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HYPERGEOMETRIC SERIES, TRUNCATED HYPERGEOMETRIC SERIES,

AND GAUSSIAN HYPERGEOMETRIC FUNCTIONS

ALYSON DEINES, JENNY G. FUSELIER, LING LONG, HOLLY SWISHER, FANG-TING TU

Abstract. In this paper, we investigate the relationships among hypergeometric series, truncated
hypergeometric series, and Gaussian hypergeometric functions through some families of ‘hypergeo-
metric’ algebraic varieties that are higher dimensional analogues of Legendre curves.

1. Introduction

1.1. Motivation. When a prime p satisfies p ≡ 1 (mod 6), the p-adic gamma value −Γp

(
1
3

)3
is a

quadratic algebraic number with absolute value
√
p which can be written as a Jacobi sum. Thus,

Γp

(
1
3

)6
is not a conjugate of −Γp

(
1
3

)3
in the sense of algebraic numbers [13]. However, considering

truncated hypergeometric series we have when p ≡ 1 (mod 6),

(1.1) 3F2

[1
3

1
3

1
3

1 1
; 1

]

p−1

:=

p−1∑

k=0

(−1
3

k

)3

· (−1)k ≡ Γp

(
1

3

)6

(mod p3),

which was shown by the third author and Ramakrishna in [31], while numerically we see that

(1.2) 3F2

[2
3

2
3

2
3

1 1
; 1

]

p−1

:=

p−1∑

k=0

(−2
3

k

)3

· (−1)k ≡ −Γp

(
1

3

)3

(mod p3),

and we will show this holds modulo p2 in this paper. By Dwork [16],

lim
s→∞ 3F2

[1
3

1
3

1
3

1 1
; 1

]

ps−1

/
3F2

[1
3

1
3

1
3

1 1
; 1

]

ps−1−1

= Γp

(
1

3

)6

,

while

lim
s→∞ 3F2

[2
3

2
3

2
3

1 1
; 1

]

ps−1

/
3F2

[2
3

2
3

2
3

1 1
; 1

]

ps−1−1

= −Γp

(
1

3

)3

.

When p ≡ 5 (mod 6), Dwork in [16] showed that there is a similar congruence that involves

both 3F2

[1
3

1
3

1
3

1 1
; 1

]

ps−1

and 3F2

[2
3

2
3

2
3

1 1
; 1

]

ps−1−1

. It is tempting to think of the param-

eters 1
3 and 2

3 as ‘conjugates of some sort’. Also, if one considers the finite field analogue of

3F2

[1
3

1
3

1
3

1 1
; 1

]
due to Greene, what corresponds to 1

3 is a cubic character, which is determined

up to a conjugate. Putting these together, it appears that −Γ
(
1
3

)3
is some sort of ‘conjugate’ of

Γ
(
1
3

)6
. One motivation of this paper is to investigate these seemingly contradicting phenomena

via the relations between hypergeometric series, Gaussian hypergeometric functions and truncated
hypergeometric series. These objects correspond to periods, Galois representations, and unit roots
(in the ordinary case) respectively.
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In recent work [15], the authors use the perspective of Wolfart [43] and Archinard [3] to consider
classical 2F1-hypergeometric functions with rational parameters as periods of explicit generalized
Legendre curves

C
[N ;i,j,k]
λ : yN = xi(1− x)j(1− λx)k.

In [15], the main players are hypergeometric series and Gaussian hypergeometric functions. The

authors use Gaussian 2F1-hypergeometric functions to count points of C
[N ;i,j,k]
λ over finite fields and

hence compute the corresponding Galois representations. This arithmetic information together with

the periods of C
[N ;i,j,k]
λ in terms of hypergeometric values yields information about the decompo-

sition of the Jacobian variety J
[N ;i,j,k]
λ constructed from the desingularization of C

[N ;i,j,k]
λ . When

gcd(i, j, k) is coprime to N and N ∤ i+ j + k, then J
[N ;i,j,k]
λ has a degree 2ϕ(N) ‘primitive’ factor

Jnew
λ , where ϕ is the Euler phi function. The authors prove the following theorem.

Theorem 1 ([15]). Let N = 3, 4, 6 and 1 ≤ i, j, k < N with gcd(i, j, k) coprime to N and N ∤
i+j+k. Then for each λ ∈ Q, the endomorphism algebra of Jnew

λ contains a 4-dimensional algebra
over Q if and only if

B

(
N − i

N
,
N − j

N

)/
B

(
k

N
,
2N − i− j − k

N

)
∈ Q,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) , and Γ(·) is the Gamma function.

The second motivation for this paper is to explore the following higher dimensional analogues of
Legendre curves

Cn,λ : yn = (x1x2 · · · xn−1)
n−1(1− x1) · · · (1− xn−1)(x1 − λx2x3 · · · xn−1).

In particular, the curves C2,λ are known as Legendre curves. Up to a scalar multiple, the hyperge-
ometric series

nFn−1

[
j
n

j
n · · · j

n

1 · · · 1
; λ

]

for any 1 ≤ j ≤ n− 1, when convergent, can be realized as a period of Cn,λ.

1.2. Results. Our first theorem shows that the number of rational points on Cn,λ over finite fields
Fq can be expressed in terms of Gaussian hypergeometric functions. For a definition of Gaussian

hypergeometric functions please see Section 2.3. 1 Let F̂×
q denote the group of all multiplicative

characters on F×
q .

Theorem 2. Let q = pe ≡ 1 (mod n) be a prime power. Let ηn be a primitive order n character

and ε the trivial multiplicative character in F̂×
q . Then

#Cn,λ(Fq) = 1 + qn−1 + qn−1
n−1∑

i=1

nFn−1

(
ηin, ηin, · · · , ηin,

ε, · · · , ε,
;λ

)

q

.

Meanwhile, we are also interested in knowing how to use information from truncated hypergeo-
metric series to obtain information about the Galois representations and hence local zeta functions
of Cn,λ. For instance, we have the following conjecture based on numerical evidence for the case
λ = 1.

1The subscript q for a Gaussian hypergeometric function records the size of the corresponding finite field and should
not be confused with the subscript for truncated hypergeoemetric series which records the location of truncation.
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Conjecture 3. Let n ≥ 3 be a positive integer, and p be prime such that p ≡ 1 (mod n). Then

nFn−1

[n−1
n

n−1
n . . . n−1

n

1 . . . 1
; 1

]

p−1

:=

p−1∑

k=0

(1−n
n

k

)n

(−1)kn ≡ −Γp

(
1

n

)n

(mod p3).

Using the Gross-Koblitz formula [22], recalled in Section 2.4, we have for a prime p ≡ 1 (mod n),

J(ηn, ηn)J(ηn, η
2
n) · · · J(ηn, ηn−2

n ) = (−1)n−2+ 1+(n−1)p
n Γp

(
1

n

)n

,

where J(·, ·) denotes the standard Jacobi sum. We see that (−1)n−2+ 1+(n−1)p
n = 1 when n is odd

and ηn is an order n character of F×
p such that ηn(x) ≡ x

p−1
n (mod p) for all x ∈ Fp. From the

perspective of Grössencharacters (Hecke characters) (see Weil [40]), this product of Jacobi sums
is associated with a linear representation χ of the Galois group Gal(Q/Q(e2πi/n)). We would like
to explore whether the Galois representation arising from Cn,1 contains a factor that is related to
χ. When n = 3, 4, the answer is positive. In proving these results the work of Greene [21] and
McCarthy [32] on finite field analogues of classical hypergeometric evaluation formulas plays an
essential role.

Ahlgren and Ono [1] show that for any odd prime p,

(1.3) p3 · 4F3

(
η24 , η24 , η24 , η24

ε, ε, ε
; 1

)

p

= −a(p)− p,

where a(p) is the pth coefficient of the weight 4 Hecke cuspidal eigenform

η(2z)4η(4z)4,

with η(z) being the Dedekind eta function. Here, we show the following.

Theorem 4. Let η2, η3 or η4 denote characters of order 2, 3, or 4, respectively, in F̂×
q .

(1) Let q ≡ 1 (mod 3) be a prime power. Then

q2 · 3F2

(
η3, η3, η3

ε, ε
; 1

)

q

= J(η3, η3)
2 − J(η23 , η

2
3).

(2) Let q ≡ 1 (mod 4) be a prime power. Then

q3 · 4F3

(
η4, η4, η4, η4

ε, ε, ε
; 1

)

q

= J(η4, η2)
3 + qJ(η4, η2)− J(η4, η2)

2.

