Skip to main content

Node Architectures for Elastic and Flexible Optical Networks

  • Chapter
  • First Online:
Book cover Elastic Optical Networks

Part of the book series: Optical Networks ((OPNW))

Abstract

Architecture on Demand

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, T.J. Xia, Flexible architectures for optical transport nodes and networks. IEEE Commun. Mag. 1, 40–50 (2010)

    Article  Google Scholar 

  2. S. Poole, S. Frisken, M. Roelens, C. Cameron, Bandwidth-flexible ROADMs as network elements, in OTuE1, OSA/OFC/NFOEC, 2011

    Google Scholar 

  3. B. Collings, New devices enabling software-defined optical networks. IEEE Commun. Mag. 1, 66–73 (2013)

    Article  Google Scholar 

  4. D.M. Marom et al., Wavelength-selective 1_4 switch for 128 WDM channels at 50 GHzspacing, in Proceedings of Optical Fibre Communications (OFC 2002), Anaheim, CA, Postdeadline Paper FB7

    Google Scholar 

  5. J. Kondis et al., Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers, in Proceedings LEOS 2001, Piscataway, NJ, 2001, pp. 292–293

    Google Scholar 

  6. G. Baxter et al., Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements, in Proceedings OFC/NFOEC 2006, OTuF2, Anaheim, California, USA, 2006

    Google Scholar 

  7. T. Strasser, ROADM technology evolution. Presented at the LEOS annual meeting, Long Beach, CA, 2008, Paper TuH1

    Google Scholar 

  8. R.-J. Essiambre et al., Capacity limits of optical fibre networks. J. Lightwave Technol. 28(4), 662–701 (2010)

    Article  Google Scholar 

  9. S. Gringeri et al., Technical considerations for supporting data rates beyond 100 Gb/s. IEEE Commun. Mag. 2012

    Google Scholar 

  10. K. Roberts et al., Flexible transceivers, in 2012 ECOC, Paper We3A3

    Google Scholar 

  11. A. Peters, E. Hugues-Salas, G. Zervas, D. Simeonidou, Design of elastic optical nodes based on subsystem flexibility measurement and other figures of merit, in ECOC 2015

    Google Scholar 

  12. K. Sato, Advances in Transport Network Technologies (Artech House, Norwood, 1996)

    Google Scholar 

  13. K. Sato, S. Okamoto, H. Hadama, Optical path layer technologies to enhance B-ISDN performance, in Proceedings ICC‘93, Geneva, vol. 3, 1993, pp. 1300–1307

    Google Scholar 

  14. A. Watanabe, S. Okamoto, K. Sato, Optical switch using WDM, Patent No. 3416895

    Google Scholar 

  15. A. Watanabe, S. Okamoto, K. Sato, M. Okuno, Optical switch, Patent No. 3444548

    Google Scholar 

  16. M. Koga et al., 8×16 delivery and coupling type optical switches for a 320 Giga-bit/s throughput optical path cross-connect system, in OFC ‘96, ThN3, San Jose, February 25-March 1, 1996, pp. 259–261

    Google Scholar 

  17. M.D. Feuer, S.L. Woodward, Advanced ROADM networks, in OFC/NFOEC 2012, NW3F.3, March 2012

    Google Scholar 

  18. I. Kim, P. Palacharla, X. Wang, D. Bihon, M.D. Feuer, S.L. Woodward, Performance of colorless, non-directional ROADMs with modular client-side fibre cross-connects, in OFC/NFOEC 2012, NM3F.7, Los Angels, March 2012

    Google Scholar 

  19. T. Zami, Contention simulation within dynamic, colorless and unidirectional/multidirectional optical cross-connects, in ECOC 2011, We.8.K.4, Geneva, September 2011

    Google Scholar 

  20. H. Ishida, H. Hasegawa, K. Sato, An efficient add/drop architecture for large-scale subsystem-modular OXC, in 15th International Conference on Transparent Optical Networks, ICTON 2013, We.A1.5, Cartagena, Spain, June 23–27, 2013

