role of the vacuole in cellular turgor and growth. Plant Cell 23:3087–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards KD, Bombarely A, Story GW, Allen F, Mueller LA, Coates SA, Jones L (2010) TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics 11:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forster BP, Ellis RP, Thomas WT, Newton AC, Tuberose R, This D, el-Enein RA, Bahri MH, Ben Salem M (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Duan K, Guo G, Du Z, Chen Z, Li L, He T, Lu R, Huang J (2013) Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage. Int J Genomics 2013:1–19

    Article  CAS  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wildHordeum species is associated with restricted entry of Na+ and Cl into the shoots. J Exp Bot 56:2365–2378

    Article  CAS  PubMed  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Godfree RC (2012) The impacts of extreme drought and climate change on plant population dynamics and evolution. In: Neves DF, Sanz JD (eds) Droughts: new research. Nova, New York, pp 189–214

    Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    Article  CAS  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff N, Varshney RK, Graner A, Valkonun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gürel F, Öztürk NZ, Yörük E, Uçarlı C, Poyraz N (2016) Comparison of expression patterns of selected drought-responsive genes in barley (Hordeum vulgare L.) under shock-dehydration and slow drought treatments. Plant Growth Regul 1–11. doi:10.1007/s10725-016-0156-0

    Google Scholar 

  • Haro R, Banuelos MA, Senn ME, Barrrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots Pitfalls in the expression ofHKT1 in yeast. Plant Physiol 139:1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes PM, Castro A, Marquez-Cedillo L, Corey A (2003) Genetic diversity for quantitatively inherited agronomic and malting quality traits. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare) developments in plant genetics and breeding. Elsevier Science, Amsterdam, pp 201–226

    Chapter  Google Scholar 

  • Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40:1000–1003

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. University of California Agricultural Experiment Station, Berkley, Circular 347

    Google Scholar 

  • Hong B, Barg R, Ho T-HD (1992) Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18:663–674

    Article  CAS  PubMed  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2013) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9:e97047

    Article  CAS  Google Scholar 

  • Hu XJ, Zhang ZB, Xu P (2010) Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. Biol Plant 54:213–223

    Article  CAS  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping ofHKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937

    Article  CAS  PubMed  Google Scholar 

  • Jain M (2011) A next-generation approach to the characterization of a non-model plant transcriptome. Curr Sci 101:1435–1439

    Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance inArabidopsis. Planta 225:575–588

    Article  CAS  PubMed  Google Scholar 

  • Kapazoglou A, Drosou V, Argiriou A, Tsaftaris AS (2013) The study of a barley epigenetic regulator, HvDME, in seed development and under drought. BMC Plant Biol 13:172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karami A, Shahbazi M, Niknam V, Shobbar ZS, Tafreshi RS, Abedini R, Mabood HE (2013) Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiol Plant 35:2289–2297

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Over-expression of-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 25:1387–1394

    Google Scholar 

  • Kilian B, Martin W, Salamini F (2010) Genetic diversity, evolution and domestication of wheat and barley in the Fertile Crescent. In: Glaubrecht M (ed) Evolution in action. Springer, Berlin, pp 137–166

    Chapter  Google Scholar 

  • Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D (2012) Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochim Biophys Acta 1819:166–175

    Article  CAS  PubMed  Google Scholar 

  • Knüpffer H, Terentyeva I, Hammer K et al (2003) Ecogeographical diversity—a Vavilovian approach. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam, pp 53–76

    Chapter  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Wang Z, Banks TW, Jordan MC, McCallum BD, Cloutier S (2014)Lr1-mediated leaf rust resistance pathways of transgenic wheat lines revealed by a gene expression study using the Affymetrix GeneChip® Wheat Genome Array. Mol Breed 34:127–141

    Article  CAS  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of “omics” for crop breeding. Trends Biotechnol 29:33–40

    Article  CAS  PubMed  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 285–315

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Guo Q, Lan X, Zhou Q, Wei N (2014) Comparative expression analysis of fiveWRKY genes from Tibetan hulless barley under various abiotic stresses between drought-resistant and sensitive genotype. Acta Physiol Plant 36:963–973

    Article  CAS  Google Scholar 

  • Malatrasi M, Close TJ, Marmirolli N (2002) Identification and mapping of putative stress response regulator gene in barley. Plant Mol Biol 50:143–152

    Article  CAS  PubMed  Google Scholar 

  • Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu UH, Harter K, Jansson C, Wanke D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9:194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration- induced transcriptional pathways inArabidopsis, rice, and soybean. DNA Res 19:37–49

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Very AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479

    Article  CAS  PubMed  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52:785–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci U S A 104:3289–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrell PL, Gonzales AM, Meyer KK, Clegg MT (2014) Resequencing data indicate a modest effect of domestication on diversity in barley: a cultigen with multiple origins. J Hered 105:253–264

    Article  PubMed  Google Scholar 

  • Mrízová K, Holasková E, Öz MT, Jiskrová E, Frébort I, Galuszka P (2014) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 32:137–157

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley,Hordeum spontaneum, in the Fertile Crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, UK, pp 19–43

    Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barleyHvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozturk ZN, Talame V, Deyhoyos M, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Papaefthimiou D, Tsaftaris AS (2012) Significant induction by drought of HvPKDM7-1, a gene encoding a jumonji-like histone demethylase homologue in barley (H. vulgare). Acta Physiol Plant 34:1187–1198