Here we observe J(η4, η2)
2 = η4(−1)J(η4, η4)J(η4, η4

2). To prove Theorem 4 we use the work
of Greene [21] and McCarthy [32], except in case (2) when q ≡ 5 (mod 8), in which we use
Grössencharacters and representation theory. The reason we do this is because a key ingredient of
our proof is Theorem 1.6 of McCarthy [32], for which we assume η4 is a square, i.e., q ≡ 1 (mod 8).
Combining this with the theory of Galois representations, we can reach our conclusion when q ≡ 5
(mod 8). We wish to point out that the above results can be interpreted in terms of Galois repre-
sentations. 2 Result (1) describes the trace of the Frobenius element at q in Gal(Q/Q(

√
−3)) under

a 2-dimensional Galois representation arising from the second étale cohomology of C3,1 in terms of
Jacobi sums (and hence Grössencharacters); while (2) describes a 3-dimensional Galois representa-
tion of Gal(Q/Q(

√
−1)) arising from the third étale cohomology of C4,1 in terms of Jacobi sums.

2 In a different language, our results correspond to the explicit descriptions of some mixed weight hypergeometric
motives arising from exponential sums which are initiated by Katz [24], and are explicitly formulated and implemented
by a group of mathematicians including Beukers, Cohen, Rodriguez-Villegas and others (from private communication
with H. Cohen and F. Rodriguez-Villegas). Here we can use the explicit algebraic varieties to compute the Galois
representations directly. A different algebraic model for the algebraic varieties is given in the following recent preprint
[9].
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Both cases are exceptional. Consequently we can describe the local zeta function of C3,1 and C4,1

completely. For instance when p ≡ 1 (mod 3) is prime, by the Hasse-Davenport relation for Jacobi
sums (see [23]), the local zeta function of C3,1 over Fp is

ZC3,1(T, p) =
1

(1− T )(1 + (αp + αp)T + pT 2)(1− p2T )(1− (α2
p + α2

p)T + p2T 2)

where αp = J(η3, η3). Note that the factor (1 + (αp + αp)T + pT 2) appearing in the denominator
has roots of absolute value 1/

√
p; meanwhile following Weil’s conjecture (see [23]) such a term

should appear in the numerator instead. We believe the discrepancy is due to the fact that we are
not computing using the smooth model of Cn,λ as no resolution of singularities is involved so far.
Similarly, we have for any prime p ≡ 1 (mod 4)

ZC4,1(T, p) = (1 + (β3p + β
3
p)T + p3T 2)(1 + (βp + β)pT + p3T 2)

·
(1− (β2p + β

2
p)T + p2T 2)(1− a(p)T + p3T 2)(1− pT )

(1− T )(1− p3T )
,

where a(p) as in (1.3) and βp = J(η4, η2). The factor corresponding to

y2 = (x1x2x3)
3(1− x1)(1− x2)(1 − x3)(x1 − x2x3)

is

ZCold
4,1

(T, p) =
(1− a(p)T + p3T 2)(1 − pT )

(1− T )(1− p3T )
,

and new primitive portion is

ZCnew
4,1

(T, p) = (1 + (β3p + β
3
p)T + p3T 2)(1 + (βp + β)pT + p3T 2)(1− (β2p + β

2
p)T + p2T 2).

Part (1) of Theorem 4 explains why −Γp(
1
3)

3 appears to be a conjugate of Γp(
1
3)

6. There are

two ways to specify a cubic character in F̂×
p when p ≡ 1 (mod 3), i.e. η3(x) ≡ x(p−1)/3 (mod p) for

all x ∈ Fp or η3(x) ≡ x2(p−1)/3 (mod p). Either way gives an embedding of

p2 · 3F2

(
η3, η3, η3

ε, ε
; 1

)

p

to Zp. Then the image of the Gaussian hypergeometric function is congruent to −Γp(
1
3)

3 or Γp(
1
3)

6

respectively via the Gross-Koblitz formula [22, 37]. Using this formula, we also prove the following
result which relates Gaussian hypergeometric functions to truncated hypergeometric series.

Lemma 5. Let r, n, j be positive integers with 1 ≤ j < n. Let p ≡ 1 (mod n) be prime and ηn ∈ F̂×
p

such that ηn(x) ≡ xj(p−1)/n (mod p) for each x ∈ Fp. Then,

pr−1 · rFr−1

(
ηn, ηn, · · · , ηn

ε, · · · , ε
;x

)

p

≡

(−1)r+1 · rFr−1

[
n−j
n

n−j
n · · · n−j

n

1 · · · 1
;
1

x

]

(p−1)(n−j

n )

+ (−1)r+1+
(p−1)

n
jr
(
x(p−1)n−j

n − x
p−1
n

j
)

(mod p);
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pr−1 · rFr−1

(
ηn, ηn, · · · , ηn

ε, · · · , ε
;x

)

p

≡

(−1)r+1 · pr r+1Fr

[
1 1 · · · 1

2n−j
n · · · 2n−j

n

;
1

x

]

p−1

(mod p).

Thus, (1.1) and (1.2) hold modulo p. It is shown in [31] that (1.1) holds modulo p3. These kinds
of stronger congruences are known as supercongruences as they are stronger than what the theory
of formal groups can predict. We will establish a few here. In particular, we prove the claim that
Conjecture 3 holds modulo p2.

Theorem 6. Conjecture 3 holds modulo p2. Namely, for n ≥ 3, and p ≡ 1 (mod n) prime,

nFn−1

[n−1
n

n−1
n . . . n−1

n

1 . . . 1
; 1

]

p−1

:=

p−1∑

k=0

(1−n
n

k

)n

(−1)kn ≡ −Γp

(
1

n

)n

(mod p2).

Remark. Theorem 6 also holds for n = 2, due to Mortenson [35].
We note that in [33, Defn. 1.4], McCarthy defines a new function nGn[· · · ] in terms of sums and

ratios of p-adic Gama functions. Recently, the second author and McCarthy produced families of
congruences between these nGn functions and truncated hypergeometric series [19]. New identities
for these functions have also recently been obtained by McCarthy, et. al. [7] and it is possible they
could be used to prove Conjecture 3 in full.

For the truncated hypergeometric series related to C4,1 we have another result.

Theorem 7. For each prime p ≡ 1 (mod 4),

4F3

[1
4

1
4

1
4

1
4

1 1 1
; 1

]

p−1

=

p−1∑

k=0

(−1
4

k

)4

≡ (−1)
p−1
4 Γp

(
1

2

)
Γp

(
1

4

)6

(mod p4).

Corresponding to Ahlgren and Ono’s result (1.3), Kilbourn [25] shows the supercongruence

4F3

[1
2

1
2

1
2

1
2

1 1 1
; 1

]

p−1

:=

p−1∑

k=0

(−1
2

k

)4

≡ a(p) (mod p3),

where a(p) is defined as in (1.3).
Supercongruences are not only intellectually appealing, they are of very practical use for our

computations. For instance, Theorem 7 corresponds to the properties of the third étale cohomol-
ogy group of C4,1 as mentioned earlier. By the Hasse-Weil bounds for them, which are constant

multiplies of p and p3/2 respectively, the supercongruence results allowed us to compute the traces
of Frobenius without any ambiguity, from which we were able to nail down the local zeta functions
of C3,1 and C4,1 and discover Theorem 4 numerically before proving it. There are a variety of differ-
ent techniques for proving such results and each has its own strength. See [11] for another Women
in Numbers (WIN) project on supercongruences, which was motivated by the work of Zudilin [44]
and his conjectures. We prove Theorems 6 and 7 by deforming truncated hypergeometric series
using hypergeometric evaluation identities (several of them are due to Whipple [41, 2]) together
with p-adic analysis via harmonic sums and p-adic Gamma functions. This technique is originated
in [10] and is later formulated explicitly in [31].
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1.3. Outline of this paper. Section 2 contains some background material. In Section 3, we
consider the familiar setting of Legendre curves. This section serves as a showcase of our techniques
without getting into too much technicality. We prove Theorem 2 and Lemma 5 in Section 4. Section
5 is devoted to proving the results on Gaussian hypergeometric functions in Theorem 4. In Section
6, we prove Theorem 6, based on an idea of Zudilin (private communication), and then prove
Theorem 7. Sections 4, 5, and 6 are technical in nature. In Section 7 we end with some remarks
including a few conjectures based on our numerical data computed using Sage.

2. Preliminaries

2.1. Generalized hypergeometric series and truncation. For a positive integer r, and αi,
βi ∈ C with βi 6∈ {. . . ,−3,−2,−1}, the (generalized) hypergeometric series rFr−1 is defined by

rFr−1

[
α1 α2 . . . αr

β1 . . . βr−1
; λ

]
:=

∞∑

k=0

(α1)k(α2)k . . . (αr)k
(β1)k . . . (βr−1)k

· λ
k

k!

where (a)0 := 1 and (a)k := a(a+ 1) · · · (a+ k − 1) are rising factorials. This series converges for
|λ| < 1.

When we truncate the above sum at k = m, we use the subscript notation

rFr−1

[
α1 α2 . . . αr

β1 . . . βr−1
; λ

]

m

:=

m∑

k=0

(α1)k(α2)k . . . (αr)k
(β1)k . . . (βr−1)k

· λ
k

k!
.

We note that the books by Slater [38], Bailey [5], and Andrews, Askey and Roy [2] are excellent
sources for information on classical hypergeometric series.
The following gives an alternate truncation for hypergeometric series modulo powers of primes.

Lemma 8. Let n ≥ 2 be a positive integer, j an integer 1 ≤ j < n, and p ≡ 1 (mod n) prime.
Then for x ∈ Zp,

rFr−1

[
j
n

j
n · · · j

n

1 · · · 1
; x

]

j

n
(p−1)

≡ rFr−1

[
j
n

j
n · · · j

n

1 · · · 1
; x

]

p−1

(mod pr).

Proof. The lemma follows from the fact that when j(p−1)
n + 1 ≤ k ≤ (p − 1), the rising factorial(

j
n

)
k
∈ pZp, since it contains the factor p

(
j
n

)
, while (1)k is not divisible by p. �

2.2. Euler’s integral formula and higher generalization. When Re(β1) > Re(α2) > 0, Euler’s
integral representation for 2F1 [2] states that

2F1

[
α1 α2

β1
; λ

]
=

Γ(β1)

Γ(α2)Γ(β1 − α2)

∫ 1

0
xα2−1(1− x)β1−α2−1(1− λx)−α1dx.

More generally, one has that when Re (βr) > Re (αr+1) > 0 (see [2, (2.2.2)])

(2.1) r+1Fr

[
α1 α2 . . . αr+1

β1 . . . βr
; λ

]
=

Γ(βr)

Γ(αr+1)Γ(βr − αr+1)

·
∫ 1

0
xαr+1−1(1− x)βr−αr+1−1

rFr−1

[
α1 α2 . . . αr

β1 . . . βr−1
; λx

]
dx.

From the above two integral formulas, one can derive that for each 1 ≤ j ≤ n − 1 the series

nFn−1

[
j
n

j
n · · · j

n

1 · · · 1
; λ

]
, with a suitable beta quotient factor, is a period of Cn,λ.
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2.3. Gaussian hypergeometric functions. Let p be prime and let q = pe. We extend any

character χ ∈ F̂×
q to all of Fq by setting χ(0) = 0, including the trivial character ε, so that

ε(0) = 0. For A,B ∈ F̂×
q , let J(A,B) :=

∑
x∈Fq

A(x)B(1− x) denote the Jacobi sum and define

(
A

B

)
:=

B(−1)

q
J(A,B) =

B(−1)

q

∑

x∈Fq

A(x)B(1− x).

In [21], Greene defines a finite field analogue of hypergeometric series called Gaussian hyperge-
ometric functions, defined below.

Definition 9 ([21] Defn. 3.10). If n is a positive integer, x ∈ Fq, and A0, A1, . . . , An,

B1, B2, . . . , Bn ∈ F̂×
q , then

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
;x

)

q

:=
q

q − 1

∑

χ∈̂F×
q

(
A0χ

χ

)(
A1χ

B1χ

)
. . .

(
Anχ

Bnχ

)
χ(x).

Greene showcases a variety of identities satisfied by his Gaussian hypergeometric functions,
many of which provide direct analogues for transformations of classical hypergeometric series. For
example, he provides a finite field analogue of (2.1), shown below.

Theorem 10 (Greene [21]). For characters A0, A1, . . . , An, B1, . . . , Bn in F̂×
q , and x ∈ Fq,

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
;x

)

q

=

AnBn(−1)

q
·
∑

y

nFn−1

(
A0, A1, . . . , An−1

B1, . . . , Bn−1
;xy

)

q

· An(y)AnBn(1− y).

To extend Greene’s program, McCarthy provides a modification of Greene’s functions below. We

let g(χ) =
∑

x∈Fq

χ(x)ζTr(x)p denote the Gauss sum of χ, and Tr the usual trace map form Fq to Fp.

Definition 11. [32] For characters A0, A1, . . . , An, B1, . . . , Bn in F̂×
q ,

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
;x

)∗

q

:=
1

q − 1

∑

χ∈̂F×
q

n∏

i=0

g(Aiχ)

g(Ai)

n∏

j=1

g(Bjχ)

g(Bj)
g(χ)χ(−1)n+1χ(x).

McCarthy makes explicit how the two hypergeometric functions are related, via the following.

Proposition 12 (McCarthy [32]). If A0 6= ε and Ai 6= Bi for each 1 ≤ i ≤ n, then

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
;x

)∗

q

=

[
n∏

i=1

(
Ai

Bi

)−1
]

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
;x

)

q

.

McCarthy uses this hypergeometric function to provide analogues to classical formulas of Dixon,
Kummer, and Whipple for well-poised classical hypergeometric series [32]. For example, consider
Whipple’s classical transformation below:
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Theorem 13 (Whipple [41]). If one of 1 + 1
2a− b, c, d, e is a negative integer, then

5F4

[
a b c d e

1 + a− b 1 + a− c 1 + a− d 1 + a− e
; 1

]

=
Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− c− d− e)

Γ(1 + a)Γ(1 + a− d− e)Γ(1 + a− c− d)Γ(1 + a− c− e)

· 4F3

[
1 + 1

2a− b c d e
1 + 1

2a c+ d+ e− a 1 + a− b
; 1

]
.

McCarthy provides a finite field analogue to this result using his hypergeometric series.

Theorem 14 (McCarthy, Thm. 1.6 of [32]). Let A,B,C,D,E ∈ F̂×
q such that, when A is a square,

A 6= ε, B 6= ε, B2 6= A, CD 6= A, CE 6= A, DE 6= A, and CDE 6= A. Then, if A is not a square,

5F4

(
A, B, C, D, E

AB, AC, AD AE
; 1

)∗

q

= 0,

and if A is a square,

5F4

(
A, B, C, D, E

AB, AC, AD AE
; 1

)∗

q

=

g(A)g(ADE)g(ACD)g(ACE)

g(AC)g(AD)g(AE)g(ACDE)

∑

R2=A

4F3

(
RB, C, D, E

R ACDE, AB
; 1

)∗

q

+
g(ADE)g(ACD)g(ACE)q

g(C)g(D)g(E)g(AC)g(AD)g(AE)
2F1

(
A, B

AB
;−1

)∗

q

.

Gaussian hypergeometric functions have been used to count points on different types of varieties
over Fq and they are related to coefficients of various modular forms [26, 36, 17, 18, 27, 39, 6, 1].
We use Greene’s hypergeometric functions to count points on Cn,λ in Section 4.1. We make use of
McCarthy’s hypergeometric function, as well as the previous theorem, Theorem 14, in the proof of
Theorem 4 in Section 5. Values of McCarthy’s normalized version of the hypergeometric function
over finite fields have also been shown to be related to eigenvalues of Siegel modular forms of higher
degree [34].

2.4. p-adic Gamma functions and the Gross-Koblitz formula. We first recall the p-adic
Γ-function. The p-adic Γ-function is defined for n ∈ N by

Γp(n) := (−1)n
∏

0<j<n
p ∤j

j,

and extends to x ∈ Zp by defining Γp(0) := 1, and for x 6= 0,

Γp(x) := lim
n→x

Γp(n),

where n runs through any sequence of positive integers p-adically approaching x.
We recall some basic properties for Γp(·) which will be useful later (see Theorem 14 of [31]).

Proposition 15. Let x ∈ Zp. We have the following facts about Γp.

a) Γp(0) = 1
b) Γp(x+ 1)/Γp(x) = −x unless x ∈ pZp in which case the quotient takes value −1.

c) Γp(x)Γp(1− x) = (−1)a0(x) where a0(x) is the least positive residue of x modulo p,
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d) Given p > 11, there exist G1(x), G2(x) ∈ Zp such that for any m ∈ Zp,

Γp(x+mp) ≡ Γp(x)

[
1 +G1(x)mp +G2(x)

(mp)2

2
+G3(x)

(mp)3

6

]
(mod p4).

e) G1(x) = G1(1− x) and G2(x) +G2(1− x) = 2G1(x)
2,

f) If x ≡ y (mod pn), then Γp(x) ≡ Γp(y) (mod pn).

We note that c) above implies in particular that for any integer n > 1 and prime p ≡ 1 (mod n),

Γp

(
1

n

)
Γp

(
1− 1

n

)
= (−1)

1+(n−1)p
n .

Thus when n is odd, Γp(
1
n)Γp(1− 1

n) = −1.
We now recall the Gross-Koblitz formula [22, 37] in the case of Fp. Let

ϕ : F×
p → Z×

p

be the Teichmüller character such that ϕ(x) ≡ x (mod p). The Gross-Koblitz formula states that
the Gauss sum g(ϕ−j) defined using the Dwork exponential as the additive character satisfies

(2.2) g
(
ϕ−j

)
= −πjpΓp

(
j

p− 1

)
,

where 0 ≤ j ≤ p− 2, and πp ∈ Cp is a root of xp−1 + p = 0.

3. In the setting of Legendre curves

We first briefly explain the relationships between Gaussian hypergeometric functions, hypergeo-
metric series, and truncated hypergeometric series using the Legendre curve

C2,λ : y2 = x1(1− x1)(x1 − λ),

which is isomorphic to the more familiar form y2 = x(x− 1)(x− λ) over Q(
√
−1). It is well-known

that one period of C2,λ is given by

π · 2F1

[1
2

1
2

1
; λ

]
.

Assume λ ∈ Q and η2 ∈ F̂×
p is of order 2. It follows from the Taniyama-Shimura-Wiles theorem

[42] that for good primes p,

ap(λ) = p+ 1−#C2,λ(Fp) = −
∑

x1∈Fp

η2(x1(1− x1)(x1 − λ)) = −p ·2 F1

(
η2, η2

ε
;λ

)

p

is the pth coefficient of a weight 2 cuspidal Hecke eigenform that can be computed from a compatible
family of 2-dimensional ℓ-adic Galois representations of GQ := Gal(Q/Q) constructed from the Tate
module of C2,λ via L-series. This gives a correspondence between the 2F1 Gaussian hypergeometric
functions and the Galois representations arising from C2,λ.

When ap(λ) is not divisible by p, i.e. p is ordinary for C2,λ, then a result of Dwork [16] says that

(3.1) lim
s→∞ 2F1

[1
2

1
2

1
; λ̂

]

ps−1

/
2F1

[1
2

1
2

1
; λ̂

]

ps−1−1

is the unit root of T 2 − ap(λ)T + p, where λ̂ = ϕ(λ) is the image of λ under the Teichmüller
character.
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Since λ = 1 is a singular case, we study the case when λ = −1, for which the corresponding
Legendre curve admits complex multiplication. Let p ≡ 1 (mod 4) be prime, then by [21, (4.11)],

p · 2F1

(
η2, η2

ε
;−1

)

p

= J(η4, η2) + J(η4, η2),

where η4 is a primitive order 4 character of F×
p .

3 In the perspective of Dwork, the value (3.1) agrees

with the unit root of T 2 + (J(η4, η2) + J(η4, η2))T + p, which is
Γp( 1

2)Γp( 1
4)

Γp( 3
4)

by the Gross-Koblitz

formula. Using Lemma 5, we have the following.

Proposition 16. For each prime p ≡ 1 (mod 4)

2F1

[1
2

1
2

1
; −1

]

p−1
2

≡ Γp

(
1
2

)
Γp

(
1
4

)

Γp

(
3
4

) = − Γp

(
1
4

)

Γp

(
1
2

)
Γp

(
3
4

) (mod p).

Proof. By Lemma 8 and Lemma 5, we obtain that

2F1

[1
2

1
2

1
; −1

]

p−1
2

≡ 2F1

[1
2

1
2

1
; −1

]

p−1

≡ −p · 2F1

(
η2, η2

ε
;−1

)

p

(mod p).

It remains to show

(3.2) p · 2F1

(
η2, η2

ε
;−1

)

p

≡ −Γp

(
1
2

)
Γp

(
1
4

)

Γp

(
3
4

) (mod p).

By the relations

p · 2F1

(
η2, η2

ε
;−1

)

p

= J(η4, η2) + J(η4, η2) =
g(η2)

(
g(η4)

2 + g(η4)
2
)

g(η4)g(η4)
,

using the Gross-Koblitz formula, we see that

p · 2F1

(
η2, η2

ε
;−1

)

p

=
−π

p−1
2

p Γp

(
1
2

)
(π

3 p−1
2

p Γp

(
3
4

)2
+ π

p−1
2

p Γp

(
1
4

)2
)

πp−1
p Γp

(
1
4

)
Γp

(
3
4

)

= −Γp

(
1
2

)
(−pΓp

(
3
4

)2
+ Γp

(
1
4

)2
)

Γp

(
1
4

)
Γp

(
3
4

) ,

which yields the result. �

Using a different technique via hypergeometric evaluation identities, one can prove the following
stronger result. We will also outline this strategy here (for details, see [31]). First we deform the
truncated hypergeometric series p-adically so that it becomes a whole family of terminating series
that can be written as a quotient of Pochhammer symbols (a)k via appropriate hypergeometric
evaluation formulas. We further rewrite the quotient of Pochhammer symbols as a quotient of
p-adic Gamma values using the functional equation of p-adic Gamma functions. Then we use
harmonic sums to analyze the terminating series on one side and use the Taylor expansion of p-adic
Gamma functions on the other side. Now picking suitable members in the deformed family, we
compare both sides to get a linear system which allows us to conclude the desired congruence.

Proposition 17. For any prime p ≡ 1 (mod 4),

2F1

[1
2

1
2

1
; −1

]

p−1
2

≡ − Γp(
1
4 )

Γp(
1
2 )Γp(

3
4 )

(mod p2).

3When p ≡ 3 (mod 4), 2F1

(

η2, η2
ε
;−1

)

p

= 0.
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Remark 1. Proposition 17 was first obtained by Coster and van Hamme [14] using a refined version
of formal group laws.

Proof. We first recall a theorem of Kummer (see Corollary 3.1.2 of [2]) which says that whenever
b is a negative integer,

(3.3) 2F1

[
a b

a− b+ 1
; −1

]
=

Γ(a− b+ 1)Γ(a/2 + 1)

Γ(a+ 1)Γ(a/2 − b+ 1)
=

(a+ 1)−b

(a/2 + 1)−b
.

We now estimate the left hand side of the proposition statement, modulo p2. Observe that for any
positive integer 1 ≤ k ≤ p−1

2 , and x, y ∈ Zp,
(
1

2
+ xp

)

k

≡
(
1

2

)

k

(1 + 2xpH
(odd)
k ) (mod p2),

(1 + yp)k ≡ (1)k (1 + ypHk) (mod p2),

where H
(odd)
k :=

k∑

j=1

1

2j − 1
and Hk :=

k∑

j=1

1

j
are harmonic sums. Thus we have for any x1, x2, y ∈

Zp,

(3.4) 2F1

[1
2 + x1p

1
2 + x2p

1 + yp
; −1

]

p−1
2

≡ 2F1

[1
2

1
2

1
; −1

]

p−1
2

+ (x1 + x2)Ap− yBp (mod p2),

where A =

p−1
2∑

k=0

(
(12)

2
k

k!2

)
(−1)k · 2H(odd)

k , and B =

p−1
2∑

k=0

(
(12 )

2
k

k!2

)
(−1)kHk.

If b = 1
2 + x2p is a negative integer, then by (3.3) and the above analysis

(3.5) 2F1

[1
2

1
2

1
; −1

]

p−1
2

+ (x1 + x2)Ap − (x1 − x2)Bp ≡
(
3
2 + x1p

)
−b(

5
4 + x1p

2

)
−b

(mod p2).

We now estimate the right hand side of the proposition, which can be also written in terms of the
Pochhammer symbols. One can use Lemma 17 of [31] to convert it to a quotient of p-adic Gamma

function values. For example, if we let x1 = 1
2 , x2 = −1

2 in (3.5) (thus b = 1−p
2 ), the right hand

side becomes (
3+p
2

)
p−1
2(

5+p
4

)
p−1
2

= − Γp(p)Γp(
1
4 + p

4)

Γp(
1
2 +

p
2 )Γp(

3
4 + 3p

4 )
.

By Proposition 15,
Γp(α+mp) ≡ Γp(α)[1 +G1(α)mp] (mod p2),

and G1(α) = G1(1− α). Thus,

− Γp(p)Γp(
1
4 + p

4)

Γp(
1
2 +

p
2 )Γp(

3
4 +

3p
4 )

≡ − Γp(
1
4 )

Γp(
1
2 )Γp(

3
4 )

[
1 +G1(0)p −G1

(
1

2

)
p

2
−G1

(
1

4

)
p

2

]
(mod p2).

Equating both sides in (3.5) gives that

2F1

[1
2 ,

1
2

, 1
; −1

]

p−1
2

−Bp ≡

− Γp(
1
4 )

Γp(
1
2 )Γp(

3
4 )

[
1 +G1(0)p −G1

(
1

2

)
p

2
−G1

(
1

4

)
p

2

]
(mod p2).
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Similarly, letting x1 = −3/2, x2 = −1/2, we get

2F1

[1
2 ,

1
2

, 1
; −1

]

p−1
2

− 2A+Bp ≡

− Γp(
1
4)

Γp(
1
2)Γp(

3
4 )

[
1−G1(0)p +G1

(
1

2

)
3p

2
−G1

(
1

4

)
p

2

]
(mod p2).

Letting x1 = −1/2, x2 = −3/2 (here b = 1−3p
2 but the series terminates at the p−1

2 th term as

a = −p−1
2 ),

2F1

[1
2 ,

1
2

, 1
; −1

]

p−1
2

− 2A−Bp ≡

− Γp(
1
4)

Γp(
1
2)Γp(

3
4 )

[
1 +G1(0)p +G1

(
1

2

)
p

2
−G1

(
1

4

)
3p

2

]
(mod p2).

By summing the first two and last two congruences and comparing, we arrive at the proposition,
in light of Lemma 8. �

Based on Lemma 5, we observe the following numerically which is a companion form of the
congruence above.

Conjecture 18. For any prime p ≡ 1 (mod 4),

− Γp(
1
4)

Γp(
1
2)Γp(

3
4 )

≡
p−1∑

k=0

(
(12 )k

k!

)2

(−1)k
?≡

p−1∑

k=0

(
k!

(32)k

)2

p2(−1)k ≡
p−1∑

k= p−1
2

(
k!

(32)k

)2

p2(−1)k (mod p2).

4. Proofs of Theorem 2 and Lemma 5

4.1. Proof of Theorem 2. We first prove Theorem 2 which counts points on Cn,λ over finite fields
Fq in terms of Gaussian hypergeometric functions. We begin with a lemma.

Lemma 19. Let n ≥ 2 be an integer and let q be a prime power with q = pe ≡ 1 (mod n). Suppose

ηn ∈ F̂×
q is a character of order n and ε denotes the trivial character. If k ∈ {1, . . . , n− 1}, then

∑

xi∈Fq

ηkn((x1 · · · xn−1)
n−1(1− x1) · · · (1− xn−1)(x1 − λx2 · · · xn−1))

= qn−1 · nFn−1

(
ηn−k
n , ηn−k

n , . . . , ηn−k
n

ε, . . . , ε
;λ

)

q

.

Proof. We apply Theorem 10 (n− 3) times, noting that ηn−k
n = ηkn. This gives
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nFn−1

(
ηn−k
n , ηn−k

n , . . . , ηn−k
n

ε, . . . , ε
;λ

)

q

=
(ηn−k

n (−1))n−3

qn−3

∑

x2,...,xn−2∈Fq

3F2

(
ηn−k
n , ηn−k

n , ηn−k
n

ε, ε
;λx2 · · · xn−2

)

q

· ηn−k
n (x2 · · · xn−2)η

k
n((1− x2) · · · (1− xn−2)).

We next apply Corollary 3.14(ii) of [21] to the 3F2 function to obtain

nFn−1

(
ηn−k
n , ηn−k

n , . . . , ηn−k
n

ε, . . . , ε
;λ

)

q

=
(ηn−k

n (−1))n−2

qn−1

·
∑

x1,...,xn−1∈Fq

ηn−k
n (x1 · · · xn−1)η

k
n((1− x1) · · · (1− xn−1)(x1 − λx2 · · · xn−1)).

Since (ηn−k
n (−1))n−2 = η

(n−k)(n−2)
n (−1) = 1 and

ηkn((x1 · · · xn−1)
n−1) = ηkn−k

n (x1 · · · xn−1) = ηn−k
n (x1 · · · xn−1),

we have the result.
�

We are now able to prove Theorem 2.

Proof of Theorem 2. For convenience, we denote

f(x1, . . . , xn−1, λ) = (x1 · · · xn−1)
n−1(1− x1) · · · (1− xn−1)(x1 − λx2 · · · xn−1).

Then

#Cn,λ(Fq) = 1 +
∑

xi∈Fq

#{y ∈ Fq : y
n = f(x1, . . . , xn−1, λ)}

= 1 +
∑

xi∈Fq

f(x1,...,xn−1,λ)6=0

#{y ∈ Fq : y
n = f(x1, . . . , xn−1, λ)}

+#{(x1, . . . , xn−1) ∈ Fn−1
q : f(x1, . . . , xn−1, λ) = 0}.

Using Prop. 8.1.5 in [23], we rewrite the first sum to see

#Cn,λ(Fq) = 1 +
∑

xi∈Fq

n−1∑

i=0

ηin(f(x1, . . . , xn−1, λ))

+ #{(x1, . . . , xn−1) ∈ Fn−1
q : f(x1, . . . , xn−1, λ) = 0}

= 1 + qn−1 +
∑

xi∈Fq

n−1∑

i=1

ηin(f(x1, . . . , xn−1, λ)),

since

ε(f(x1, . . . , xn−1, λ)) + #{(x1, . . . , xn−1) ∈ Fn−1
q : f(x1, . . . , xn−1, λ) = 0} = qn−1.
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Finally, we have

#Cn,λ(Fq) = 1 + qn−1 +

n−1∑

i=1

∑

xi∈Fq

ηin(f(x1, . . . , xn−1, λ))

= 1 + qn−1 + qn−1
n−1∑

i=1

nFn−1

(
ηn−i
n , ηn−i

n , . . . , ηn−i
n

ε, . . . , ε
;λ

)

q

by Lemma 19, which gives the result.

4.2. Proof of Lemma 5. To prove Lemma 5, which relates certain Gaussian hypergeometric
functions to truncated hypergeometric series, we first give a lemma, which analyzes the Gaussian
hypergeometric functions modulo a power of p.

Lemma 20. Let n be a positive integer, and p ≡ 1 (mod n) prime. Let ϕ denote the Teichmüller

character, and ηn a character of order n on Fp corresponding to ϕ
p−1
n

j, for some 0 < j < p − 1.
Then

(4.1) pr−1
rFr−1

(
ηn, ηn, · · · , ηn

ε, · · · , ε
;x

)

p

≡

1

p− 1




p−2∑

k=(p−1)(n−j

n
)




Γp

(
k

p−1 −
n−j
n

)

Γp

(
k

p−1

)
Γp

(
j
n

)




r

ϕk(x) + (−1)r


 (mod pr),

(4.2) pr−1
rFr−1

(
ηn, ηn, · · · , ηn

ε, · · · , ε
;x

)

p

≡

(−1)r

p− 1




(p−1)(n−j

n
)−1∑

k=0

Γp

(
k

p−1

)r
Γp

(
j
n

)r

Γp

(
j
n + k

p−1

)r ϕk(x) + ηn((−1)rx)


 (mod pr).

Proof. For x ∈ F×
p , it follows from the definition that

rFr−1

(
ηn, ηn, · · · , ηn

ε, · · · , ε
;x

)

p

=
p

p− 1

∑

χ∈̂F×
p

(
ηnχ

χ

)r

χ(x) =
p1−r

p− 1

∑

χ

J(ηnχ, χ)
rχr(−1)χ(x),

and also that

J(ηnχ, χ) =

{
χ(−1)pg(ηnχ)

g(ηn)g(χ)
, if χ 6= ε,

−1, if χ = ε,
while, J(ηnχ, χ) =

{
χ(−1)g(ηn)g(χ)

g(ηnχ)
, if χ 6= ηn,

−1, if χ = ηn.
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Thus, we have that

∑

χ

J(ηnχ, χ)
rχr(−1)χ(x) = pr

∑

χ 6=ε

g(ηnχ)
r

g(ηn)rg(χ)r
χ(x) + (−1)r

= pr
(p−1)(n−j

n
)−1∑

k=1

g(ϕ
p−1
n

j+k)r

g(ϕ
p−1
n

j)rg(ϕk)r
ϕk(x) + pr

p−2∑

k=(p−1)(n−j

n
)

g(ϕk−(p−1)n−j

n )r

g(ϕ
p−1
n

j)rg(ϕk)r
ϕk(x) + (−1)r

= pr
(p−1)(n−j

n
)−1∑

k=1

(−1)r




Γp

(
j
n + k

p−1

)

Γp

(
k

p−1

)
Γp

(
j
n

)




r

ϕk(x)

+

p−2∑

k=(p−1)(n−j

n
)




Γp

(
k

p−1 −
n−j
n

)

Γp

(
k

p−1

)
Γp

(
j
n

)




r

ϕk(x) + (−1)r.

Similarly,

∑

χ

J(ηnχ, χ)
rχr(−1)χ(x) =

∑

χ 6=ηn

g(ηnχ)
r

g(ηn)rg(χ)r
χ(x) + (−1)rηn

r(−1)ηn(x)

= (−1)r
(p−1)(n−j

n
)−1∑

k=0



Γp

(
k

p−1

)
Γp

(
j
n

)

Γp

(
j
n + k

p−1

)




r

ϕk(x) + (−1)rηn
r(−1)ηn(x)

+ pr
p−2∑

k=(p−1)(n−j

n
)+1



Γp

(
k

p−1

)
Γp

(
j
n

)

Γp

(
k

p−1 −
n−j
n

)




r

ϕk(x).

�

We are now able to prove Lemma 5.

Proof of Lemma 5. For the first congruence, we use (4.2). By Proposition 15, when k < p we have
that Γp(−k) = Γp(−k)/Γp(0) = 1/k! and Γp(

k
p−1) ≡ Γp(−k) (mod p). Similarly,

Γp(
j
n)

Γp(
j
n + k

p−1)
≡ Γp(

j
n )

Γp(
j
n − k)

(mod p)

and

Γp(
j
n)

Γp(
j
n − k)

=

(
1− j

n

)
· · ·
(
k − j

n

)
=

(
1− j

n

)

k

.

When k = (p−1)
(
n−j
n

)
, we have ηn(±(−1)r) ≡ (1− j

n
)r
k

k!r (±1)k (mod p). Thus the first claim follows.

For the second claim, we consider (4.1) and use a similar argument. Notice that

Γp(
k

p−1 −
n−j
n )

Γp(
j
n)

≡ Γp(−k − n−j
n )

Γp(
j
n)

=
−p(n−j

n )

(1− j
n)(2 −

j
n) · · · (k −

j
n)

(mod p),

and there is no −p(n−j
n ) in the numerator since for (p − 1)(n−j

n ) ≤ k ≤ p − 2 the denominator,

(1− j
n)k+1, will contain a multiple of p, which is p(n−j

n ). This term will not show up in the quotient
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of p-adic Gamma values and the corresponding term is −1 by the functional equation of Γp(·).
Thus

Γp(
k

p−1 −
n−j
n )

Γp(
j
n)

≡ − p

(2− j
n)k

(mod p),

which concludes the proof of the second claim.

5. The proof of Theorem 4

The following proposition establishes case (1) of Theorem 4.

Proposition 21. Let q = pe ≡ 1 (mod 3) be a prime power and let η3 be a character of order 3 in

F̂×
q . Then

q2 · 3F2

(
η3, η3, η3

ε, ε
; 1

)

q

= J(η3, η3)
2 − J(η23 , η

2
3).

Proof. Beginning with Theorem 4.35 in [21], we have

q2 · 3F2

(
η3, η3, η3

ε, ε
; 1

)

q

= q2η23(−1)

(
η3
η23

)(
η3
η23

)
− qη3(−1)

(
η23
η3

)

Then, since
(η3
η23

)
= 1

qJ(η3, η3) and
(
η23
η3

)
= η3(−1)

q J(η23 , η
2
3), we get the result.

�

We now restate an equivalent form of case (2) of Theorem 4.

Theorem 22. Let q = pe ≡ 1 (mod 4) be a prime power and let η4 and η2 be characters of order

4 and 2, respectively, in F̂×
q . Then

∑

x,y,z∈Fq

η4(x
3y3z3(1− x)(1− y)(1 − z)(x− yz)) = J(η4, η2)

3 + qJ(η4, η2)− J(η4, η2)
2.

Equivalently, we have

q3 · 4F3

(
η4, η4, η4, η4

ε, ε, ε
; 1

)

q

= J(η4, η2)
3 + qJ(η4, η2)− J(η4, η2)

2.

As mentioned in the introduction, this result says that a 3-dimensional Galois representa-
tion of GQ(

√
−1) := Gal(Q/Q(

√
−1)) arising from C4,1 is isomorphic to a direct sum of three

Grössencharacters. The proof contains two steps using totally different approaches. We first es-
tablish the case for q ≡ 1 (mod 8) using results of Greene and McCarthy. This is equivalent to
proving the two Galois representations are isomorphic when they are restricted to the subgroup
GQ(

√
−1,

√
2) := Gal(Q/Q(

√
−1,

√
2)). In the second part of the proof, we use representation theory

to draw the final conclusion. We now start with the case when q = pe ≡ 1 (mod 8) is a prime
power, we prove this case via the series of results below. The Lemma below evaluates two modified
Gaussian hypergeometric functions.

Lemma 23. Let q = pe ≡ 1 (mod 8) be a prime power. Then

4F3

(
η8, η4, η4, η8

η8, η38 , ε
; 1

)∗

q

=

1

J(η4, η83)

(
J(η8, η4)− η8(−1)J(η8, η8)J(η2, η4) +

J(η8, η4)
3

q

)
,
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4F3

(
η38 , η4, η4, η8

η8
3, η38 , ε

; 1

)∗

q

=

1

J(η4, η38)

(
J(η38 , η4)− η8(−1)J(η8, η8

3)J(η2, η4) +
J(η8, η4)J(η4, η

3
8)

2

q

)
.

Proof. Firstly, we obtain that

4F3

(
η8, η4, η4, η8

η8, η38 , ε
; 1

)∗

q

= −q
((

η4
η8

)(
η4
η38

))−1

4F3

(
η8, η4, η4, η8

η8, η38 , ε
; 1

)

q

.

Using the transformations Theorem 3.15(iv), Theorem 4.35 in [21], and the fact η4(−1) = 1 when
q ≡ 1 (mod 8), we have

4F3

(
η8, η4, η4, η8

η8, η38 , ε
; 1

)

q

= 4F3

(
η8, η4, η4, η8

η8, η38 , ε
; 1

)

q

=

(
η4
η8

)
3F2

(
η4, η4, η8

η38 , ε
; 1

)

q

− η8(−1)

q

(
η8
η4

)(
η4
η8

)

=

(
η4
η8

)(
η8(−1)

(
η8
η8

)(
η4
η2

)
− η8(−1)

q

(
η8
η4

))
− 1

q

(
η8
η4

)2

.

Therefore, we can conclude that

4F3

(
η8, η4, η4, η8

η8, η38 , ε
; 1

)∗

q

=
1

J(η4, η83)

(
J(η8, η4)− η8(−1)J(η8, η8)J(η2, η4) +

J(η8, η4)
3

q

)
.

Likewise, we have the equality

4F3

(
η38 , η4, η4, η8

η8
3, η38, ε

; 1

)∗

q

=

1

J(η4, η38)

(
J(η38 , η4)− η8(−1)J(η8, η8

3)J(η2, η4) +
J(η8, η4)J(η4, η

3
8)

2

q

)
.

�

Next, we relate our target to a modified Gaussian 5F4 hypergeometric function.

Proposition 24. Let q = pe ≡ 1 (mod 8) be a prime power, and η8 a character of order 8 in F̂×
q

with η28 = η4 . Then

q4 · 4F3

(
η4, η4, η4, η4

ε, ε, ε
; 1

)

q

= J(η8, η8)
4 − q · 5F4

(
η4, η4, η4, η4, η8

ε, ε, ε, η8
; 1

)∗

q

.

Proof. Comparing the definitions of finite field hypergeometric functions given by Greene and Mc-
Carthy, one can find

5F4

(
η4, η4, η4, η4, η8

ε, ε, ε, η8
; 1

)

q

=
1

q3
5F4

(
η4, η4, η4, η4, η8

ε, ε, ε, η8
; 1

)∗

q

+

(
1− 1

q

)
4F3

(
η4, η4, η4, η4

ε, ε, ε
; 1

)

q

.
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On the other hand, by [21, Theorem 3.15(ii)], the Greene’s 5F4 function is equal to

−1

q
4F3

(
η4, η4, η4, η4

ε, ε, ε
; 1

)

q

+
J(η8, η8)

4

q4
.

These lead to the desired result. �

We now evaluate the 5F4 modified Gaussian hypergeometric function using Theorem 14 which
is due to McCarthy.

Proposition 25. Let q = pe ≡ 1 (mod 8) be a prime power. Then

5F4

(
η4, η4, η4, η4, η8

ε, ε, ε, η8
; 1

)∗

q

=
J(η8, η8)

4

q
− qJ(η4, η2)− J(η2, η4)

3 + J(η2, η4)
2.

Proof. According to Theorem 14, we can deduce that

5F4

(
η4, η4, η4, η4, η8

ε, ε, ε, η8
; 1

)∗

q

=
q

J(η8, η4)
2F1

(
η4, η4

ε
;−1

)∗

q

+ q
J(η8, η8)

J(η38 , η8)

(
4F3

(
η8 η4 η4 η8

η8, η38 , ε
; 1

)∗

q

+ 4F3

(
η38 , η4, η4, η8

η8
3, η38 , ε

; 1

)∗

q

)
.

We now apply Lemma 23 and the following fact which arises from Theorem 1.9 of [32]

2F1

(
η4 η4

ε
; 1

)∗

q

= −J(η8, η4)− J(η4, η
3
8).

To simplify the formulas, we recall the facts that if q = pe ≡ 1 (mod 8), we have η2(2) = η4(−1) = 1
and the identities

J(η8, η4) = η38(−4)J(η2, η4),

J(η4, η
3
8) = η8(−1)J(η8, η

3
8) = η8(−4)J(η2, η4),

J(η8, η4) = J(η4, η
3
8) = η8(−1)J(η38 , η

3
8) = η8(−1)J(η8, η8).

For more details on Jacobi sums, please see [8, Chapter 3]. �

We now conclude with the second case using representation theory. We first describe the
Grössencharacters corresponding to the Jacobi sums

− J(η4, η2)
3 − qJ(η4, η2) + J(η4, η2)

2 = −J(η4, η2)3 − J(η4, η2)J(η4, η2)
2 + J(η4, η2)

2

and then we use properties of induced representations to draw the final conclusion.

The proof of the case when prime powers q ≡ 5 (mod 8). For each prime ideal p prime to (4) in
Z[
√
−1], let q be the norm of p. Then q ≡ 1 mod 4, and let ψp be a homomorphism of Z[

√
−1]/p

to the order 4 multiplicative group 〈
√
−1〉 such that ψp(x) ≡ x

q−1
4 mod p for each x ∈ Z[

√
−1]. The

map that assigns−
∑

x mod p

ψp(x)ψ
2
p(1−x) = −J(ψp, ψ

2
p) to p extends to a Hecke (or Grössencharacter)

character ψ of GQ(
√
−1) (see [40] by Weil). In particular, ψ is of conductor

(
(1 +

√
−1)4

)
= (4) and

infinity-type [1, 0], which is corresponding to the elliptic curve with complex multiplication which
has conductor 64. Explicitly, for any a+ b

√
−1 ∈ Z[

√
−1], ψ(a+ b

√
−1) = (−1)b(a+ b

√
−1)χ1(a+

b
√
−1), where

χ1(a+ b
√
−1) =





(−1)
a+b−1

2
√
−1, if a ≡ 0 (mod 2), b ≡ 1 (mod 2),

(−1)
a+b−1

2 , if a ≡ 1 (mod 2), b ≡ 0 (mod 2),

0, otherwise.
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Here, we remark that the unit group of Z[
√
−1]/(4) has order 8 and it is generated by

√
−1,

−1 + 2
√
−1. The Dirichlet character χ1 takes values χ1(

√
−1) =

√
−1, χ1(−1 + 2

√
−1) = 1.

By class field theory, ψ corresponds to a character χ of GQ(
√
−1). Similar to the discussion in

[15], for each Frobenius class Frq ∈ GQ(
√
−1,

√
2) with q ≡ 1 (mod 4),

∑

x,y,z∈Fq

[
−η4

(
x3y3z3(1− x)(1 − y)(1− z)(x− yz)

)
− η4

(
x3y3z3(1− x)(1− y)(1− z)(x− yz)

)]

coincides with the trace of Frp under the 6-dimensional semisimple representation

ρ := Ind
GQ

GQ(
√

−1)

(
χ3 ⊕ (χ2 ⊗ χ)⊕ χ2

)
.

Moreover, ρ|GQ(
√

−1)
= σ⊕ σ̄, with the restriction σ|G

Q(
√

−1,
√

2)
being isomorphic to the restriction of

χ3 ⊕ (χ2 ⊗ χ)⊕ χ2 to GQ(
√
−1,

√
2). As GQ(

√
−1,

√
2) is an index-2 subgroup of GQ(

√
−1), by Clifford’s

result [12], σ is also direct sum of the form

(χ3 ⊗ ϕn1)⊕ (χ2 ⊗ χ⊗ ϕn2)⊕ (χ2 ⊗ ϕn3)

where ϕ is the order 2 character of GQ(
√
−1) with kernel GQ(

√
−1,

√
2), n1, n2, n3 ∈ {0, 1}. From

computing a few primes p ≡ 5 (mod 8), we determine that each ni = 0 and the claim for p ≡ 5
(mod 8) thus follows. �

6. Supercongruences

We first prove Theorem 6 using the technique outlined before Proposition 17. The initial idea of
the proof is due to Zudilin, and uses the following particular case of the Karlsson–Minton formula
[20, eq. (1.9.3)]: for any non-negative integers m1, . . . ,mn,

(6.1) n+1Fn

[−(m1 + · · ·+mn) b1 +m1 . . . bn +mn

b1 . . . bn
; 1

]

= (−1)m1+···+mn
(m1 + · · ·+mn)!

(b1)m1 · · · (bn)mn

.

Note that when n = 2, we can derive a different proof using a formula of Dixon. We present the
proof below as it applies to all n.

Proof of Theorem 6.
Let n ≥ 3, and p ≡ 1 (mod n) be prime, which has to be odd. Set m = p−1

n , and let y be any
integer. Letting b1 = 1 + yp, b2 = · · · = bn = 1, and m1 = · · · = mn = m in (6.1), we get that

(6.2) n+1Fn

[
1− p 1 +m+ yp 1 +m · · · 1 +m

1 + yp 1 · · · 1
; 1

]

=
(−1)p−1(p − 1)!

(1 + yp)m(m!)n−1
=

(p − 1)!

(1 + yp)m(m!)n−1
.

Now we compare the left hand side with the left hand side of Theorem 6. We observe that

(1− p)k ≡ (1)k − p

k∑

i=1

(1)k
i

(mod p2),

(1 + yp)k ≡ (1)k + yp
k∑

i=1

(1)k
i

(mod p2),
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and so

(6.3)
(1− p)k
(1 + yp)k

≡ 1− (1 + y)

[
k∑

i=1

i−1

]
p (mod p2).

Also,

(1 +m+ yp)k =

((
1− 1

n

)
+

(
1

n
+ y

)
p

)

k

≡
(
1− 1

n

)

k

+

(
1

n
+ y

)[ k∑

i=1

(1− 1
n)k

(i− 1
n)

]
p (mod p2),

(1 + m)n−1
k ≡

(
1− 1

n

)n−1

k

+

(
n− 1

n

)(
1− 1

n

)n−2

k

[
k∑

i=1

(1− 1
n)k

(i− 1
n)

]
p (mod p2),

and so

(6.4) (1 + m + yp)k(1 + m)n−1
k ≡

(
1− 1

n

)n

k

(
1 + (1 + y)

[
k∑

i=1

(
i− 1

n

)−1
]
p

)
(mod p2).

Thus (6.3) and (6.4) give that the left hand side of (6.2) can be written modulo p2 as

p−1∑

k=0

(
1− 1

n

)n
k

(1)n−1
k

(
1 + (1 + y)

[
k∑

i=1

((
i− 1

n

)−1

− i−1

)]
p

)
(mod p2).

Using harmonic sums we conclude that there exists A ∈ Zp such that

(6.5) n+1Fn

[
1− p 1 +m+ yp 1 +m · · · 1 +m

1 + yp 1 · · · 1
; 1

]

≡ nFn−1

[n−1
n

n−1
n · · · n−1

n

1 · · · 1
; 1

]

p−1

· (1−A(y + 1)p) (mod p2).

Using part c) of Proposition 15, we see that a0(
1
n) =

1+(n−1)p
n = p−m, and by part b),

Γp(−m) = 1/m! and Γp(−p) = −1/(p − 1)!.

Also

1

(1 + yp)m
=

(−1)mΓp(1 + yp)

Γp(1 + yp+ p−1
n )

=
−(−1)mΓp(yp)

Γp(1− 1
n + ( 1n + yp))

= Γp

(
1

n
−
(
1

n
+ y

)
p

)
Γp(yp).

We thus have

(6.6)
(p− 1)!

(1 + yp)m(m!)n−1
= −Γp(

1−p
n )n−1Γp(

1
n − ( 1n + y)p)Γp(yp)

Γp(−p)

≡ −Γp

(
1

n

)n(
1 +

(
G1(0)−G1

(
1

n

))
(1 + y)p

)
(mod p2).

Finally, letting y = −1 in (6.5) and (6.6), we see the desired congruence modulo p2.

We now prove Theorem 7.
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Proof of Theorem 7. Let p be a prime such that p ≡ 1 (mod 4). We will use the following formula
of Dougall (see Theorem 3.5.1 of [2]) which says that if 2a+ 1 = b+ c+ d+ e−m, then

(6.7) 7F6

[
a a/2 + 1 b c d e −m

a/2 1 + a− b 1 + a− c 1 + a− d 1 + a− e 1 + a+m
; 1

]

=
(1 + a)m(1 + a− b− c)m(1 + a− b− d)m(1 + a− c− d)m
(1 + a− b)m(1 + a− c)m(1 + a− d)m(1 + a− b− c− d)m

.

Letting a = 1/4, b = 5/8, c = 1/8, d = (1 + pu)/4, e = (1 + (1 − u)p)/4, and m = (p − 1)/4), we
have 2a+1 = b+ c+ d+ e−m and thus we can use (6.7). We first observe that the left hand side
reduces to

4F3

[
1
4

1+pu
4

1+(1−u)p
4

1−p
4

1− pu
4 1 + (u−1)p

4 1 + p
4

; 1

]

after deleting three matching pairs of upper and lower parameters corresponding to a/2+1, b, and
c. Writing the right hand side in terms of Gamma functions, we thus get that

4F3

[
1
4

1+pu
4

1+(1−u)p
4

1−p
4

1− pu
4 1 + (u−1)p

4 1 + p
4

; 1

]

=
Γ(1 + p

4 )Γ(
1+p
4 )Γ(18 + (1−u)p

4 )Γ(58 + (1−u)p
4 )Γ(58)Γ(

9
8 )Γ(1−

pu
4 )Γ(

1−pu
4 )

Γ(54)Γ(
1
2 )Γ(

3
8 − pu

4 )Γ(
7
8 − pu

4 )Γ(38 +
p
4 )Γ(

7
8 + p

4)Γ(
3+(1−u)p

4 )Γ( (1−u)p
4 )

.