    Google Scholar 

  21. H. Ishida, H. Hasegawa, K. Sato, Hardware scale and performance evaluation of compact OXC add/drop architecture, in OFC/NFOEC 2014, W1C.7, San Francisco, March 9–14, 2014

    Google Scholar 

  22. K. Sato, How to create large scale OXC/ROADM for the future networks, in 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, Austria, July 6–10, 2014

    Google Scholar 

  23. K. Sato, Implication of inter-node and intra-node contention in creating large throughput photonic networks, in IEEE Optical Network Design and Modeling Conference, ONDM 2014, Stockholm, May 19–22, 2014

    Google Scholar 

  24. K. Sato, H. Hasegawa, Prospects and challenges of multi-layer optical networks. IEICE Trans. Commun. E90-B(8), 1890–1902 (2007)

    Article  Google Scholar 

  25. S. Mitsui, H. Hasegawa, K. Sato, Hierarchical optical path cross-connect node architecture using WSS/WBSS, in Photonics in Switching 2008, S-04-1, Hokkaido, Japan, August 4–7, 2008

    Google Scholar 

  26. K. Ishii, H. Hasegawa, K. Sato, M. Okuno, S. Kamei, H. Takahashi, An ultra-compact waveband cross-connect switch module to create cost-effective multi-degree reconfigurable optical node, in ECOC 2009, Vienna, Austria, September 20–24, 2009, 4.2.2

    Google Scholar 

  27. T. Ban et al., Development of large capacity ultra-compact waveband cross-connect, in 16th Opto-Electronics and Communications Conference, OECC 2011, 6A1-2, Kaohsiung, Taiwan, July 4–8 2011

    Google Scholar 

  28. K. Ishii et al., Monolithically integrated waveband selective switch using cyclic AWGs, in ECOC 2008, Mo.4.C.5, Brussels, September 22–25, 2008

    Google Scholar 

  29. Y. Taniguti, Y. Yamada, H. Hasegawa, K. Sato, Coarse granular optical routing networks utilizing fine granular add/drop. IEEE/OSA J. Opt. Commun. Netw. 5(7), 774–783 (2013)

    Article  Google Scholar 

  30. Y. Terada, Y. Mori, H. Hasegawa, K. Sato, Enhancement of fibre frequency utilization by employing grouped optical path routing, in OFC/NFOEC 2014, W1C.6, San Francisco, March 9–14, 2014

    Google Scholar 

  31. T. Ban, H. Hasegawa, K. Sato, T. Watanabe, H. Takahashi, A novel large-scale OXC architecture that employs wavelength path switching and fibre selection, in ECOC 2012, We.3.D.1, Amsterdam, September 16–20, 2012

    Google Scholar 

  32. L.H. Chau, H. Hasegawa, K. Sato, Performance evaluation of large-scale OXC architectures that utilize intra-node routing restriction, in OECC/PS 2013, MQ2-2, Kyoto, June 30–July 4, 2013

    Google Scholar 

  33. Y. Iwai, H. Hasegawa, K. Sato, Large-scale photonic node architecture that utilizes interconnected small scale optical cross-connect sub-systems, in ECOC 2012, We.3.D.3, Amsterdam, September 16–20, 2012

    Google Scholar 

  34. Y. Iwai, H. Hasegawa, K. Sato, A large-scale photonic node architecture that utilizes interconnected OXC subsystems. OSA Opt. Express 21(1), 478–487 (2013)

    Article  Google Scholar 

  35. Y. Tanaka, Y. Iwai, H. Hasegawa, K. Sato, Subsystem modular OXC architecture that achieves disruption free port count expansion, in ECOC 2013, Th.2.E.4, London, September 2013

    Google Scholar 

  36. H. Huang et al., 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 39(2), 197–200 (2014)

    Article  Google Scholar 

  37. ITU-T Recommendation, Architecture of optical transport networks, Series G: Transmission Systems and Media, Digital Systems and Networks, Digital networks—Optical Transport Networks, October 2012

    Google Scholar 

  38. ITU-T G.707/Y.1322, Implementers’ Guide, Series G: Transmission Systems and Media, Digital Systems and Networks, June 2010