    Article  CAS  Google Scholar 

  • Qian G, Liu Y, Ao D, Yang F, Yu M (2008) Differential expression of dehydrin genes in hull-less barley (Hordeum vulgare ssp.vulgare) depending on duration of dehydration stress. Can J Plant Sci 88:899–906

    Article  CAS  Google Scholar 

  • Qiu L, Wu DZ, Ali S, Cai S, Dai F, Jin X, Wu F, Zhang G (2011) Evaluation of salinity tolerance and analysis of allelic function ofHvHKT1 andHvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703

    Article  CAS  PubMed  Google Scholar 

  • Rapacz M, Koscielniak J, Jurczyk B, Adamska A, Wojcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt and feed-type barleys (Hordeum vulgare). J Agron Crop Sci 196:9–19

    Article  CAS  Google Scholar 

  • Reddy VS, Reddy ASN (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776

    Article  CAS  PubMed  Google Scholar 

  • Reshetova P, Smilde AK, van Kampen AH, Westerhuis JA (2014) Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data. BMC Syst Biol 8(Suppl 2):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD (2012) Genome-wide patterns ofArabidopsis gene expression in nature. PLoS Genet 8:e1002662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez EM, Svenson JT, Malatrasi M, Choi DW, Close TJ (2005) BarleyDhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110:852–858

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Roslyakova TV, Molchan OV, Vasekina AV, Lazareva EM, Sokolik AI, Yurin VM, de Boer AH, Babakov AV (2011) Salt tolerance of barley: relations between expression of isoforms of vacuolar Na+/H+-antiporter and22Na+ accumulation. Russ J Plant Physiol 58:24–35

    Article  CAS  Google Scholar 

  • Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/ glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Huang W, Wang XJ, Evrard A, Schmöckel SM, Zafar ZU, Tester M (2013) A novel protein kinase involved in Na+ exclusion revealed from positional cloning. Plant Cell Environ 36:553–568

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of theArabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12:378–386

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Okamoto M, Matsui A, Kim JM, Kurihara Y, Ishida J, Morosawa T, Kawashima M, To TK, Shinozaki K (2009) Microarray analysis for studying the abiotic stress responses in plants. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Amsterdam, pp 333–355

    Google Scholar 

  • Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotech 21:197–203

    Article  CAS  PubMed  Google Scholar 

  • Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U, Mayer KF, Platzer M, Stein N (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10:547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley,Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • Talame V, Ozturk ZN, Bohnert HJ (2007) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58:229–240

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Tommasini T, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8:387–405

    Article  CAS  PubMed  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Climate Change 4:17–22

    Article  Google Scholar 

  • Ueda A, Shi W, Nakamura T, Takabe T (2002) Analysis of salt-inducible genes in barley roots by differential display. J Plant Res 115:119–130

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, Takabe T, Bennett J (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55:2213–2218

    Article  CAS  PubMed  Google Scholar 

  • Ullrich SE (2011) Significance, adaptation, production, and trade of barley. In: Ullrich SE (ed) Barley production, improvement, and uses. Wiley, Ames, pp 3–13

    Google Scholar 

  • Van Gool D, Vernon L (2006) Potential impacts of climate change on agricultural land use suitability: barley. Report No. 302, Department of Agriculture, Western Australia

    Google Scholar 

  • Von Bothmer R (1992) The wild species ofHordeum: relationships and potential use for improvement of cultivated barley. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, Oxon, pp 3–18

    Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    Article  CAS  PubMed  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722

    Article  CAS  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcik-Jagla M, Rapacz M, Barcik W, Janowiak F (2012) Differential regulation of barley (Hordeum distichon)HVA1 andSRG6 transcript accumulation during the induction of soil and leaf water deficit. Acta Physiol Plant 34:2069–2078

    Article  CAS  Google Scholar 

  • Wu D, Shen Q, Cai S, Chen ZH, Dai F, Zhang G (2013) Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol 54:1976–1988

    Article  CAS  PubMed  Google Scholar 

  • Xu WF, Shi WM, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenicArabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 18:486–495

    Article  CAS  Google Scholar 

  • Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ (2009) Isolation and functional characterization ofHvDREB1, a gene encoding a dehydration-responsive element binding protein inHordeum vulgare. J Plant Res 122:121–130

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Gao Y, Wang J (2012) Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PLoS One 7:e30646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP, Loveridge CW (2004)HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, An L, Li W (2014) The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Rep 33:203–214

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Sun H, Dai H, Zhang G, Wu F (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172:395–403

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Ziemann M, Kamboj A, Hove RM, Loveridge S, El Osta A, Bhave M (2013) Analysis of the barley leaf transcriptome under salinity stress using mRNA-Seq. Acta Physiol Plant 35:1915–1924

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (1993) Domestication of plants in the Old World. The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgment

This research was supported by Scientific Research Projects Coordination Unit of Istanbul University, project BAP 4712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Gürel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gürel, F., Öztürk, N.Z., Uçarlı, C. (2016). Transcriptomic Responses of Barley (Hordeum vulgare L.) to Drought and Salinity. In: Hakeem, K., Tombuloğlu, H., Tombuloğlu, G. (eds) Plant Omics: Trends and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_7

Download citation

Publish with us

Policies and ethics