Using the duplication formula Γ(z)Γ(z + 1
2) = 21−2zΓ(12 )Γ(2z), we have

Γ(18 + (1−u)p
4 )Γ(58 + (1−u)p

4 )Γ(58 )Γ(
9
8 )

Γ(38 −
pu
4 )Γ(

7
8 − pu

4 )Γ(38 + p
4 )Γ(

7
8 + p

4)
=

Γ(14 + (1−u)p
2 )Γ(54 )

Γ(34 −
pu
2 )Γ(

3
4 + p

2 )
.

Using Proposition 15, we can thus rewrite the right hand side as

Γp(
p
4)Γp(

1+p
4 )Γp(

1
4 + (1−u)p

2 )Γp(−pu
4 )Γp(

1−pu
4 )

Γp(
1
2 )Γp(

3
4 − pu

2 )Γp(
3
4 +

p
2 )Γp(

3+(1−u)p
4 )Γp(

(1−u)p
4 )

≡ (−1)
p−1
4 Γp

(
1

2

)
Γp

(
1

4

)6

·
(
1− 5(u2 − u+ 1)(G1(

1
4 )

2 −G2(
1
4))

16
p2

+
u(u− 1)(G1(0)

3 −G3(0) − 21G2(
1
4 )G1(

1
4 ) + 7G3(

1
4) + 14G1(

1
4 )

3)

128
p3

)
(mod p4).

Meanwhile, we expand the left hand side using harmonic sums as in Proposition 17. So there exist
ak,i, bk,i ∈ Zp such that modulo p4 we have

4F3

[
1
4

1+pu
4

1+(1−u)p
4

1−p
4

1− pu
4 1 + (u−1)p

4 1 + p
4

; 1

]
=

p−1
4∑

k=0

(
(14 )

4
k

k!4
(1 + ak,1

pu
4 + ak,2(

pu
4 )2 + ak,3(

pu
4 )

3)(1 + ak,1
(1−u)p

4 + ak,2(
(1−u)p

4 )2 + ak,3(
(1−u)p

4 )3)

(1 + bk,1
−pu
4 + bk,2(

−pu
4 )2 + bk,3(

−pu
4 )3)

· (1 + ak,1
−p
4 + ak,2(

−p
4 )2 + ak,3(

−p
4 )3)

(1 + bk,1
(u−1)p

4 + bk,2(
(u−1)p

4 )2 + bk,3(
(u−1)p

4 )3)(1 + bk,1
p
4 + bk,2(

p
4 )

2 + bk,3(
p
4)

3)

)
.
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Note that if we collect coefficients of p, p2, p3 we get 0,

−
(u2 − u+ 1)(a2k,1 − 2bk,2 − 2ak,2 + b2k,1)

16
,

and

−
u(u− 1)(−3bk,3 + 3ak,3 − b3k,1 − 3ak,1ak,2 + 3bk,1bk,2 + a3k,1)

64
,

respectively. 4

By collecting terms, we see there are Ai, Bi ∈ Zp such that for all u ∈ Zp

4F3

[1
4

1
4

1
4

1
4

1 1 1
; 1

]

p−1
4

[1 +A2(u
2 − u+ 1)p2 +A3(u

2 − 1)p3]

≡ (−1)
p−1
4 Γp

(
1

2

)
Γp

(
1

4

)6

[1 +B2(u
2 − u+ 1)p2 +B3(u

2 − 1)p3] (mod p4),

from which the claim of the theorem follows.

7. Remarks

7.1. Truncated hypergeometric series and noncongruence modular forms. We first recall
the following hypergeometric series transformation (see [2, (2.4.12)])

(7.1) 3F2

[−m a b

d e
; 1

]
=

(e− a)m
(e)m

3F2

[−m a d− b

d a+ 1−m− e
; 1

]
,

which holds when −m is a negative integer and both sides converge. Given an integer n ≥ 2 and a

prime p ≡ 1 (mod n), letting firstm = p−1
n , a = n−1+p

n , b = 1
n , d = e = 1, and then m = (n−1)(p−1)

3 ,

a = 1+(n−1)p
n , b = 1

n , d = e = 1 respectively, we derive the following supercongruence

(7.2) (−1)
p−1
n 3F2

[n−1
n

n−1
n

1
n

1 1
; 1

]

p−1

≡ 3F2

[ 1
n

1
n

n−1
n

1 1
; 1

]

p−1

(mod p2).

This was first observed and proved by McCarthy in a private communication via a different approach
using the work of Mortenson [35] for the case of n = 3. Moreover, we would like to mention the
following conjecture to demonstrate that truncated hypergeometric series arise in many different
settings including the theory of noncongruence modular forms.

Conjecture 26. For any integer n > 1 and prime p ≡ 1 (mod n),

3F2

[ 1
n

1
n

n−1
n

1 1
; 1

]

p−1

≡ ap(fn(z)) (mod p2),

where ap(fn(z)) is the pth coefficient of fn(z) =
n
√
E1(z)n−1E2(z) when expanded in terms of the

local uniformizer e2πiz/5n, and E1(z) and E2(z) are two explicit level 5 weight 3 Eisenstein series
with coefficients in Z (see (17) and (18) of [29] or [28, §3] for their expansions).

In a series of papers [29, 4, 30], the third author and her collaborators studied the properties of
these functions fn(z) which are weight 3 cusp forms for some finite index subgroups of SL2(Z) that
contain no principal congruence subgroups. For n = 3, 4, 6, the pth coefficients of fn(z) are shown
to be related to the coefficients of classical Hecke or Hilbert modular forms.

4Comparing both sides, when we pick u = −ζ3 where ζ3 be a primitive cubic root, we can derive that the claim
of the theorem holds modulo p3.
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In terms of Gaussian hypergeometric functions, we have when p ≡ 1 (mod n) and ηn any order
n character of F×

p then by work of Greene [21]

(7.3) 3F2

(
ηn, ηn, ηn

ε, ε
; 1

)

p

= ηn(−1) 3F2

(
ηn, ηn, ηn

ε, ε
; 1

)

p

.

7.2. Other observations. We conclude with some patterns observed from numerical data. For
each prime p ≡ 1 (mod 5), it appears that

(7.4) 5F4

[2
5

2
5

2
5

2
5

2
5

1 1 1 1
; 1

]

p−1

?≡ −Γp

(
1

5

)5

Γp

(
2

5

)5

(mod p5).

Using the strategy of the proof of Theorem 5 and Dougall’s formula (6.7), one can obtain (7.4)
modulo p4. By the Gross-Koblitz formula, the p-adic Gamma value agrees with J(η2n, η

2
n)

3J(ηn, ηn)
when we choose the right order n character. Meanwhile, by Conjecture 3, we sense the presence
of another Jacobi sum factor −J(ηn, ηn)J(ηn, η2n)J(ηn, η3n). It will be interesting to know whether
we can reconstruct the local zeta function of C5,1 as we have done for C3,1 and C4,1. We leave this
task to interested readers.

We conclude with a few more observations. Motivated by Lemma 5, we numerically observed
the following supercongruences. Each corresponds to a supercongruence mentioned earlier.

(1) For any prime p ≡ 1 (mod 3),

p−1∑

k=0

(
p
k!

(53)k

)3

≡
p−1∑

k= 2(p−1)
3

(
p
k!

(53)k

)3
?≡ Γp

(
1

3

)6

(mod p3).

(2) For any prime p ≡ 1 (mod 4),

p−1∑

k=0

(
p
k!

(74)k

)4

≡
p−1∑

k= 3(p−1)
4

(
p
k!

(74)k

)4
?≡ (−1)

p−1
4 Γp

(
1

2

)
Γp

(
1

4

)6

(mod p4).

(3) For any prime p ≡ 1 (mod 5),

p−1∑

k=0

(
p
k!

(85)k

)5

≡
p−1∑

k=
3(p−1)

5

(
p
k!

(85)k

)5
?≡ −Γp

(
1

5

)5

Γp

(
2

5

)5

(mod p5).

(4) For an integer n > 2, and any prime p ≡ 1 (mod n),

p−1∑

k=0

(
p

k!

( 1n + 1)k

)n

≡
p−1∑

k=
(p−1)

n

(
p

k!

( 1n + 1)k

)n
?≡ −Γp

(
1

n

)n

(mod p3).
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