    Google Scholar 

  39. ITU-T G.7044/Y.1347, Hitless adjustment of ODUflex (GFP), Series G: Transmission Systems and Media, Digital Systems and Networks, October 2010

    Google Scholar 

  40. ITU-T G.7041/Y1303, Generic framing procedure, Series G: Transmission Systems and Media, Digital Systems and Networks, April 2011

    Google Scholar 

  41. N. Amaya et al., Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes. Opt. Express 21(7), 8865–8872 (2013)

    Article  Google Scholar 

  42. N. Amaya et al., Introducing node architecture flexibility for elastic optical networks. J. Opt. Commun. Netw. 5(6), 593–608 (2013)

    Article  Google Scholar 

  43. M. Garrich, N. Amaya, G. Zervas, J.R.F. Oliveira, P. Giaccone, A. Bianco, D. Simeonidou, J.C.R.F. Oliveira, Architecture on Demand Design for High-Capacity Optical SDM/TDM/FDM Switching. IEEE/OSA J. Opt. Commun. Netw. 7(1), 21–35 (2015)

    Article  Google Scholar 

  44. A. Muhammad et al., Flexible and synthetic SDM networks with multi-core-fibres implemented by programmable ROADMs, in Proceedings of ECOC 2014, Cannes, France, Paper P.6.6

    Google Scholar 

  45. N. Amaya et al., Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration. Opt. Express 22(3), 3638–3647 (2014)

    Article  Google Scholar 

  46. M. Garrich et al., Power consumption analysis of architecture on demand, in Proceedings ECOC 2012, Amsterdam, Netherlands, Paper P5.06

    Google Scholar 

  47. A. Muhammad, G. Zervas, N. Amaya, D. Simeonidou, R. Forchheimer, Introducing flexible and synthetic optical networking: planning and operation based on network function programmable ROADMs. IEEE J. Opt. Commun. Netw. 6(7), 635–648 (2014)

    Article  Google Scholar 

  48. G. Zervas et al., Network function programmability and software-defined synthetic optical networks for data centres and future Internet, in Proceedings Photonics in Switching (PS) 2014 San Diego, USA, Paper PM4C.3

    Google Scholar 

  49. A. Muhammad et al., Introducing flexible and synthetic optical networking: planning and operation based on network function programmable ROADMs. J. Opt. Commun. Netw. 6(7), 660–669 (2014)

    Article  Google Scholar 

  50. Y. Yan et al., FPGA-based optical network function programmable node, in Proceedings OFC 2014, San Francisco, USA, Paper W1C.1

    Google Scholar 

  51. B. Rahimzadeh Rofoee et al., All programmable and synthetic optical network: architecture and implementation. J. Opt. Commun. Netw. 5(9), 1096–1110 (2013)

    Article  Google Scholar 

  52. M. Dzanko, M. Furdek, G. Zervas, D. Simeonidou, Evaluating availability of optical networks based on self-healing network function programmable ROADMs. IEEE/OSA J. Opt. Commun. Netw. 6(11), 974–987 (2014)

    Article  Google Scholar 

  53. Transmode App Note, Transmode’s Flexible Optical Networks, http://www.transmode.com/en/technologies/flexible-optical-networks

  54. S. Okamoto, A. Watanabe, K. Sato, Optical path cross-connect architecture for photonic transport network. Special Joint Issue IEEE J. Lightwave Technol. IEEE J. Sel. Areas Commun. 14(6), 1410–1422 (1996)

    Google Scholar 

  55. Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, F. Shimokawa, MEMS-based 1×43 wavelength-selective switch with flat passband, in ECOC 2009

    Google Scholar 

  56. S. Kakehashi et al., IEICE Trans. Commun. E91-B(10), 3174–3184 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zervas, G., Hugues-Salas, E., Polity, T., Frigerio, S., Sato, KI. (2016). Node Architectures for Elastic and Flexible Optical Networks. In: López, V., Velasco, L. (eds) Elastic Optical Networks. Optical Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-30174-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30174-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30173-0

  • Online ISBN: 978-3-319-30174-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics